Oxidation of hydrogen sulfide in aqueous solution by ultrasonic

Dec 1, 1992 - ... Inorganic and Total Mercury in Waters by Flow Injection-Cold Vapor Atomic Absorption Spectrometry. J. L. Capelo, I. Lavilla, and C. ...
3 downloads 0 Views 1MB Size
Environ. Sci. Technol. 1992, 26, 2420-2428

Dr. Teresa Fan for advice, discussion, and assistance with portions of this research. We are also grateful to the anonymous reviewers who provided knowledgeable and thoughtful suggestions for the manuscript. Literature C i t e d (1) Suntio, L. R.; Shiu, W: Y.;Mackay, D. Chemosphere 1988, 17, 1249-1290. (2) Kringstad,K. P.; Lindstrom, K. Enuiron. Sci. Technol. 198.4, 18,236A-248A. (3) Owens, J. W. Enuiron. Toxicol. Chem. 1991,10,1511-1540. (4) Betts, J. L.; Routledge, D. E.; Paradis, R. J.; Patrick, K. Pulp Pap. Mag. Can. 1971,72 (6),61-68. (5) Hohbom, B.; Lehtinen, K.-J. Pap. Puu 1980,11,673-684. (6) Priha, M. H.; Talka, E. T. Pulp Pap. Can. 1986,87(12), T447-T449. (7) Rogers, I. H. Pulp Pap. Mag. Can. 1973,74(9),T303-T308. (8) Das, B. S.;Reid, S. G.; Betts, J. L.; Patrick, K. J.Fish. Res. Board Can. 1969,26,3055-3067. (9) Leach, J. M.;Thakore,A. N. J.Fish. Res. Board Can. 1973, 30,479-484. (10) Leach, J. M.; Thakore,A. N. J.Fish. Res. Board Can. 1975, 32, 1249-1257. (11) McKague,A. B. Can. J.Fish. Aquat. Sci. 1981,38,739-743. (12) Sameshima, K.; Simson, B.; Dence, C. W. Suen. Papperstidn. 1979,82 (6),162-170. (13) Higashi, R. M.; Macdonald, J. M.; Cherr, G. N.; Shenker, J. M.; Shoffner,J. D.; Crosby, D. G. Abstracts, 9th Annual

Meeting of the Society of Environmental Toxicologyand Chemistry, Arlington, VA, Nov 1988;Society of Environmental Toxicology and Chemistry: New York, 1988. (14) Shenker, J. M.; Cherr, G. N.; Higashi, R. M.; Crosby, D. G. Abstracts, 10th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Toronto, ON, Canada, Nov 1989;Society of Environmental Toxicology and Chemistry: New York, 1989. (15) Higashi, R. M.; Cherr, G. N.; Fan, T. W.-M.; Jones, A. D.; Lane, A. N. In Proceedings, 1992 TAPPZ Environmental Conference;TAPPI Press: Atlanta, GA, 1992,Book 1,pp 275-286. (16) Cherr, G. N.; Shenker, J. M.; Lundmark, C.; Turner, K. 0. Environ. Toxicol. Chem. 1987,6,561-569. (17) Cherr, G. N.; Shoffner-McGee, J.; Shenker, J. M. Environ. Toxicol. Chem. 1990,9,1137-1145. (18) Shenker, J. M.; Cherr, G. N. Arch. Environ. Contam. Toxicol. 1990,19,680-685. (19) Anderson, B. S.;Hunt, J. W. Mar. Environ. Res. 1988,26, 113-134. (20) Cavanaugh, G. M. In Formulae and Methods of the Marine Biological Laboratory Chemical Room, 6th ed.; Marine Biological Laboratory: Woods Hole, MA, 1956;pp 55-86, 83-84. (21) Fan,T. W.-M.; Higashi, R. M.; Lane, A. N.; Jardetzky, 0. Biochim. Biophys. Acta 1986,882,154-167. (22) Schwenk, W. F.; Berg, P. J.; Beaufrere, B.; Miles, J. M.; Haymond, M. W. Anal. Biochem. 1984,141,101-109. (23) Jolley, R, L.; Suffet, I. H. In Organic Pollutants in Water; Suffet, 1. H., Malaiyandi, M., Eds.; ACS Advances in

Chemistry 214;American Chemical Society: Washington, DC, 1987;pp 3-14. (24) Zaidi, A.; Buisson, H.; Sourirajan, S. In Proceedings, 1991 TAPPZ Environmental Conference;TAPPI Press: Atlanta, GA, 1991;Book 1, pp 453-468. (25) Kilduff, J.; Weber, W. J. Environ. Sci. Technol. 1992,26, 569-577. (26) LindstrBm, K.; Osterberg, F. Holzforshung 1984, 38, 201-212. (27) Osterberg, F.; Lindstrom, K. Holzforshung 1984, 39, 149-158. (28) Sigfors, P.E.; Starck, B. Water. Sci. Technol. 1988,20, 49-58. (29) Pasto, D. J.; Johnson, C. R. Organic Structure Determination; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1969. (30) OConner, B. I.; Voss, R. H. Environ. Sci. Technol. 1992, 26,556-560. (31) Lundahl, H.; Mansson, I. TAPPZ 1980,63,97. (32) Ebling, G. Wasser 1931,5,192-200. (33) Hagman, N. Pap. Puu 1936,18,32-41. (34) Van Horn, W.M.; Anderson,J. B.; Katz, M. TAPPZ 1950, 33, 209-212. (35) Sameshima, K.; Shigematsu, A.; Takamura, N. Mokuzai Gakkaishi 1986,32 (5),344-350. (36) Kanazawa, K.; Ohi, H.; Hayashida, M.; Ozawa, S.; Hosoya, S.; Hanyu, I.; Nakano, J. Kami Pa Gikyoshi 1982,36(ll), 1071-1079. (37) Prased, D. Y. Indian Pulp Pap. 1980,35 (2),9-12. (38) Prasad, D. Y. Indian J. Environ. Health 1980,22 (4), 340-341. (39) Renberg, L.; Svanberg, 0.;Bengtsson, B.-E.; Sundstrom, G.Chemosphere 1980,9,143-150. (40) Soniassy,R. N.; Mueller, J. C.; Walden, C. Pulp Pap. Can. 1977,78 (a),55-60. (41) Kuivasniemi,K.; Eloranta, V.; Halttunen-Keyrilainen, L. Environ. Pollut., Ser. A 1986,41,247-262. (42) Eloranta, V.; Halttunen-Keyrilainen, L.; Kuivasniemi,K. Sci. Tech. Eau 1984,17 (3),267-274. (43) Stockner,J. G.; Costella,k C. J.Fish. Res. Board Can. 1976, 33, 2758-2765. (44) Pellinen, J.; Salkinoja-Salonen, M. J. Chromatogr. 1985, 322, 129-138. (45) Forss, K.; Kokkonen, R.; Stigfors, P. E. ACS Symp. Ser. 1989,NO.397,124-133. (46) Herrick, F.W.; Engen, R. J.; Goldschmid, 0. TAPPZ 1979, 62,81-86. (47) Starck, B.;Stigfors, P. E. Vatten 1991,47,5-7. (48) Marton, J. TAPPZ 1964,47,713-719. (49) Lundquist, K.; Kirk, T. K. TAPPZ 1980,63,80-82. (50) Wildish, D. J.; Poole, N. J.; Kristmanson, D. D. Bull. Environ. Contam. Toxicol. 1976,16,208-213. Received for review April 14,1992.Revised manuscript received August 4, 1992. Accepted August 5, 1992. Funding for this research wag provided by Louisiana-Pacific Corp. and Simpson Paper Co. through Beueridge and Diamond, PC,or through Rifkin and Associates.

Oxidation of Hydrogen Sulfide in Aqueous Solution by Ultrasonic Irradiation Anatassla Kotronarou, German

and Michael R. Hoffmann"

W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91 125

Introduction

that In l933,F1osdorf and Chambers (I) sulfides were oxidized in the presence of audible sound 'Present address: Department of Chemistry, Auburn University, Auburn, AL 36849. 2420

Envlron. Scl. Technol., Vol. 28, No. 12, 1992

(1-15 kHz) while investigating the bactericidal action of audible sound. However, Schmitt et al. (2) were the first researchers to observe the rapid oidation of & s s o l v ~H ~ S gas to colloidal sulfur during sonication at 750 kHz with a 250-W power source. They reported that an increase in the total Pressure of the system (Po,) led to higher oxidation rates up to a limiting pressure. This critical

0013-938X/92/0926-2420$03.00/0

0 1992 American Chemical Society

pressure depended on the amount of dissolved H2Sgas and the intensity of irradiation. Wawrzyczek et al. (3) observed the oxidation of H2S dissolved in water containing Ar or O2 a t 27 kHz and an ultrasonic intensity of 5 W/cm2. The primary oxidation product was found to be elemental sulfur (i.e., S8).The reaction yield in their experiments was found to be 25% higher in the presence of Ar as compared to that obtained in oxygenated solutions. The overall reaction was thought to proceed via reactions of HS- with OH radicals and HOB' or H202. A secondary pathway involving the direct decomposition of H2S to HS' and H' was also proposed. Cauwet et al. (4) studied the ultrasonic decomposition of H2Sinto Hz and So at various frequencies up to 600 kHz and at a voltage amplitude of 40 V. They found a continuous increase in H2 production during sonication of H2S with increasing ultrasonic power, and they found that the yield of H2 doubled in solutions containing 10% diethanolamine (a possible surface tension effect). The chemical effects of ultrasound result from the phenomenon of acoustic cavitation (5-7). Sound waves with frequencies higher than 16 kHz traveling through a liquid can force the growth and subsequent collapse of small bubbles in response to the passage of expansion and compression waves. Extreme transient conditions exist in the interior of the collapsing bubbles (cavities); temperatures approaching 5000 K have been determined experimentally (8)and pressures of several hundred atmospheres have been calculated (5,9). At 20 kHz and typical ultrasonic immersion-horn intensities (10-100 W/cm2), the radius of the bubble prior to collapse can be estimated to be on the order of several hundred micrometers (4W500 pm) (10). The time scale for the collapse of the bubble is 10 (with a phosphate buffer) and [S(-II)l0 = 100 pM. As in the earlier experiments described above, the ultrasonic oxi-

I:

103

I

I

'

I

'

1

'

1

'

1

m o

l

,

I

borate phosph S(-11)

a

_1

0

20

V

8

4

3

16

12

20

28

24

Sonication time (min)

l

'

l

'

l

'

/

,

I

a

100

I 0

,

-

-

a

0

80

'

0

0

a

0

n v

n

m

;

s 9

T

c:

I

i

"

'

8

12

16

1

20

'

so,-z 1

24

I

28

Sonication time (min) F W 5. S(-11) sonication product distribution in borate and phosphate buffer at pH 10.6: (a, top) S(-11) vs time; (b, bottom) products.

dation of S(-11) followed apparent zero-order kinetics and the oxidation products were found to be SO?-, S032-,and Sz032-.The zero-order rate decreased from 5.4 pM/min at pH 10 to 4.0 pM/min at pH 11and remained constant thereafter. Figure 5 presents the results of two experiments performed at pH 10.6, [S(-II)l0 = 100 pM, and with different buffers. It can be seen that the overall rate of the ultrasonic oxidation of S(-II)is the same in both borate and phosphate buffers (Figure 5a). The distribution of the products (Figure 5b) indicates a catalytic effect of the phosphate buffer on the oxidation of S032- to S042-. Phosphate buffer catalysis has been reported previously by Hoffmann and Edwards (21)and Mader (22). Experiments performed at pH