Nonferrous Metallurgy - Analytical Chemistry (ACS Publications)

Anal. Chem. , 1961, 33 (5), pp 76–87. DOI: 10.1021/ac60173a009. Publication Date: April 1961. ACS Legacy Archive. Cite this:Anal. Chem. 33, 5, 76-87...
0 downloads 0 Views 2MB Size
(231) Gtateri, F. iV., Huflmai:, E. W.D., ANAL.CHEM.31, 2003-7 (1959). (222) Strocchi, P. AI., Ilebora, P., Z. a n d . (?hem. 169, 1-10 (1959). (233) Stel’nikova, S . f’., Zauodjkaya Lab. 26, 62 (1960).

(234) Sventitskii, S . S., U.S.S.R. Patent 125,919, (1960).

(235) Suao, Erniko, ( h t o , Zi.lehiro, Ikeda, Siiigero, Sc.;. I Z e p t ~ . Iliseai.:,h Znsts. Toiioku L‘nio. S c r . ,4 12, 4il1--6 (1960). (236) Sukhcnko, I.,Z’olioku Lniu. Sei-. ,4 12, I, 40i15; 11, 416-22 i,l96(Jl. (239) 7‘er:oulen. J. K.F., Detniar, L). h.,

(238) l‘alwymia,

rson, Barbara, Trans. Am. M e t . , Petrol. Engrs. 218,

(242) Tsilchiya, Masahiko, Bunseki Kagaku 7 , 12-17 (1958). (243‘) Tuinn, H.. T’yklicky, hI., HutnickB &sly 14, 7Ob--10 (1959).

(244)

TJ’OlU,

P.,

ides

LaCOJIibie,

j/%,i :‘

Rev. 181, M L . 4 (196Oj. , Humblc1,, L., Y ~ t ~ m i5k.

(246) Cra, htitwra, 420-4 (1958). (247) Waggoner, C. c o p y 13, 31-3 (1959). (248) \Vakainatsa, S z 0 . k ~Gakliciishz 20,

AJLU!. C’h!,tL. .Ictu 23, 355 f 1W.l’

(283j-\l’alz: H., Bloorii, I! A , , J . Me&& i 2 , S28 (1‘160), (254) \?Tarren, R. J., I!:izt4, J. F., McSabb, 11.. hl., =Ins!. chi^. d c t q . 2:, 224-6 (1959). ( 2 5 5 ) ‘Ivatanahe, Shiro, k-umaishi GlhB 7,

1-6 (19.57).

(256) Kelford, G. A , Butcon, l)., U. S. Atomic Energy Comm., Itcyt. NYB4755 (1957). (257) Westermark, T., Fineman, I.,Intern. Con!. Peaceful lises iitomic f i n e r a Gtneaa 28, 506-10 (1858). (258) Westwood, \V., Slayer, A , , ‘ C h e m ical Analysis of Cast Iron arid Fouldry Materials,” 2nd Ed., George Allen

rrous Metallurgy C.

J.

Leffau:f, Jr., and M. 1. Moss

Aluminum

Co. o f America,

Alcoa Research laboratories, New Kensington, Po.

r 7ms

1

eighth review on nonferrous rnetallurgiciil analysis rovers the two-yrar period ending in August 1960. Within the scope of this review arc paper., concerning the determination of all constituents present in nonferrous metals, stlloys, oxides, and ores by chemical, spectroscopic, and radiochemical methods. The tabular listing of elements anid materials analyzed is necessary rn order t o provide for the large number of publications in this broadening field, and it is hoped that this arrangement will be one oi convenimce to both the investigator and the practicing analyst. More than 1000 publications were considered for this review and, although the references iricluded are reprcsentative of current trend?, not all of the useful material :ivnilable can be reported. Some emphasis is arhitraiily placed on work pub!iPhrd in original sources most hpplication of ntw arid specific reagmts contributed to important advances in metal analysis. These developments, in addition to continued progress in instrumcntatiw, are providing basic information to the metallurgist that would have been impossihlc to

76R

0

ANALYTICAL CHEMISTRY

obtain n ith the techniques available just a few years ago. A recent development that is certain to revolutionize and extend the applications of metallurgical niicroanalysiq is the electron probe. Qvnntitativi, ~ I ~ Y I L sis of less than 1 WWg, of materlhi in an area of 1 square micron or lcss can be accomplished with this instrument, and elements above atomic number 11 can be measured a t concentrations down to 0.1%. Applications of this unusually important analytical tool were surveyed in a recent review by Birks (26). A number of new reference books and reviews of interest in metallurgical analysis have been published during the past 2 years. hlavrodineanu compiled an extensive bibliography on flame spectroscopy of metallic elements (176). Kacprzak applied x-ray diffraction to the analysis of nonferrous metals and ores and published diffraction patterns for these materials (234). A bibliography on polarographic analysis in 1968 was published by Heyrovsky (f80’i. A survey of the literature on polarography of nonaqueous soiutions was compiled by Gutmann and Schober (109).

Increased use of radiochemical methods of analysis resulted in several excellent reviews. Kauer’s review of neutron activation will be a useful source of information for problems in trace metal analysis (136). A general survry on radiochemical analysis was made by Schonfeld and Broda ( % S I ) . Topics included are natural radioactivity, tracer analysis, analysis with radioactive reagents, isotope dilution, activation, absorption, and scattering. Sources of error in the application of these methods were emphasized. Analysis by radioactivation was also reviewed by Morrison (287) and by Yakovlev, n h o described methods for analysis of high-purity metals (3181 and employed isotope dilution methods for determining antimony, yttrium, tantalum, and niobium ( 5 ) . The text of this review is arranged according to constituents determined, such as individual metallic elements, nonmetals, and gases. Since most analytical problems involve specific determinations, it seems more logical to discuss the work being reviewed from this point of view rather than to emphasize the various products for which the methods h i - e been proposed

This is not t o imply that procedures or twliniques designed for one product are generally applicable to other materials. As in the previous review (&$), Tables I and I1 list analytical procedures according to materials analyzed and constituents determined. Aluminum. Ostertag arid Cappelliez utilized t h e nephelomctric measurement of the cupferronate of aluminum to determine alumin,.iii: i n metallic calcium in the range of 3 to 200 p.p.m. (204). Owens and Yoe proposed 2-quiiiizarinsulfonic acid for determining aluminum in bronze and steel and rc.portc.d a sensitivity of 1 p a r t in 50,000.000 parts of solution son, Lloyd, slid MeAIaster proposeti a mpid sprctrographic method for :>111minum in mngrwsium alloys by the porouwup tcclinique (309). The method, aithough ( m e tration range of 0.25 to is capable of higher magnesium and chromium-nickel alloj-s, O.OOlC/o aluminum n-as colorimetricailg determinrd by Kuznetsov and Golubtsovn, using arsen:izo (258). Pnpcr chromatography mas utilized by M:igce and Scott in separating aluminum, gallium. indium, and thallium (171). Bfter separating 20 to 500 ug. of the metals, the appropriate zones were extracted and the individual elements determined colorimc+-ically. Miner et al. made a thorough study of t'he separation arid determination of aluminum in pliitonium-alumixium loys and recommended an ion exlunge technique for the quantitative +>cp.irationof aluminum and plutonium (13). Colorimetric, gravimetric. and tltrimdric methods were ccnipared. Applying infrared spectroscopy to m d a i aniiiysis, Xeeb presented a noteworthy paper on the determination of aluniinum as the 8-quinolinolate (196). T h r precipitate was pelleted with potassium bromide and measured by infrared absorption in the cesium bromiticl rt3gidn of t,he spectrum. The ition of 10 readings for t'he same pellet wns 0.0046; for :0 deterniinntions nn different pellets it. w.3 0.01 !O. This work will very iikely stinilllate further in;-est,igation of infrared absorption methods of measuring nictals Feparated by use of organic rpngents. !n thr analysis of bauxites and clay, S w u t i l i z d x..rs:i emission spectromIo, 110

w

U-Rh alioys se

Plr i l r , Te, Se

Cu anode CII :llioJ s Pb 1% 110 Se

di

BI, hb, Te Pb, cu Te Rh, Ir Pt, Pd D I

Re 1T

V

c u alloy-

Sn

!>f 0.01 to U.1 p.p.m. (105). ‘Iron. Coior:metric, spectrographic, -!a>’ t)r(iiF*iori, slid paper chrcmatcljliic aiethods for iron Ivere re~ ? . e d . I: rrieth!vl f Sb

Ti Zr

Si! ?ren-cobait .:iiu;;s !‘ci;iorvi.rig separation ninjor cc nstituents hy pa i

~

f

Te

de

i’b alloys

Ti of !ithiurn in nonferrous iiit:taIs. F o r trace :tiiiounts of lithium in uniniuni tc~trafluoride, Pawcet,t and n used th(, spectrographic distillation tcchnique (86).The nrdh trchniquc was used in :I spc*ctrogr:iphic tietcrminatioii of wium over a concentrato 20 L3.p.m. of lithium f z ? U ) . ‘1 hi: [‘arrirr-tlistil!atIon technique r ~ a ?also proposed for the derc,r!ninatiori of lithium in bcryilimn fl:\ke and powder (279). IYilkiris dewlopeti an ion (Aschange uirthod for thr determiiiation of lithium iii !ithiuni-magnesium alloys (506). Tirrors arising from the prescnre of lithium isotopcbs were conaidcrtd

Ph-Sh-Te alloys Tn Nh

ifiiri;i:ior:s

CU aI1GJ S

A1 Kb

u

sh Th

’ri

-----

___.I-__-I

Zr, Zr sllny SI1 3110\Y Re U allo!,s Zr, 11, rare earths Ce Zr alloy Zr, Ye. l , a , U, heavy ineta!s Ga, 111,N Pb

Cd Sn-Cd alioys In

Iteagerit .)r L1i-t hod Spectrographic l)iethyldithiocari!arnst P, colorimctric Polarographic r 1hiosemicarknzide, ccix,rinintric Polarographic Polarographic Thio-oxine, colorimt’t ric CrSO,, potentiometric titrittion Stannous chloride, colorinietric Turbidinietrir Rhodamine H, colorinietric KMSOd, pote~if~ioi-netric titratii:n Po1arogr;iphic Titrimetric Crystal violet, i:oiorin.t,i ric Spectrographic Methyl violet, colorimetric SO2, gravimetric 3,3’-L)iriIninobenziclelie, colorimetric :!,3’-l)iaminohcnzideiie. colorimetric Spectrographic bpectrographic Coloriinet,ric ilicomolyldic acid, colorimetric iiicomoiytdic acid, colorinietric ilicomolybdic acid, colorimetric Silicomolybdic acid, c.olorimet,ric Molybdic wid, c.o!o:.iiiietric Polarographic Spectrographic Spectrographic Spectrographic Spectrographic Polarographic Spectrographic Colorinietric Turbidimetric Polurographic Polarographic Flame photometric Gravimetric Pyrogallol, colorimetric Colorimetric Tyrogallol, colorimetric Pyrogallol, colorimetric Spectrographic Qrlercetin, colorimetric Spectrographic i’yrogallo!, colorimetric 502,gravlrlietxic Polarogrsphic 3,3’-lhminobenzidine, colorimetric Polarographic Colorimetric, volumetric Spectrographic Polarographic Titrimetric Spectrographic Spectrographic Chromatograpliic acid, coiorimetris Arsenate, iodonietric titration Spectrographic Thymol, colorimetric Peroxide, colorimetric 5-Sulfosalicylic acid, colorimetric Chromathopic acid, colorimetric Thymol, colorimetric EDT-4, titrimetric Arsenazo, colorimetric Catechol violet, EDT.4, titrimetric

Ion exchange, x-ray emission

Titrimetric

Pe.per chromatography, extraction, colorimetric Rhodamine B, colorimetric Polarographic Colorimetric Polarographic

VOL. 33, NO. 5 , APRIL 1951

81

R

Table II. Methods for Elements in Nonferrous Metallurgical Materials (Continued) Constituent Determined

U

V

hlaterial or Major Constituents Reagent or Method Th, Bi, Pb Weisz ring oven, spectrographic Th Fluorometric Zr, Zr alloys Fluorometric Th Ion exchange, fluorometric Zr-base fuel X-ray emission alloys Bi Oxine, colorimetric Zr-U alloys KLhO,, titrimetric Graphite Colorimetric Bi-base alloys Polarographic Uranium Gravimetric dioxide Ti alloys Spectrographic Colorimetric Zr,Zr alloy Bauxite Colorimetric Peroxide, colorimetric u-v alloys Uranium C,olorimetric dioxide Nb-V alloys Peroxide, colorimetric Ni Colorimetric Graphite Activation analysis V Titrimetric Zr Dithiol, colorimetric Nb Dithiol, colorimetric Zr, Zr alloys Thiocyanate, colorimetric U-W alloys Gravimetric Be Dithiol, colorimetric Nb Spectrographic Si S ectrographic Al, Cu alloys E! DTA, titrimetric (NH4)zHg(CNS),,thermometric titracu tion U Dithizone, colorimetric Cd Xi ~ ~ ~ ~ ~ ~ ~ ~ ~ e o ) - (PAN), 2 _ n a p h t h o l colorimetric Bi, U alloys Spectrographic Hf materials Mandelic acid, gravimetric Nb Spectrographic Si Thiocyanate, colorimetric Pu Ion exchange, spectrographic U alloys ",OH, gravimetric; p-chloromandelic acid, colorimetric &Quinolinol, isotopic dilution Nb, Ta Yttrium carrier, spectrographic Zr, Zr alloys Spectrographic U Th, Yb, Lu, Spectrographc sc ~

w

Zn

Zr

Rare earths

Lead. Micro amounts of lead in indium were determined gravimetrically by Volkova and Zakharova after evaluating several alternate methods and concluding that barium chromate was the most effective precipitant (283). Sensitivity of the determination was 3 to 15 pg. of lead in a 0.1-gram sample. Lead was polarographically determined in zirconium over the range of 20 t o 100 p.p.m. (313). A colorimetric method enabled Yokosuka to determine as little as 0.0001% of lead in copper through the use of dit,hizonecarbon tetrachloride extraction (323). Magnesium. Magnesium was determined spectrographically i n uranium after concentration on a column of activated cellulose (106). This method is suitable for 1 to 50 p.p.m. of magnesium. Cotterill determined magnesium in a bismuth-uranium alloy spectrographically in the range of 50 t o 70 p.p.m. (61). Copper electrodes were used and the alloy was 82 R

ANALYTICAL CHEMISTRY

mixed with a spectrographic buffer containing ferric sulfate. Several colorimetric procedures for magnesium were published, most of which were designed for analysis of aluminum. Titration of magnesium with E D T A was studied in some detail (136, 162, 247). Youngdahl and DeBoer determined 1 p.p.m. of magnesium in high-purity aluminum by a hightemperature vacuum distillation method (326). This technique has been used extensively in European laboratories. Lefevre determined minute quantities of magnesium in large amounts of calcium with E D T A using Murexide and Eriochrome Black T as indicators (160). A complexometric method, based on a titration with Trilon B, was used t o determine magnesium in aluminum alloys by Reznikova (226). Molybdenum. For t h e colorimetric determination of molybdenum in uranium and uranium compounds, several procedures were proposed using dithiol (12, 166, 266) and thiocyanate

(132). Parker used dithiol for the determination of niolybcfenuni in fused mixtures of sodium, zirconium, and uranium fluorides (207). His method covers a range of 1 to 50 pg. of molybdenum. Other applications of the dithiol reagent were for the determination of molybdenum in niobium (219, 222) and in zirconium (277). Niobium. A gravimetric method was described by Hague and Machlan for determining niobium and tantalum in titanium-base alloys (112). Separation was first made by ion exchange, after which a cupferron precipitate was ignited and weighed. A similar determination was devised for niobium in uranium-niobium alloys. The thiocyanate colorimetric method was used by Wild for niobium in bismuth-base alloys a t a level of 4 p.p.m. ($04). Bergstresser likewise used the colored thiocyanate complex for determining niobium in tantalum following separation of an ion exchange column (24). His method is suitable in the range of 1 to 100 p.p.m. The pyrogallol (314) and peroxide methods (33) were also used for zirconium and uranium alloys, respectively. Nickel. Athavale, Dhaneswar, and Mehta described a polarographic method for the determination of chromium, nickel, and tin in Zircaloy and in zirconium metal (13). Several applications of the dimethylglyoxime method for determination of nickel were reported. These include uranium (16), cobalt (198), and plutonium (90). Alfonsi determined nickel in bronzes and brasses with the same reagent after a preliminary separation by controlled-potential electrolysis ( 3 ) . Nelson and Wrangell determined nickel titrimetrically in nonferrous alloys with E D T A following a separation by double precipitation with dimethylglyoxime (197). Platinum Metals. A critical evaluation of gravimetric nlethoda for the platinum metals was published by Beamish (21). Rhenium. Rhenium i:i the range of 5 to 200 fig. was determined colorimetrically in the presence of molybdenum and tungsten by a new method using thio-oxine (13). Gardner and Hues worked out a rapid colorimetric method for rhodium in uranium-rhodium alloys a t the 1% level based on reduction with chlorostannous acid (33). No separations are necessary. Silver. Neutron activation analysis was shown by Morris and Killick t o be a n excellent method for the determination of submicrogram quantities of silver in platinum sponge (186). A lower limit of 0.02 p.p.m. and a precision of j ~ 1 are 0 ~attainable. ~ Tin. Challis and Jones studied several methods for the determination

of tin in copper and its alloys below 0.01% and recommended a turbidimetric procedure using 4-hydroxy-3nitrophenylarsonic acid (51). Clark described a direct polarographic method for the simultaneous determination of 10 t o 200 p.p.m. each of tin and lead in zirconium (68). Tantalum. Increased interest in the determination of tantalum in such metals as zirconium, titanium, and niobium was observed. Several procedures using pyrogallol for determining tantalum in titanium (101) and in niobium (57, 251) were reported. Specific color reactions between tantalum and three flavone derivatives showed considerable promise for determining tantalum in combination with niobium (213). A spectrographic procedure for determining 0.001% tantalum in zirconium was described (82). Tellurium. Tellurium was determined polarographically in alloys of copper (46) and lead (327). For bismuth metal, Wild developed a colorimetric method using hydrazine and stannous chloride sensitive to 5 p.p.m. (306). This method should be applicable t o materials other than bismuth. A powder spectrographic method for tellurium in high-purity selenium sensitive to 0.002% tellurium was described by Yokosuka and Katayama (324). Thallium. Thallium was determined polarographically in indium at concentrations ranging from 0.1 t o 6% using an ethylenediamine supporting electrolyte (71). Carson determined thallium polarographically in highpurity cadmium (49). XIicrogram quantities of thallium in tin-cadmium alloys were determined by Woolley with Rhodamine B in the range of 5 to 80 p.p.m. (317). Results are estimated t o be reliable t o within + 2 p.p.m. Titanium. T h e A E C Metallurgical Advisory Committee on Titanium recommended methods for t h e determination of carbon, chloride, magnmium, oxygen, hydrogen, silicon, tungsten, and boron in titanium and titanium alloys (178). A colorimetric peroxide method for titanium in niobium a t the parts per million level was described by Dickinson and Ryan (68). At ratios of the concentration of niobium to titanium exceeding 100 to 1, Chernikhov, Melamed, and Dobkina observed that serious difficulties were encountered with the peroxide method. In this situation, the spectrographic method, sensitive to 0.00270 titanium, was recommended (56). Reed studied the colorimetric determination of titanium in zirconium using the yellow 5-sulfosalicylic complex (118). This method covers the range

of 10 to 100 p.p.m. of titanium. I n the same range, cupferron was used for the colorimetric determination of titanium in beryllium metal (296). The arsenate method was used in the iodometric determination of titanium in the presence of aluminum (233). This method is based on the precipitation of titanium with sodium arsenate and a subsequent titration of liberated iodine with sodium thiosulfate. Tungsten. Featheringham investigated t h e spectrographic method for determination of tungsten in niobium (88). A gravimetric method for the determination of tungsten in uraniumtungsten alloy was proposed by Carpenter et d.based on precipitation of tungsten from a cold sulfuric acid solution using a-benzoinoxine and cinchonine (48). -4n average recovery of 1 0 0 . l ~ owith a standard deviation of 0.7% was obtained. Booth developed a colorimetric method for the determination of 2 to 100 p.p.m. of tungsten in Zircaloy using dithiol (27). Uranium. A large volume of work was reported on methods for detection and measurement of uranium. The determination of uranium in zirconiumbase fuel alloys by x-ray emission was described and appears t o be a n ideal application of this technique (44). The Weisz ring oven was used by Antikainen in determining 10 t o 240 pg. of uranium in thorium, bismuth, and lead ( 7 ) . Several methods for the determination of 0.1 t o 10 p.p.m. of uranium in thorium were proposed. One method involved extraction with tributyl phosphate, ammonium carbonate, and a final fluorometric measurement (14). Another method involved separation of uranium using a cellulose column followed by fluorometric measurement (256). Walkden, after separation of uranium on a cellulose column, determined the uranium gravimetrically by precipitation with ammonia (293). Wild separated uranium from impurities in bismuth with a cellulose column and completed the determination polarographically (303). This method is satisfactory down t o 10 p.p.m. I n bismuth alloys, Kirby and Crawley colorimetrically determined uranium following an oxinate extraction (138). Vanadium. Vanadium and aluminum in graphite were determined by activation analysis with a n estimated coefficient of variation of about 10% for a 0.1 p.p.m. of vanadium (189). A well-type scintillator was used for the measurement, and no chemical separations were required. A precise titrimetric method was developed by Dietrich for assaymg essentially pure vanadium metal (70). His method involves back-titrating excess ferrous sulfate with standard

dichromate solution. Precision for a single determination of *0.075yo was achieved. Zalesskaya reviewed methods for determiping vanadium in bauxite and proposed a new phosphotungstate colorimetric method (329). Separation of silica is not required. Zinc, Zinc was determined polarographically i n cadmium, following a rapid separation of zinc by extracting the molten metal with a fused potassium acetate-ammonium acetate mixture (262). The method was satisfactory for 0.000270 zinc using a 20-gram sample of cadmium. Determination of zinc in aluminum and copper alloys by titration with E D T A following separation by adsorption in Deacidite FF was described by Freegarde (91). Berger and Elvers ($2) used 1-(2pyridylazo)-2-naphthol (PAS) as a reagent in the colorimetric determination of zinc and cadmium in nickel. Zirconium. Elwell reviewed methods for t h e determinatioii of alloying constituents and impurities in Zircaloy and zirconium metal (13). Larsen and Ross described procedures for analysis of uranium alloys in which zirconium with molybdenum, ruthenium, palladium, and cerium are determined (157). Evans, Hrobar, and Patterson have developed tmo separation methods for zirconium in uranium alloys using cupferron and p-chloromandelic acid. The final measurement was made colorimetrically as the alizarin sulfonate lake (83). Rare Earths. Rare earths were determined in zirconium and its alloys by Wood and Turner using a spectrographic method (315). The time required for a complete determination of all the rare earths is approximately 11/2 t o 2 days. Spectrographic determination of rare earths in uranium and other materials a t the fractional part per million level was also reported (1.41 , 262). A colorimetric determination of cerium by Goto and Kakita utilized methylene blue (96). The calibration curve was rectilinear for less than 40 pg. of cerium per 50 ml. of benzene. Bivalent manganese gave a similar coloration. A completely new method for cerium in uranium alloys, based on the colored ceric tartrate complex, was reported by Larsen and Ross (157). Lanthanum was determined colorimetrically in plutonium by Bergstresser (23). I n using oxine as the reagent, a standard deviation equivalent t o 3 pg. for a range of 40 to 200 pg. of lanthanum was reported. A method was worked out by Slee, Phillips, and Jenkins for determining the neptunium content of plutonium metal (239). After separation of neptunium by solvent extraction, the VOL. 33, NO. 5 , APRIL 1961

e

83 R

polarographic determination was applied ovcr a concentration range of 25 to 500 p.p.m. A new titrimetric method for determining thorium in the presence of zirconium, iron, lanthanum, uTaniurn, and other heavy metals was proposed by Pribil and Burger (215). Their method, using Complexon 111 as the titrant, is reported to bc accurate to within i l % . Other titrimetric procedures were proposed using E D T A as titrant for thorium in uranium alloys (307) and in cerium (167). Boron. Most methods for determining microgram quantities of boron involve color measurements, the predominating reagents being curcumin and 1,l’-dianthrimide. Matelli determined boron in aluminum alloys containing 4 to 6% silicon with 1,l’dianthrimide (17 s ) . For determining larger quantities of boron, titration of a borate complex is a common procedure. T o determine boron a t intermediate concentrationsfor example, 10 to 100 pg. of boronKubota suggested certain refinements that effectively extended the lower limit of the titrimetric procedure (146). Precision obtainable, expressed as ccefficient of variation, was found t o be about 5% in the 10 t o 20 pg. range and 28% in the 100 pg. range. Carbon. Carbon in tungsten was determined by Machida and Sugishita by heating t h e sample in a strong phosphoric -iodic acid mixture, absorbing the evolved carbon dioxide in standard sodium hydroxide, and titrating the excess with hydrochloric acid in the presence of barium chloride (169). Thr. error was estimated to be less than SG&, Albert et al. determined carbon in high-purity aluminum by measoremeiit of the beta activity of t’le ridionitrogen in an irradiated --ptcimen ( 1 ) . Silicon. Photometric measurement of the silicomolybdic acid complex “vas used in determining silicon in uranium (186), beryllium (SZ), vanadium (106)’ copper alloys (199)) phosphorus (208), and zirconium (100). Sulfur. Sulfur in selenium was determined turbidimetrically by Yokosuka and Shirakawa (825). After evaporating selenium with hydrogen bromide, barium sulfate was precipitated in a mixture containing ethyl alcohol and propylene glycol. Selenium. Veale (684) and 1,uke (164) utilized the reagent, 3,3’-diaminobenzidine, for the colorimetric determination of selenium. Veale’s method was designed for concentrations of selenium in tellurium greater than 0.5 p.p.m. Luke’s method is sensitive t o 0.00002~0selenium in lead or copper. Hydrogen, Nitrogen, Oxygen. An improved vacuum-fusion method was described by Gokcen for the determina-

84 R

ANALYTICAL CHEMISTRY

tion of oxygen, nitrogen, and hydrogen in steel, cobalt, copper, nickel. titanium, and other metals (95). McKinley published a critical review on the determination of hydrogen in titanium by vacuum extraction, combustion, and equilibrium pressure methods with particular attention t o theory, operational characteristics, precision, and accuracy (170). Oda and Yorishima used the combustion method in the determination of hydrogen in titanium and reported that results agreed favorably with those obtained by the vacuuni-fusion method for concentrations above 0.005’% hydrogen (201).

Oda and Sawabe determined nitrogen in titanium by the Kjeldahl method a t levels greater than O.OOlol, (bod). A colorimetric determination of nitrogen in niobium down to O . O l ~ Owas worked out by Goward and Tretow using the Kjeldahl and Nessler methods (99). A similar colorimptric method using Nessler’s reagent was devised by Sax et al. for determining nitrogen in lithium (129). Lithium nitridc was hydrolyzed to ammonia, which was then distilled off in a stream of argon and collected in 1% sulfuric acid for measurement with Nessler’s reagent. Sax and S t e i n e t a determined oxygen in lithium metal by the Karl Fischer method (280). The oxide reacts with salicylic acid in pyridine t o produce water which is then titrated as usual. The spectrographic determination of oxygen in metals was studied by Fassel, Gordon, and Tabeling (85). Procedures are described and precision is reported to be comparable to vacuum fusion or bromination-carbon reduction techniques. Bradshaw critically reviewed methods for determining trace quantities of oxygen in beryllium (SS). Coleman and Perkin determined oxygen in beryllium by activation analysis (60). A range of 0.01 to 2% oxygen content was measured by this method, with a possible lower detection limit of O . O O l ~ o ouygen. Kleiner used sulfur monochloride to determine oxygen in the relatively stable oxides of boron, silicon, and aluminum (140). Sulfur monochloride is considerably more reactive than elemental sulfur, which has been used in the past as a reagent for determining oxide by conversion to sulfur dioxide. A promising method for determination of oxygen and nitrogen in titanium using bromine trifluoride was described by Dupraw and O’Xeill (76). The method is also applicable to other metals. A procedure for the indirect determination of oxide in aluminum, based on measurement of evolved’ hydrogen on reaction with sodium hydroxide was reported by Eisenkolb and Muller (81). The method is

questionable, particularly for small amounts of oxide, and is hardly capable of yielding results closer than 10.3%. Combination Methods. Although much has been accomplished in the field of trace analysis and a large number of satisfactory methods is available, new technological advances create a continuing demand for analytical procedures of higher sensitivity and reliability. To cite one example, materials of unusually high purity for use in transistors and other solid state devices require methods many times more sensitive than the trace analysis procedures generally used. Increasing interest in combination methods indicates that chemical procedures for isolating and concentrating the desired constituents followed by measurement by spectroscopic or other methods of high sensitivity may provide satisfactory solutions to many problems of this kind. Several publications describe such combinations of separation and measurement techniques. A combination method for determining impurities in high-purity aluminum was developed by Koch, who exGracted the impurities from a 1-gram sample of aluminum by means of ammonium tetramethylcnedithiocarbamate and dithizone a t controIled p H valiues (144). After evaporation to dryness and ashing, the residues were analyzed spectrographically. Small amounts of antimony were determined spectrographically after first concentrating the sample by coprecipitation, using manganese dioxide as the collector (7s). After a 200-fold concentration step, a O.OOlq, determination of antimony was aichicved. Bismuth was determined by Borovskii, Shteinberg, and Bugulova spectrographically in silicon by n sublimation method (31). After the sample is heated for 4 minutes a t 1400” C. in a carbon vessel, the bismuth condenses on the end of a water-cooled cwbon finger which is then used as an electrode. Yamazaki determined 0.005 to 0.02‘30 bismuth in anode copper by a polarographic method (319). In the spectrographic determination of 0.015 to 0.15 p.pm. of radmium in uranium, the carrier-distillation technique was utilized Eol!owing a preliminary chemical separation (158). A dithizone extract of cadmium was first placed on an alumina column which retained the cadmium. A portion of the alumina was then mixed with a carrier containing arsenic serving as an internal standard. Impurities in high-purity indium were concentrated by extraction of the indium Rith isopropyl ether and determined polarographically by Poh: and Bonsel to within 1 1 0 % in coricentrations of the 10-6yo level (212’ For determining microgram qunntitlw

of thorium in Zircaloy, Horton and Monk developed a n x-ray emission method (125). An ion exchange membrnne containing the separated thorium was placed in the spectrometer after having b e m stirred in the Zircaloy solution. LITERATURE CITED

(1) illbert, l’., Kouaille, A., Chsudron, G., Sue, P., Congr. intern. aluminium, Paris 1. 191-3 11954). (2) ’de Alderuccib, H.A., Rev. obras sanit. naczon (Buenos Aires) 174, 13-19 (1958). (3) Alfonsi, B., Anal. Chim. Acta 20, 277 11959). (4) Alfonsi, B.,Bussi, M., Ibid., 22, 383 (19601. ( 5 j Alimarin, I. P., Bilimovitch, G. N., Intern. J . Appl. Radiation and Isotopes 7, 169-81 (1960). (ti) Ammo, H., Science Repts. Research Insts., l’dhoku Univ. 1 1 ( 5 ) , 383-92 (1959).

(10) krmet, R. C., Electroplating and Metal Finishing 12 (2), 56-7 (1950). (11) Articolo, 0. J., U. S. At. Energy Comm. KAPL-M-OJA-1 (Contract W31-109-Eng.-52), 7 pp. (June 26, 1959). (12) Ashbrook, A. W., Chemist Analyst 48, 1, 5 , 7 (1959). (13) Athavale, V. T., Dhaneswar, R. G., Mehta, M. M., Anal. Chim. Acta 23, 74 (1%“. ~~. .-,. (14) Athavale, V. T., Mahajan, L. M., Thakoor, N. R., Varde, M. S., Ibid., 31, 353 (1959). (15) Ibid., p. 491. (16) Athavale, V. T., Ramachandran, T. P., Tillu, M. M., Vaidya, G. M., Zbid., 22, 56 (1960). (17) Babaeva, A. V., Evstafyeva, 0. N., Zhur. Anal. Khim. 13,304-7 (1958). (18) Babko, A. K., Marchenko, P. V., Zavodskaya Lab. 23, 1278-83 (1957). (19) Bankovskii, Y . A., Ievin’s, A. F., Luksha, E. A., Zhur. Anal. Khim. 14, 714-20 (1959). (20) Barkovskir, V. F., Izuest. Vysshykh Ucheb. Zavedenif, Khim. i Khim. Tekhnol. 1958 (3), 52-5. (21) Beamish, F. E., Talanta 1, 3-29 (19.58). \----,-

(22) Berger, W., Elvers, H., Z. anal. Chem. E 171 ~. (4),255-61 (1959). (23) Bergstresser, K. S., ANAL.CHEM.30, 1630 (1958). (24) Ibid., 31, 1812 (1959). (25) Bergstresser, K. S., Los Alamos Science Laboratory (Declassified Aug. LA-1063 (Contract W-740530, 1956) I Eng-36), 38 pp, pp. (1950). (26) Birks, L. S., ANAL.CHEM.32, 19 A (1960). (27) Bobth, E., At. Energy Research Establ. (Gt. Brit.) AM-13, 4 pp. (1959). (28) Booth, E., Bakes, M., Ibid., AM-24, 3 pp. (1949). (29) Booth, E., Parker, A., Ibid., AM-4, 5 pp. (1959). :30) Borovik, S. A., Babaeva, A. V., Ushakova, N. I., Rudy!, R. I., Acud. Sci., U k r . S. S . R., ( M O S C O Zhur. W) Anal. Khim. 13 ( 5 ) , 580-52 (1958). (31) Borovskii, I. B., Shteinberg, A. N., Bugulova, V. V., Zhur. Anal. Khim. 1959 (14), Abstr. No. 49,282. d(32) Bowell, E., At. Energy Research Establ. (Gt. Brit.) AM-33, 7 pp. (1959). ~

(33) Bradshaw, W.G., U. S. At. Energy Comm. LMSD-2312 (Contract NOrd17107), 43 pp. (1958). (34) Bril. J., Mikrochim. Acta 1958 12). . , 212-19. (35) Brooksbank, W. A,, Jr., Leddicotte, G. W., ANAL.CHEM.30, 1785 (1958). (36) Brown, E. N., Reed, D. V., U. S. At. Energy Comm. WAPD-CTA(GLA)511,5 pp. (1958). (37) Bruce, T., Ashley, R. W., At. Energy Can., Ltd. Rept. CRDC-840, 8 pp. (1959). (38) de Bruin, H. J., Smythe, L. E., Nature 182, 387 (1958). (39) Bryson, T. C., Goward, G. W., Hartmann, M. D., U. s. At. Energy Comm. (Declassified Jan. 23, 1959) WAPDCTA-Gla-146 (Rev.), 4 pp. (1956). (40) Bubernak, J., Lew, M. S. Matlack, G. M., AXAL.CHEM.30, 1759 (1958). (41) Budanova, L. M., Zhukova, N. A,, Zavodskaya Lab. 25, 411-13 (1959). (42) Burd, R. M., U. S. At. Energy Comm. WAPD-CTA(GLA)-515, 6 pp. (19.58) \_.__,.

(43) Burd, R. M., Goward, G. W., Hartman, M. D., McCracken, M. A,, Wilson, B. B., Ibid., WAPD-C(AR)143(Rev. l ) , 7 pp. (1957). (44) Burton, R., Cook, H. D., Jacobs, R. M., Valecko, E. R., Ibid., TID-7560, 116-22 (1958). (45) Busev, A. I., Ivanyutin, &I I., . Feygina, E. M., Zavodskaya Lab. 24, 265-6 (1958). (46) Bykov, I. E., Gorshkova, L. S., Ibid., 25, 674-6 (1959). (47) Cardenas, A. L., U. S. At. Energy Comm. GAT-T-725 (Contract AT(332)-1, 4 pp. (1960). (48) Carpenter, R. L., Gardner, R. D., Ashley, W. H., Henicksman, A. L., Los Alamos Science Laboratory LA-2270 (Contract W-7405-Eng-36), 11 pp. (14%) ,- - ,. (49) Carson, R., Analyst 83,472 (1958). (50) Cathro, K. J., Austrahz J . Appl. Sci. 9, 255-64 (1958). (51) Challis, H. J. G., Jones, J. T., Anal. Chim. Acta 21, 58 (1959). (52) Chatterji, K. K., J . Indian Chem. SOC. 35, 57-62 (1958). (53) Chechneva, A. N., Trudy U r d Politekh. Inst., Sbornik 1956 (57), 178-

--

83

(54)‘Cheng, K. L., Goward, G. W., Wilson, B. B., U. S. At. Energy Comm. WAPD-CTA(GLA)-180,5 pp. (1957). (55) Chernikhov, Y . A., Dobkina, B. M., Zavodskaya Lab. 25, 131-2 (1959). (56) Chernikhov, Y. A., Melamed, S. G., Dobkina, B. M., Ibid., 24, 677-9 (1958). (57) Chernikov, Y. A., Tramm, R. S., Pevzner, K. S., Ibid., 25,398-400 (1959). ( 5 8 ) Clark, R. T., Analyst 85, 245 (1960). (59) Cleveland, J. M., Jr., Nance, P. D., U. S. At. Enerpv Comm. (Declassified June 23, 1958. RFP-53 (Contract AT(29-1)-1106), 27 pp. (1955). (60) Coleman, R. F., Perkin, J. L., Analyst 84, 233 (1959). (61) Cotterill, J. C., At. Energy Research Estab. (Gt. Brit.) C/R-2456, 8 pp. (1958). (62) Crocker, I. H , At. Energy Can., Ltd., Chalk Rivw, Ont., AECL 744, 20 pp. (1958). (63) Crowther, A. B., U. K. At. Energy Authority, Ind. Group SCS-R-3, 3 pp. (1948). (64) Crowther, A. B., Neville, H. T., Ibid., SCS-R45, 13 pp. (1949). (65) Cypres, R., Wollast, R., Bull. soc. chim. Belgrade 67, 171-84 (1958). (66) Cza linski, A., Trokowicz, J., Chern. Anal. ~ W U T S U4,W463-9 ) (1959). (67) Debras-Guedon, J., Voinovitch, I. A,, Compt. rend. 248, 3421-3 (1959).

(68) Dickinson, It., Ryan, J. A , , U. S. At. Energy Comm. SCS-Memo-55

(ARDC/P-125), 14 pp. (1955). (69) Diehl, H., Buchanan, E. B., Jr., Talanta 1, 76-9 (1958). (70) Dietrich, W. C., U. S. At. Energy Comm. Y-1294 (Contract W-7405Eng-26, OTS) 10 pp. (1960). (71) Dolezal, J., Collection Czechoslots. Chem. Conirns. 23,253-G (1958). (72) Dolezal, J NovAk J., Chew list!/ 52, 1353-4 (1’&8). (73) Downarowicz, J., Zagorski, Z., Chem. Anal. (Warsaw)4, 445-54 (1959). (74) Duffield, W. D., Analyst 84, 455 (1959). (75) Dunabin, J. E., Rose, J., G. S. At. Energy Comm. SCS-R-142, 9 pp. (1950) \----,. (76) Dupraw, W. A,, O’Seill, H. J., ANAL.CHEM.31, 1104 (1959). (77) Eberius, E., Metall 12, 721-4 (19%). (78) Eberle, A. R., U. S. At. Energy Comm. NBL-143, 9-11 (1958). (79) Eberle, A. R., Highfill, J. P., Ibid., NBL-147, 13-15 (1958). (80) Eherle, A. R., Lerner, M. W., Kmmer, H., Ibid., NBL-143, 3-8 (1958). (81) Eisenkolb, F., Muller, K., Chenz. Tech. Berlin 10, 32-3 (1958). (82) Elinson, S. V., Petrov, K. I., Rezova, A. T., Zhur. Anal. Khim. 13, 576-9 (1958). (83) Evans, H. B., Hrobar, A. M., Patterson, J. H., ANAL.CHEY.32, 481 (1960). (84) Farrah, G. H., Moss, M. L., Ibid., 31, 713 (1959). (85) Fassel, V. A., Gordon, W. A., Tabeling, R. W., Am. Soc. Testing Materials, Spec. Tech. Publ. No. 221, 20 pp. (1958). (86) Fawcett, C. H., Franklin, R., U. K. At. Energy Authority, Ind. Group SCS-R-273,3 pp. (1959). (87) Featheringham, J. A., Lentz, C. F., Jacobs, R. M., U. S. At. Energy Comm. WAPD-CTA(GLA)-631-2, 4 pp. (1958). ( 8 8 ) Ibzd., WAPD-CTA(GLAk631-5. 3 . pp. (1958). (89) Fioletova. A. F.. Zhur. Anal. Khim. 14, 739-40 (1959). ’ (90) Foreman, J . K., Appleton, W. T., U. S. At. Enerw -“ Comm. WSL-R-44. 13 pp. (1952). (91) Freegarde, M., Metallurgia, Manchr. 58, 261-2 (1958). (92) Gaittet. J.. Albert P.. Compt. rend. . 247, 186113 (1958). (93) Gardner, R. D., Hues, A. D., ANAL CHEM.31, 1488 (1959). (94) ,Giuffre, L., Capizzi, F. M., Ann. chzm. (Rome)49, 1414-19 (1959). (95) Gokcen, S . A., Trans. Met. SOC., A I M E 212 (l),93-100 (1958). (96) Goto, H., Kakita, Y., J . Chem. SOC. Japan, Pure Chem. Sect. 79 (12), 1524-8 (1958). (97) Goto, H., Takeyama, S., Science Repts. Research Insts., Tdhoku Univ., Ser. A. 9, 138-46 (1957). (98) Goward, G. W., Jacobs, R. M., “Analytical Chemistry of Hafnium,” in “The Metallurgy of Hafnium,” D. E. Thomas, E. T. Hayes, eds., Division of Reactor Development, U. S. At. Energy Comm., 1960. (99) Goward, G. W., Tretow, E. F., U. S. At. Energy Comm. WAPD-CTA(GLA) 203, 5 pp. (1956). (100) Goward, G. W., Wilson, B. B., Kallman, S.. Ibid.. WAPD-CTA(GLA1~. 156,‘5 pp. (1957): (101) Gracias. C. E.. Tecnica (Lisbon) . 31’ (271), 433-9 (1957). (102) Granger, C. C., U. K. At. Energy Authority, In& Group Hdq. (Declassified 1958) R and Db(C)TN-138, 9 pp. (,l-Q 5 . 5, ). (103) Great Britain Springfields Works, SCS-M-54, 5 pp. (1950). I

I

~

- --

VOL. 33, NO. 5, APRIL 1961

85 R

(104) Ibid., SCS-M-56, 6 pp. (1952). (105) Ibid.,SCS-M-314, 13 pp. (1950). (106) Ibid., SCS-M-342. 11 DD. (1950). (107) Grotheer, M. P.; Lambert, J'. L., ANAL.CHEM.30, 1997 (1958). (108) Gur'ev, S. D., Saraeva, N. F., Zavodskaya Lab. 25, 795-8 (1959). (109) Gutmann, V.. Schober. G.. Anaew. ' Chem. 70, 98-104'(1958). ' ' (110) Gyorbfr6, K., Szegedi, R., Milk68, I., Magyar Kdm. Folydirat 64 (9), 348-51 (1 am) \-U"V,.

(111) Haberli,. E . . Z . anal. Chem. 160. 15. 20 (1958). (112) Hague, J. L., Machlan, L. A., J . Research Natl. Bur. Standards 62. 53-7 (1959). (113) Hara. T.. Bull. Inst. Chem. Research, kyoto'Univ. 37, 139-44 (1959). (114) Harris, W. F., Hickam, W. M., ANAL.CHEM.31,281 (1959). (115) Harter, G. J., Farrell, R. F., U. S. At. Energy Comm. WAPD-CTA(GLA)162-10, 6 pp. (1958). (116) Hartmann, H., Hofmann, W., Strohl, G., Z . Metallk. 49, 461-3 (1958). (117) Hashitani, H., Motojima, K., Japan Analyst 7, 478-83 (1958). (118) Hegediis, A., Neugebauer, J., Dvorszky, M., Magyar Kdm. Folydirat 65 (4), 159-64 (1959). (119) Hetman, J., Anal. Chim. Acta 22, 394 (1960). (120) Heyrovsk9, J., Collection Czechoslov. Chem. Communs. 24 (Suppl. l), 1-69 ~

.

.

.

' (1957). (136) Kauer, E. U., U. S. At. Energy AECU-4713 (Contract AT(07-2)-1), 6 pp. (1960). . (137) Khadeev, V. A., Zhdanov, A. K., Zavodskaya Lab. 23, 1290-1 (1957). (138) Kirby, K. W., Crawley, R. H. A., Anal. Chim. Acta 19, 363 (1958). (139) Kirokawa, K., Nzppon Kinzoku Gakkaishi 22, 181-5 (1958). (140) Kleiner, K. E., Ukrain. Khim. Zhur. 22, 9 pp. (1956). (141) Kniseley, R. N., Fassel, V. A., Tabeling, R. W., Hurd, B. G., Quinnev. B. B.. Smctrochzm. Acta 13. 300-3 ~~. (1659). ' (142) KO, R., Appl. Spectroscopy 13, 10-11 (1959). (143) KO, R., U. S. At. Energy Comm. HW-57873, 13 pp. (1958). A

86R

ANALYTICAL CHEMISTRY

(144) Koch, 0. G., Microchim. Acta 1958 ( l ) ,92-103. (145) Krefmer, S. E., Tuzhilina. N. V., Golovfna, V. A., Tyabina, R. A., Zavodskaya Lab. 24, 262-4 (1958). (146) Kubota, H., U. S. At. Energy Comm. TID-7568 (Pt. 1). 77-86 (of) (1958). (147) Kuhn, V., Fonderse 149, 279-82 (1958). (148) Kukelya, E . S., Actomat. Soarka 1 1 (12), 82-3 (1958). (149) Kunenkova, E. N., Zhur. Anal. Khim. 1959 (13), Abstr. No. 45,530. 1150) Kurbatova, V. I., Zavodskaua Lab. 25, 806 (1959): (151) Kusaka. Y.. Y i v v o n Kasaaku Zasshz 80, 1419-22 (1959'). (152) Kuznetsov, V. I., Golubtsova, R. B., Zavodskaya Lab. 22, 161-2 (1956). (153) Kuznetsova, V. K., Tananaev, N. A,, Sauch. Doklady Vysshei Shkoly, Met. 1958 (4), 258-60. (154) Lader, S., Appl. Spectroscopy 12, 85-6 (1958). (155) Lafferty, C. D., Bolton, F. M., U. S. At. Energy Comm. SCS-R-90, 10 pp. (1951). (156) Lafferty, C. D., Bolton, F. H., Mason, H., Ryan, J. A., Ibid., SCS-R87, 7 pp. (1950). (157) Larsen, R. P., Ross, L. E., Ibid., TID-7568 (Pt. l), pp. 9-19 (of) (1958). (158) Lassner, E., Scharf, R., Z . anal. Chem. 168, 30-3 (1959). (159) Lazarev, A. I., Lazareva, V. I., Zavodskaya Lab. 25, 405-6 (1959). (160) Lefevre, P., Ann. inst. natl. recherche agron., Ser. A . Agron. 9,481-97( 1958). (161) Liang, Y., Acta Chim. Sinica 24 (3), 205-9 (1958). (162) Liberman, M. V., Zavodskaya Lab. 24, 147 (1958). (163) Luke, C. L., ANAL.CHEM.30, 1405 '

~

~

(186) Morris, D. F., Killick, R. A., Talanta 3,3440 (1959). (187) Morrison, G. H., Am. SOC.Testing Materials, Spec. Tech. Publ. S o . 261, 21-30 (1959). (188) Nakai, T., Yajima, S., S i p p o n Kagaku Zasshi 80, 49-52 (1959). (189) Ibid., 81, 104-7 (1960). (190) Nakajima, T., Takahashi, M., Kawaguchi, H., J . Japan Inst. Metals 22,508-12, 564-8 (1958). (191) Nazarenko, V. A , , Biryuk, E. A., Zavodskaya Lab. 25, 28-30 (1959). (192) Nazarenko, V. A , , Biryuk, E. A., Ravitskays, R. V., Zhur. Anal. Khini. 13, 445-8 (1958). (193) Nazarenko, V. A., Flyantikova, G. V., Zavodskaya Lab. 24, 801-2 (1958). (194) Nazarenko, V. A , , Shitareva, G. G., Ibid.,932-4 (1958). (195) Nazarenko, V. A,, Shustova, M. B., Ibid., 23, 1283-6 (1957). (196) ru'eeb,. R.,Z. anal. Chem. 170,95-106 . ' (1959). (197) Nelson, V. A,, Wrangell, L. J., ANAL.CHEM.32, 99 (1960). (198) Kielsch, W., 2. Metallk. 50, 234-6 (1959). (199) Nikitina, E. I., Zavodskaya Lab. 24, 398-402 (1958). (200) Yorwits, G., Codell, M., Metallurgia 57, 261-70 (1958). (201) Oda, N., Norishima, K., J . Electrochem. SOC.Japan 25, 269-73 (1957). (202) Oda, N., Sawabe, S.,Ibid., 25, 620-5 (1957). (203) Onufrienok, I. P., rlksenenko, V. M., Zhur. Anal. Khim. 14,637-8 (1959). (204) Ostertag, H., Cappelliez, Y., Compl. rend. 246, 1550-3 (1958). (205) Ota, Y., Matsumoto, C., Kogyo Kagaku Zasshi 60, 689-91 (1957). (206) Owens, E . G., 11, Yoe, J. H., ANAL.CHEW31, 384 (1959). (207) Parker, A , , At. Energy Research Establ. (Gt. Brit.) AM-26, 6 pp. (1959). (208) Paul, J., Pover, W. F. R., Anal. Chim. Acta 22, 185 (1960). 1209) Pender, H. W., ANAL. CHEM.30, 1915 (1958). (210) Plust, H. G., Brown Boceri Rev. 45, 545-9 (1958). (211) Podchainova, V. N., Trudy Ural. Politekh. Inst. 1957 (69), 119-25. (212) Pohl, F. A,, Bonsels, tV., 2 . anal. Chem. 161, 108-14 (1958). (213) Popa, G., Negoiu, D., Baiulescu, G., Ibid., 165, 16-19 (1959). (214) Popova, 0. I., Zauodskaya Lab. 25, 148 (1959). (215) Pribil, R., Burger, K., Magyar K8m. Folydirat 65, 204-6 (1959) (216) Puphal, K. W., Merrill, J. rl., Booman, G. L., Rein, J. E., . 4 N A L . CHEM.30, 1612 (1958). (217) Itamsay, J. B., Los Alamos Scienre Laboratory LA-2171 (Contract W7405-Eng-361, 30 pp. (1957). (218) Reed, D. V., C. S. .4t. Energy Comm. WAPD-CTA(GLA)-157 (Rev. 2), 5 pp. (1959). (219) Ibid., WAPD-CTA(GLA)-SOl, 5 pp. ' (1957). (220) Ibid., WAPD-CTA(GLA)-506( 1957). (221) Reed, D. V.. Goward, G. W., Ibid., ' WbD-CTA(GLA)-SOO (1957). (222) Reed, D. V., Wilson, H. R., Goward, G. W., Ibid., WAPD-CTA(GLA)620, 7 pp. (1958). (2231 Reed. J. F., ANAL. CHEM.32, 662 ' (1960). ' (224) Reinhold, T. M., U. S. At. Energy Comm. WAPD-M(GLAk718, 4 pp. (1959). (225) Reznik, B. E., Dlugach, R. E., Tudskaya, R. T., Zavodskaya Lab. 24, 1431-2 (1958). (226) Reznikova, N. I., Mashinostroite Belorus No. 4, 148-58 (1957). '

(227) Rogers, R. x., AXAL CHEM. 31, ’ 20ii (1359j. (228) Ryabchikov, D. I., Zarinskil, V. A., Nazarenko. I. I.. Zhur. Anal. Khim. 14, 737-8 (1959). ’ (229) Sax, N . I., Chu, N. Y., Miles, R. H., Miles, R. W., U. S. At. Energy Comm. (Decl. with deletions April 10, 1958) NDA-38 (Del.) (Contract W-7405-Eng-26, Subcontract 981) (1957). (230) Sax, N. I., Steinmetz, H., U. S. At. Energy Comm. ORNL-2570, 10 pp. (1958). (231) Schonfeld, T., Broda, E., Atompraxis 3, 77-80 (1957). (232) Selzer, G., Ariel, M., Anal. Chim. Acta 19, 496 (1958). (233) Shaktakhtinskii, G. B., Mukimov, A. M., Trudy Azerbaldzhan. Ind. Inst. 16, 86-93 (1957). (234) Shigematsu, T., Japan Analyst 7, 787-8 (1958). (235) Shvalger, M. I., Paklina, V. P., Medvedeva, A. S., Zavodskaya Lab. 24, 16-1i (1958). (236) Silverman, L., Seitz, R. L., Anal. Chim. Acta 20, 340 (1959). (237) Silverman, L., Seitz, R. L., U. S. i At. Energy Comm. NAA-SR-4005 (Con1 - tract AT-ll-l-GEN-8), 14 pp. (1959). (238) Silverman, L., Trego, K., Anal. Chim. Acta 19,299 (1958). (239) Slee, L. J., Phillips, G., Jenkins, E. S . ,Analyst 84, 596 (1959). (240) Smart, R. C., Webb, M. S. W., At. Energy Research Establ. (Gt. Brit.) C/R-2117, 10 pp. (1957). (241) Smith, D. L., Wilson, H. R., Goward, G. W., U. S. At. Energy Comm. WAPD-CTA( GLA)-43l (1957). (242). Sqpcu, G., Vasilescu, C., Analele unzv. C. Z. Parhon” Bucuresti (Stiint. nut.) 1956 (lo), 61-4. (243) Stammler, M., Pegnitz, A. D., Aletall 13, 103-6 (1959). (244) Steele, M. C., England, L. J., Metallurgia 59, 153-6 (1959). (245) Stevancevic, D. D., Z . anal. Chem. 165,348-54 (1959). (246) Stricos, D. P., Porter, J. T., 11, U. S. At. Energy Comm. KAPL-MDPS-1, 13 pp. (1958). (247) Studlar, K., Janousek, I., Hutnick6 listy 13, 643-6 (1958). (248) Sun, s., ANAL. CHEM. 31, 1322 (1959). (249) Tarasevich, N. I., Shuvalova, L. V., Metody Analiza Redkikh i Tsvetnykh Aletallov (Moscow: Gosudarst Univ.) Sbornik 1956, 63-70. (250) Tertoolen, J. F. W., Detmar, D. A., Huijze, C., Z . anal. Chem. 167, 401-8 (1959). (251) Theodore, M. L., U. S. At. Energy Comm. WAPD-CTA(GLA)-542, 7 pp. (1958). (252) Tsimmergekl, Z. A., Krasnova, Z.

A,, Ukrain. Khiin. Zhur. 24, G46-9 (1958). (253) Tsyvina, B. S., Kon’kova, 0. V., Zavodskaya Lab. 25, 403-6 (1959). (254) Tuck, B., Osborn, E. M., Analyst 85, 105 (1960). (255) U. K. At. Energy Authority, At. Energy Research Establ. (Gt. Brit.) AM-38, 6 pp. (1959). (256) U. K . At. Energy Authority, IGOAM/S-18, 6 pp. (1958). (257) Ibid., IGO-AM/S-27, 10 pp. 1958). (258) Ibid., IGO-AM/S-45, 22 pp. [l958) (259) Ibid., IGO-AM/S-118, 7 pp. (1958): 15 pp. (260) Zbid., IGO-AM/S-124, (1958). (261) Zbid., IGO-AM/S-125, 11 pp. (1958). (262) Ibid., IGO-AM/S-126, 27 pp. (1958). (263) Ibzd., IGO-AM/S-130, 5 pp. (1959). (264) Ibid., IGO-AM/’S-132, 5 pp. 1959). (265) Ibid., IGO-AM/S-137, 5 pp. tl959) (266) lbid., IGO-AM/S-139,4 pp. (1959): (267) Ibid., IGO-AM/S-140, 5 pp. 1959). (268) Ibid., IGO-AM/S-142,4 pp. t19.59) (269) Ibid., IGO-AM/S-159, 7 pp. (1959): (270) Ibid., IGO-AM/S-163,6 pp. (1959). (271) Ibid., IGO-AM/S-166, 8 pp. (1959). (272) Ibid., IGR-174 (0-CA), 9 pp. (1959). (273) Ibid., IGR-198 (O/CA), 8 pp. (1959). (274) Ibid., IGR-ll(S), 10 pp. (1959). (275) Ibid., PGR-Il(S), 8 pp. (1959). (276) Ibid., PGR-22(S), 7 pp. (1959). (277) Ibid., PGR-25(S), (1959). (278) Ibid., PGR-28(S), 7 pp. (1959). (279) Ibid., PGR-58(S), 10 pp. (1959). (280) Ibid., SCS-M-39A, 6 pp. (1954. (281) Ibid., SCS-M-301 (1955). (282) lbid., SCS-M-408, 7 pp. (1955). (283) Vachet, M. P., Chim. & ind. (Partk) 81, 64-77 (1959). (284) Veale, C. R., Analyst 85, 130 (1960). (285) Vecera, Z., Bieber, B., Hutnickd listy 14, 56-8 (1959). (286) Veleker, T. J., ANAL. CHEM. 32, 1181 (1960). (287) Vilas, A., Anales real SOC. espaii. fis. y quam. (Madrid) 52B, 767-8 (1R.W) \ - _ _ _

(288) Vynogradov, A. V., Shpinei, V. S., Zavodskaya Lab. 25, 1067-8 (1959). (289) Volkova, A. I., Zakharova, N. N., Ukrain. Khim. Zhur. 23, 530-2 (1957). (290) Walkden, J., At. Energy Research Establ. (Gt. Brit.) AM-17, 5 pp. (1959). (291) Ibid., AM-18, 3 pp. (1959). 292) Ibid., AM-22, 3 pp. (1959). 293) Ibid., AM-35, 7 pp. (1959). (294) Ibid., AM-45, 3 pp. (1959). 295) Ibid., AM-53, 6 pp. (1959). 296) Walkden, J., Heathfield, K. E.. . U. K. At.’ Energy Authority, At: Energy Research Establ. (Gt. Brit.) AM-32, 6 pp. (1959). (297) Watts, H. L., ANAL. CHEM. 32, 1189 (1960).

I I

(298) ii’eszpremy, B., Torok, T., Acta

Chim. Acad. Sci. Hung. 19, 357-61 (1959). (299) Wheeler, W. C. G., Durant, D., Metallurgia 59, 53-4 (1959). (300 Wiedmann, H., Metall 12, 1005-7 (1958). (301) Wiedmann, H., Z . dfetallk. 48, 410-12 (1957). (302) Zbid., 49, 248-9 (1958). (303) Wild, F. E., At. Energy Research Establ. (Gt. Brit.) AM-27, 9 pp. (1959). (304) Zbid., AM-28, 6 pp. (1959). (305) Ibid., C/R-2666, 17 pp. (1959). (306) Wilkins, D. H., Anal. Chim. Acta 20, 116 (1959). (307) Willard, H. H., Mosen, A . W., Gardner, R. D., ANAL.CHEM.30, 1614 (1958). (308) Williams, W.J., Talanta 1, 83-104 (19581. \----, (309) Wilson, A. L., Lloyd, L., McMaster, J., U. K. At. Energy Authority, Ind. Group SCS-R-354, 9 pp. (1955). (310) Wilson, H. R., Smith, D. L., Goward, G. W., U. S. At. Energy Comm. WAPD-CTA(GLA)-lgl, 4 pp. llR.57). \---. J .

(311) Wood, D. F., Clark, R. T., Analyst 83, 509 (19%). (312) Wood, D. F., Clark, R. T., Talanta 2, 1-11 (1959). (313) Wood, D. F., Nicholls, H. A., Analyst 85, 139 (1960). (314) Wood, D. F., Scholes, I. R., Anal. Chim. Acta 21, 121 (1959). (315) Wood, D. F., Turner, M., Analyst 84, 725 (1959). (316) Wood, D. F., Williams, M., Metallurgia, 58,47-52 (1958). (317) Woolley, J. F., Analyst 83, 477 (1958). (318) Yakovlev, Y. V., Zssledovaniya v Oblasti Geol. Khim. i Met. (Moscow: Izdatel. Akad. Nauk S S S R ) Sbornik 1955, 90-104. (319) Yamasaki, Y., Repts. GovLChem. lnd. Research Inst., Tokyo 53, 213-16 (1958). (320) Yasuda, K., Japan Analyst 6, 768-74 (1957). (321) Yavorovskii, A. A., Galibei, L. I., Sb. Trud. Ukr. Nauch. Inst. Poliar. Prom. 4, 104-26 (1956). (3221 Yelinson, S. V., Limonik, M. S.,‘ ‘ Zavodskaya Lab. 24, 1434-6 (1958). (323) Yokosuka, S., Nippon Kinzoku Gakkaishi 19, 693-6 (1953). (324) Yokosuka, S., Katayama, H., Ibid., p. 417-20. (325) Yokosuka, S., Shirakawa, S., Japan Analyst 7, 363-8 (1958). (326) Youngdahl, C. A,, DeBoer, F. E., Nature 184,54-5 (1959). (327) Zagorski, Z. P., Cyrankowska, M., Talanta 2,367-9 (1959). (328) Zaikovskii, F. V., Cerkhardt, L. I., Zhur. Anal. Khim. 13, 274-9 (1958). (329) Zalesskaya, S. V., Trudy Gor’kovsk. Politekh. Inst. 13, 90-3 (1957).

VOL. 33, NO. 5, APRIL 1961

87R