Trace Elements in Coal by Optical Emission Spectroscopy - Advances

Jul 22, 2009 - For the photographic method, similar mixtures were prepared without the G-2 ... Trace Impurities in Coal by Wet Chemical Methods Advanc...
0 downloads 0 Views 1MB Size
3 Trace Elements in Coal

Downloaded via UNIV OF ARIZONA on July 26, 2018 at 10:42:08 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

by Optical Emission Spectroscopy G. B. DREHER and J. A. SCHLEICHER Illinois State Geological Survey, Urbana,Ill.61801 Two quantitative emission spectrochemical methods—direct-reading and photographic—have been developed to analyze 16 trace elements in high-temperature coal ash. Problems such as possible loss of vanadium and molybdenum by volatilization and an apparent increase in boron concentration with increasing ashing temperature were encountered in ashing coal samples. Because natural and/or analyzed standards were unavailable, synthetic standards were prepared for the direct-reading method. U.S.G.S. standard granite G-2 and iron oxide were combined with various amounts of a mixture of silica, alumina, and 1000 ppm of each of the trace elements of interest. For the photographic method, similar mixtures were prepared without the G-2 base. For each element, usable concentration limits, concentration ranges on the coal basis calculated from the coal ash samples, and the resulting standard deviations were determined.

n v i r o n m e n t a l c o n c e r n i n recent years has c a u s e d i n c r e a s i n g awareness of t h e s m a l l q u a n t i t i e s of substances i n o u r a i r , w a t e r , a n d f o o d w h i c h c a n affect l i v i n g t h i n g s . I t has b e c o m e necessary to k n o w t h e sources o f these p o t e n t i a l l y t o x i c substances. C o a l , w h i c h is b u r n e d i n large q u a n t i ties a n n u a l l y i n t h e U . S . to p r o d u c e energy, is one s u c h source

because

it contains trace concentrations of m a n y p o s s i b l y t o x i c elements that m a y be r e l e a s e d to t h e e n v i r o n m e n t i n c o n s i d e r a b l e q u a n t i t i e s . T o assess this p o s s i b i l i t y , concentrations of these trace constituents m u s t b e d e t e r m i n e d i n t h e w h o l e c o a l before

combustion.

R e l i a b l e a n d a c c u r a t e analysis

m e t h o d s are r e q u i r e d to p r o d u c e t h e d a t a that u l t i m a t e l y m a y b e u s e d b y those c h a r g e d w i t h p r o t e c t i n g o u r e n v i r o n m e n t to set standards a n d b y c o a l users to see that those standards are m e t . 35 Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

36

TRACE

ELEMENTS IN FUEL

M e t h o d s h a v e b e e n d e v e l o p e d at the I l l i n o i s State G e o l o g i c a l S u r v e y to d e t e r m i n e the concentrations of 23 p o t e n t i a l l y v o l a t i l e trace elements i n c o a l . S o m e of the concentrations w e r e c h e c k e d b y t w o or m o r e a n a ­ l y t i c a l t e c h n i q u e s . A n a l y s e s h a v e b e e n m a d e b y five different t e c h n i q u e s : n e u t r o n a c t i v a t i o n analysis, a t o m i c a b s o r p t i o n s p e c t r o m e t r y , x-ray rescence s p e c t r o m e t r y , o p t i c a l e m i s s i o n spectroscopy p h o t o g r a p h i c ) , a n d i o n specific electrode.

fluo­

( direct-reading and

T h e method used determines

w h e t h e r w h o l e c o a l , l o w - t e m p e r a t u r e ash, or h i g h - t e m p e r a t u r e ash is u s e d as the a n a l y t i c a l s a m p l e .

Since c o m p a r a b l e results for c e r t a i n ele­

ments w e r e p r o d u c e d , there is a h i g h d e g r e e of confidence i n the m e t h o d s developed.

O f the t w o o p t i c a l e m i s s i o n spectroscopic m e t h o d s d e s c r i b e d ,

a d i r e c t - r e a d i n g m e t h o d w a s u s e d to a n a l y z e S n , B , P b , C u , C o , N i , B e , C r , V , M o , a n d G e , a n d a p h o t o g r a p h i c t e c h n i q u e w a s u s e d for B , M n , C r , P b , B e , V , A g , C u , Z n , Z r , C o , a n d N i . Sixteen of these

elements

w e r e d e t e r m i n e d i n the h i g h - t e m p e r a t u r e ash of the coals, a n d e i g h t of t h e m w e r e c r o s s - c h e c k e d b y b o t h methods.

T h e s i l v e r content i n t h e ash

samples a n a l y z e d w a s a l w a y s v e r y near the d e t e c t i o n l i m i t , a n d a l t h o u g h b i s m u t h was sought, i t w a s n e v e r detected.

C o n v e n t i o n a l d.c. a r c e x c i t a ­

t i o n is u s e d b y b o t h m e t h o d s . Quantitative spectrographic

analyses for

trace elements

in high-

t e m p e r a t u r e ash samples of c o a l h a v e b e e n r e p o r t e d b y A b e r n e t h y et al. ( 1 ), Z u b o v i c et ai. (2,3,4,5),

R a o (6), a n d H u n t e r a n d H e a d l e e (7).

We

felt t h a t i t was d e s i r a b l e to d e v e l o p a d d i t i o n a l analysis m e t h o d s , e s p e c i a l l y for the d i r e c t - r e a d i n g s p e c t r o m e t r i c t e c h n i q u e , i n w h i c h s m a l l

changes

of s o m e m a t r i x constituents m i g h t cause r e l a t i v e l y l a r g e v a r i a t i o n s i n results because of the i n c r e a s e d s e n s i t i v i t y of t h e d e t e c t i o n system. Table I.

Element (ppm)

Β Pb Cu Co Ni Be Cr V Sn Mo Ge

A

Concentrations in Standard Materials of Synthetic Standard for

Weight of synthetic standard (mg) added to 0.5 g G-2 + 879 mg Al 0 2

3

0.00

1.00

4.04

9.19

1.86 26.7 9.95 4.55 5.95 2.23 8.37 34.4 0.93 1.12 0.66

2.84 28.5 11.8 6.40 7.79 4.08 10.2 36.2 2.78 2.97 2.51

5.78 33.9 17.3 12.0 13.4 9.67 15.8 41.6 8.37 8.57 8.11

10.7 43.0 26.6 21.3 22.6 19.0 25.0 50.6 17.7 17.9 17.5

Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

3.

DREHER AND SCHLEICHER

Optical

m e t h o d for silicate analysis ( 8 )

Emission

37

Spectroscopy

was a d a p t e d for t h e c o a l ash analyses

b y the p h o t o g r a p h i c t e c h n i q u e . Experimental Preparation of High-Temperature Ash. T w o grams of finely g r o u n d c o a l (—60 m e s h or s m a l l e r ) are s e p a r a t e d f r o m the l a r g e r stock b y riffling, w e i g h e d i n t o a t a r e d , u s e d s i l i c a c r u c i b l e , a n d d r i e d i n a n o v e n at 1 1 0 ° C for a p p r o x i m a t e l y 3 hrs. ( G o r s u c h ( 9 ) a n d R u c h et al (10) s h o w e d that the w a l l s of n e w s i l i c a c r u c i b l e s r e t a i n some t r a c e elements to a greater extent d u r i n g d r y a s h i n g t h a n c r u c i b l e s t h a t h a v e b e e n u s e d for s e v e r a l ashings.) T h e samples are c o o l e d a n d w e i g h e d for m o i s t u r e d e t e r m i n a t i o n . T h e w e i g h e d , moisture-free samples a r e t r a n s f e r r e d to a c o l d muffle f u r n a c e , h e a t e d to 5 0 0 ° C i n 1 h r , a n d a s h e d at t h a t t e m p e r a t u r e u n t i l no c a r b o n a c e o u s m a t t e r appears. D u r i n g a s h i n g , the s a m ples are m i x e d w i t h a p l a t i n u m w i r e a p p r o x i m a t e l y every h o u r . T h e samples are c o o l e d a n d w e i g h e d , g r o u n d i n a m u l l i t e m o r t a r , t h e n d r i e d at 1 1 0 ° C , a n d s t o r e d i n a desiccator over M g ( C 1 0 ) . Preparation of Direct-Reading Spectrometric Standards. N o c e r t i fied standards are yet a v a i l a b l e for trace elements i n c o a l , a l t h o u g h t h e N a t i o n a l B u r e a u of S t a n d a r d s is c o n d u c t i n g a n i n t e r l a b o r a t o r y e v a l u a t i o n of a c o m p o s i t e c o a l s a m p l e for use as a S t a n d a r d R e f e r e n c e M a t e r i a l (11). It was necessary, therefore, to p r e p a r e s y n t h e t i c standards. 4

2

For the s p e c t r o m e t r i c m e t h o d , U . S . G e o l o g i c a l S u r v e y s t a n d a r d granite G - 2 is u s e d as a base for the s t a n d a r d . T o 0.5 g portions of G - 2 are a d d e d 379 m g of S p e c p u r e A 1 0 ( J o h n s o n M a t t h e y C h e m i c a l s L t d . , t h r o u g h J a r r e l l - A s h D i v i s i o n , F i s h e r Scientific C o . , 590 L i n c o l n St., W a l t h a m , M a s s . 02154) to adjust the S i 0 : A l 0 r a t i o to 3:1 a n d v a r i o u s amounts of a s y n t h e t i c s t a n d a r d c o n t a i n i n g 1000 p p m ( w / w ) of e a c h of 2

3

2

G-2 Base in 3:1 Silica-Alumina Matrix + Spectrometric Method

2

3

1000 ppm Weight of Na B,0 2

Weight of synthetic standard (mg) added to 0.5 g G-2 + 379 mg Al 0 2

19.79 20.5 61.2 45.1 39.9 41.2 37.6 43.6 68.7 36.4 36.6 36.1

5445 50.2 116 101 96.0 97.3 94.0 99.5 123 92.8 92.9 92.5

3

7

10H O 2

133.22

535.89

6.32

106 220 206 202 203 200 205 226 199 199 199

264 512 504 501 502 500 503 516 500 500 499

1320

Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

(mg)

38

TRACE

ELEMENTS

IN

FUEL

t h e 11 elements b e i n g d e t e r m i n e d . T h e mixtures are g r o u n d i n a m u l l i t e m o r t a r a n d t h e n m i x e d i n p l a s t i c v i a l s 1 i n . i n d i a m e t e r X 3 i n . d e e p that c o n t a i n t w o p l a s t i c balls VA i n . i n d i a m e t e r for 1 h r i n a m i x e r m i l l . E i g h t standards are p r e p a r e d i n this m a n n e r . A n i n t h s t a n d a r d is p r e ­ p a r e d s i m i l a r l y b y u s i n g 6.32 m g N a B 0 · 1 0 H O i n a d d i t i o n to t h e 0.5 g of G - 2 a n d 379 m g A 1 0 to o b t a i n a b o r o n c o n c e n t r a t i o n of 1320 p p m . A s u m m a r y of t h e amounts o f s y n t h e t i c s t a n d a r d t a k e n a n d t h e r e s u l t i n g trace e l e m e n t concentrations are g i v e n i n T a b l e I. 2

2

4

7

2

3

A n a r r a y of standards is p r e p a r e d so t h a t one series of t h e n i n e p r e v i o u s l y d e s c r i b e d standards contains a t o t a l i r o n o x i d e

concentration

( i n c l u d i n g t h a t a t t r i b u t a b l e to t h e G - 2 ) of 1 0 % , a s e c o n d series

of

standards contains a t o t a l i r o n o x i d e c o n c e n t r a t i o n of 1 5 % , a n d so o n u p to 3 0 % i r o n oxide, w i t h a t o t a l of 45 m i x t u r e s . F i n a l standards are p r e p a r e d b y a d d i n g 40 m g of the c o r r e s p o n d i n g m i x t u r e to 150 m g of S P - 2 X g r a p h i t e p o w d e r ( S p e x I n d u s t r i e s , I n c . , B o x 798, M e t u c h e n , N . J . 08840) a n d 10 m g of S p e c p u r e B a ( N 0 ) a n d m i x ­ i n g t h e m w e l l i n p l a s t i c v i a l s , Vz i n . i n d i a m e t e r X 1 i n . d e e p , c o n t a i n i n g t w o p l a s t i c b a l l s , % i n . i n d i a m e t e r . M i x t u r e s of h i g h t e m p e r a t u r e a s h samples are p r e p a r e d i n a n analogous m a n n e r . F o r t y m g of finely g r o u n d h i g h - t e m p e r a t u r e a s h is m i x e d w i t h 150 m g of S P - 2 X g r a p h i t e p o w d e r a n d 10 S p e c p u r e B a ( N 0 ) . F i f t e e n m g charges of s t a n d a r d or s a m p l e are w e i g h e d a n d l o a d e d i n t o t h i n - w a l l e d crater electrodes Vs i n . i n d i a m e t e r , N a t i o n a l t y p e L - 3 9 7 9 ( S p e x I n d u s t r i e s , I n c . ) . A r c i n g c o n d i t i o n s are s h o w n i n T a b l e I I . 3

3

2

2

Preparation of Spectrographs

Standards.

F o r the

spectrographic

d e t e r m i n a t i o n s , h i g h - t e m p e r a t u r e ash samples w e r e a g a i n u s e d ; h o w e v e r , analytical procedures

were

different o u t of necessity.

T h e micropho-

tometer u s e d is c a p a b l e of a greater r e s o l u t i o n t h a n t h e d i r e c t - r e a d i n g spectrometer b e c a u s e of its i n h e r e n t m a g n i f i c a t i o n ( 1 7 χ ) , r e c i p r o c a l l i n e a r dispersions of t h e s p e c t r o g r a p h

although the

a n d spectrometer

are

v e r y n e a r l y t h e same ( 5 A / m m ). I t w a s f o u n d , therefore, that t h e b a c k ­ g r o u n d effects w e r e less significant i n t h e p h o t o g r a p h i c m e t h o d , a l t h o u g h i t is m o r e t i m e c o n s u m i n g . A c c o r d i n g l y , a set of s y n t h e t i c standards w a s p r e p a r e d b y m i x i n g c o m m e r c i a l S i 0 base standards c o n t a i n i n g 1000 p p m of 49 elements ( S p e x I n d u s t r i e s , I n c . #1006) w i t h c o r r e s p o n d i n g 1000 p p m A 1 0 base standards ( S p e x I n d u s t r i e s , I n c . #1007) i n t h e ratio of 3:1 ( S i 0 : A l 0 ) . T h i s m i x t u r e w a s t h e n d i l u t e d w i t h a 3:1 m i x t u r e of S p e c p u r e S i 0 a n d A 1 0 to concentrations of 1000, 500, 250, 100, 50, a n d 10 p p m . T h e 10 p p m s t a n d a r d w a s l a t e r f o u n d to b e b e l o w the l i m i t of d e t e c t a b i l i t y u n d e r t h e exposure c o n d i t i o n s u s e d . T o n i n e parts of each of these mixtures w a s a d d e d one p a r t F e 0 , p r o d u c i n g final trace element c o n ­ centrations of 900, 450, 225, 90, 45, a n d 9 p p m . T h e s e standards w e r e , i n t u r n , m i x e d i n a 1:1 r a t i o w i t h S P - 2 X g r a p h i t e p o w d e r c o n t a i n i n g 0 . 1 1 1 % i n d i u m as i n t e r n a l s t a n d a r d . H o w e v e r , the i n t e r n a l s t a n d a r d w a s discontinued because it decreased rather than increased precision, prob­ a b l y o w i n g to t h e r e f r a c t o r y n a t u r e of t h e m a t r i x . 2

2

3

2

2

2

2

3

2

3

Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

3

3.

DREHER AND SCHLEICHER Table II.

Optical

Emission

Standard Operating Conditions Spectrometric

Instrument

J a r r e l l - A s h M o d e l 750 Atomcounter

Arc current Arc voltage E l e c t r o d e gap Exposure time

15 a m p (short c i r c u i t ) 6 mm 65 sec

Electrodes

sample electrode, N a t i o n a l L-3979 counter electrode, N a t i o n a l L-4036 (ASTM C-l) 8 0 % argon, 2 0 % oxygen at 10 S C F H 15 m g

Electrode atmosphere S a m p l e charge Attenuation" S t e p sector E n t r a n c e slit width E x i t slit w i d t h Development

39

Spectroscopy

10 μτη

Spectrographic J a r r e l l - A s h 3.4 m E b e r t w i t h 3-lens c o l l i m a t i n g system 11 a m p (true) 250 V D C 4 mm c o m p l e t i o n + 10 sec ( u s u a l l y a b o u t 150 sec) s a m p l e electrode, N a t i o n a l L - 3 9 0 3 ( A S T M C-13) counter electrode, N a t i o n a l L - 4 0 3 7 ( A S T M C - l with radial tip) 8 0 % argon, 2 0 % oxygen at 14 S C F H 20 m g n e u t r a l d e n s i t y filter, 6% Τ 1:1.585, 8 steps 25 Mm

50 μϊϊϊ 3.0 m i n i n E a s t m a n D - 1 9 , 30 sec i n 2 . 5 % acetic a c i d , 4.0 m i n i n E a s t ­ man fixer

B e c a u s e the concentrations of m o s t trace elements i n the ash were too h i g h to be recorded o n a t o t a l energy i g n i t i o n , it was necessary to insert a n e u t r a l d e n s i t y filter i n the light p a t h after the second lens of the three lens c o l l i m a t i n g s y s t e m . α

T h e samples ( h i g h - t e m p e r a t u r e ash) a n d s t a n d a r d s , b o t h d i l u t e d w i t h a n e q u a l w e i g h t of S P - 2 X g r a p h i t e p o w d e r , w e r e i g n i t e d spectrographically under conditions shown i n T a b l e II. Results and

Discussion

T w o types of c o a l ash samples h a v e b e e n p r e p a r e d r o u t i n e l y for analysis at the I l l i n o i s G e o l o g i c a l S u r v e y . L o w - t e m p e r a t u r e ash samples (12),

i n w h i c h the b u l k of the m i n e r a l m a t t e r r e m a i n s u n c h a n g e d , are

p r e p a r e d b y r e a c t i o n of frequency

field.

a p p r o x i m a t e l y 150 ° C . spectroscopic

the coal w i t h activated oxygen

T h e effective

analysis.

in a radio-

t e m p e r a t u r e p r o d u c e d b y this d e v i c e

S u c h samples w e r e u n s a t i s f a c t o r y f o r It is p o s t u l a t e d that the presence

is

emission

of

largely

u n a l t e r e d m i n e r a l matter, s u c h as carbonates, sulfides, a n d h e m i h y d r a t e d sulfates (12),

c a u s e d the o b s e r v e d n o n r e p r o d u c i b i l i t y of results.

High-

t e m p e r a t u r e ash samples, p r e p a r e d i n a muffle f u r n a c e , consisted m a i n l y

Babu; Trace Elements in Fuel Advances in Chemistry; American Chemical Society: Washington, DC, 1975.

40

TRACE

ELEMENTS

IN

FUEL

of oxides of t h e elements present i n the o r i g i n a l m i n e r a l m a t t e r a n d w e r e u s e d t h r o u g h o u t this i n v e s t i g a t i o n . R e s u l t s o b t a i n e d f r o m h i g h - t e m p e r a ­ ture ash, c a l c u l a t e d to t h e w h o l e c o a l basis, c o m p a r e w e l l w i t h c o r r e ­ sponding

results

from

low-temperature

cross-checks are a v a i l a b l e . (See

Ref.

ash

and

whole

coal

where

10.)

Variation of Trace Element Concentration with Ashing Conditions. T o d e t e r m i n e w h e t h e r or not the concentrations of any of t h e elements of interest w e r e

altered w i t h increasing ashing temperature,

samples

w e r e a s h e d i n u n c o v e r e d , u s e d p o r c e l a i n c r u c i b l e s at 300, 400, 500, 600, a n d 700 ° C u n t i l the carbonaceous matter w a s no l o n g e r a p p a r e n t .

Two

coals w e r e s t u d i e d , a n d trace e l e m e n t analyses w e r e c a r r i e d out o n e a c h of the 10 r e s u l t i n g ash samples.

T h e results are s h o w n i n T a b l e I I I .

N o n e of t h e d a t a e x h i b i t losses or gains of trace e l e m e n t c o n c e n t r a t i o n i n samples a s h e d b e t w e e n 300 a n d 700 ° C , other t h a n a g a i n i n b o r o n c o n c e n t r a t i o n a n d a possible loss of l e a d . A loss of l e a d w i t h i n c r e a s i n g t e m p e r a t u r e is expected. creased

with

F o r b o t h coals, the b o r o n concentrations i n ­

a s h i n g t e m p e r a t u r e f r o m 300 to 6 0 0 ° C ,

s l i g h t l y b e t w e e n 600 a n d 7 0 0 ° C .

Williams and Vlamis

then

dropped

(13)

noted

a

s i m i l a r effect w h e n t h e y a s h e d p l a n t m a t e r i a l w i t h c a l c i u m h y d r o x i d e i n muffle furnaces a n d also w h e n t h e y h e a t e d c a l c i u m h y d r o x i d e i n the same furnaces i n the absence of p l a n t m a t e r i a l . T h e increase i n b o r o n c o n c e n ­ t r a t i o n w a s greater i n u n c o v e r e d c r u c i b l e s or dishes t h a n i n c o v e r e d .

It

was t h o u g h t t h a t b o r o n v a p o r f r o m the f u r n a c e w a l l s c o n d e n s e d i n i n ­ c r e a s i n g a m o u n t s i n the a l k a l i n e m a t e r i a l as temperatures i n c r e a s e d for a g i v e n h e a t i n g t i m e or as h e a t i n g times i n c r e a s e d at a g i v e n t e m p e r a t u r e . A n o t h e r p a i r of coals w a s chosen to d e t e r m i n e w h e t h e r or not a s i m i l a r effect took p l a c e w h e n c o a l w a s a s h e d w i t h o u t a l k a l i n e m a t e r i a l . Table III.

Concentrations (ppm) of Trace Elements Samples Prepared at

Sample Element

300°C

400°c

Β Pb Cu Co Ni Be Cr V Sn Mo Ge

62 77 21 7.9 39 2.5 21 42 4.4 12 16

90 61 20

— 39 2.5 19 45