Vertical Atmospheric Ozone Distributions H. K. PAETZOLD
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
Max
Planck Institute, Weissenau
bei Ravensburg, Germany
The observations reported make it possible to identify air masses of different origin in the stratosphere a n d to prove very slight vertical movements of the atmosphere by means of the ozone variation. Thereby a useful factor has been obtained for investigation of general atmospheric circulation a n d perhaps also for weather forecasting. During the International Geophysical Year the institute at Weissenau is carrying out observations of the vertical ozone distribution in polar, mean, and equatorial latitudes with the recently developed ozone radio sonde to gain a wider range of information on interdiurnal, meridional, a n d seasonal fluctuations of the vertical ozone distribution.
In recent y e a r s k n o w l e d g e of t h e v a r i a t i o n s of t h e v e r t i c a l ozone d i s t r i b u t i o n a t least for m e a n latitudes has been considerably widened, especially b y using balloon-borne u l t r a v i o l e t s p e c t r o g r a p h s , a n d t h e i m p o r t a n c e of these v a r i a t i o n s f o r t h e a n a l y s i s of mass t r a n s f e r processes i n t h e a t m o s p h e r e (H, 17) c a n a l r e a d y be seen. B e l o w a n a l t i t u d e of 35 k m . , ozone is a q u a s i c o n s e r v a t i v e e l e m e n t of t h e a i r , because t h e t i m e i n w h i c h t h e p h o t o c h e m i c a l e q u i l i b r i u m is r e - e s t a b l i s h e d a m o u n t s a t 30 k m . of a l t i t u d e t o 10 d a y s , a t 2 5 k m . t o 100 d a y s , a n d a t 20 k m . t o 1 y e a r . U p t o t h e p r e s e n t t i m e , t h e a v e r a g e h e i g h t of t h e b a l l o o n ascents w a s a b o u t 33 k m . , b u t i n M a y 1956 a t W e i s s e n a u a n a l t i t u d e of 44 t o 4 5 k m . w a s r e a c h e d f o r t h e first t i m e . W i t h t h e s p e c t r o g r a p h e m p l o y e d , t h e s p e c t r u m a t t h i s a l t i t u d e extends d o w n t o 2700 A . I t is s o m e w h a t a s t o n i s h i n g t h a t n o r a d i a t i o n c o u l d be o b s e r v e d i n t h e o z o n e - o x y g e n w i n d o w a t 2150 A . F i g u r e 1 shows t h e ascent c u r v e o b t a i n e d b y o p t i c a l a n d b a r o m e t r i c o b s e r v a t i o n . T h u s , a l t i t u d e s c a n n o w be r e a c h e d a t w h i c h t h e v e r t i c a l ozone d i s t r i b u t i o n s t i l l shows c o n s i d e r a b l e v a r i a t i o n s , as h a s a l r e a d y b e e n d e t e r m i n e d b y r o c k e t ascents a n d d u r i n g eclipses of t h e m o o n (13). A c o n t i n u o u s s t u d y of these v a r i a t i o n s a p p e a r s of i m p o r t a n c e because a possible d i r e c t influence b y v a r i a b l e u l t r a v i o l e t r a d i a t i o n of t h e s u n a t t h i s a l t i t u d e o n t h e ozone l a y e r a n d t h e r e b y o n t h e l o w e r a t m o s p h e r e w o u l d be r e a d i l y a p p a r e n t . Instruments Balloon-Borne Ultraviolet Spectrographs. B y using the spectrograph, from the s p e c t r a l i n t e n s i t y d i s t r i b u t i o n / ( λ , h) i n t h e u l t r a v i o l e t r e g i o n of t h e s o l a r s p e c t r u m , t h e ozone a m o u n t , x(h), a t a h e i g h t h a b o v e t h e i n s t r u m e n t w a s d e t e r m i n e d . A s t h e ozone c o n c e n t r a t i o n e(h)
C
^ ^
3
is d e t e r m i n e d b y d i f f e r e n t i a t i o n of t h e i n t e g r a l c u r v e
x(h), x(h) m u s t be d e t e r m i n e d w i t h i n 1 t o 2 % . 209
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
A D V A N C E S IN CHEMISTRY SERIES
210
50 o BAROMETRIC OF HEIGHT
DETERMINATION
ρ xl
40h OF *
HEIGHT
30h
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
x CD UJ
20
X 1?
12:00 NOON
12:30 PM
1:00 1:30 PM PM CLOCK T I M E I T I M E , HOUR
2:00 PM
2:30 PM
Figure 1. Time-altitude curve for the balloon ascent on M a y 30, 1956 (7-kg. Darex balloon, 3-kg. spectrograph) B e c a u s e of t h e o v e r l a p p i n g F r a u n h o f e r l i n e s i n t h e u l t r a v i o l e t s o l a r s p e c t r u m , t h e e x a c t d i s t r i b u t i o n of t h e s p e c t r a l i n t e n s i t y I ( λ , h) i s also a f u n c t i o n of t h e o p t i c a l q u a l i t i e s of t h e s p e c t r o g r a p h itself. T h e shape of a s p e c t r a l l i n e is s t r o n g l y i n f l u e n c e d b y t h e w i d t h of t h e slit a n d t h e s p e c t r a l d i s p e r s i o n of t h e i n s t r u m e n t , t h e degree of u n i f o r m i t y of t h e l i g h t i l l u m i n a t i n g t h e s l i t , a n d t h e c h a r a c t e r i s t i c s a n d p r o c e s s i n g of t h e p h o t o g r a p h i c p l a t e a n d i t s p o s i t i o n r e l a t i v e t o t h e f o c a l p l a n e . / ( λ , h) w i l l t h e r e f o r e differ s o m e w h a t f o r s p e c t r o g r a p h s of v a r i o u s c o n s t r u c t i o n s . I n order t o o b t a i n a homogeneous observation m a t e r i a l , the spectrographs should be o f a s t a n d a r d t y p e w h i c h r e m a i n s o p t i c a l l y c o n s t a n t d u r i n g flight ( t e m p e r a t u r e , e t c . ) . T h e a u t h o r h a s d e v e l o p e d a v e r y s t a b l e a n d also v e r y l i g h t s p e c t r o g r a p h (6, H). T h e o p t i c s , b a r o g r a p h , a n d t h e r m o g r a p h a r e m o u n t e d i n a closed m e t a l case. T h e a p p a r a t u s p r o v e d t o b e so s t a b l e t h a t e v e n a f t e r r o u g h l a n d i n g s i t n e e d e d n o readjustment. T h e p h o t o m e t r i c e v a l u a t i o n of t h e s p e c t r a h a s t o be c a r r i e d o u t v e r y c a r e f u l l y . T h e t r a n s m i t t a n c e of t h e three-stage filter e m p l o y e d i n f r o n t of t h e s l i t w a s c a l i b r a t e d b y m e a n s o f a p h y s i c a l m e t h o d ( F r a u n h o f e r d i f f r a c t i o n ) (11, 12). A s p e c i a l p r o c e d u r e w a s u s e d f o r c h e c k i n g t h e p a t h of t h e t h r e e i n t e n s i t y c u r v e s of t h e s p e c t r u m (6). A s a r e s u l t of a l l these p r e c a u t i o n s , a n a c c u r a c y t o 1.5% f o r a single m e a s u r e m e n t of x(h) w a s o b t a i n e d . T h e e r r o r s i n e(h) t h e n a m o u n t t o ± 1 , 0.5, a n d 0.3 X 1 0 ~ c m . of ozone p e r k m . f o r a l t i t u d e s of 5, 2 5 , a n d 30 k m . , r e s p e c t i v e l y . Ozone R a d i o Sonde. C o n s i d e r i n g t h e s t r o n g fluctuations of t h e v e r t i c a l ozone d i s t r i b u t i o n a n ozone r a d i o sonde w a s d e v e l o p e d w h i c h w o r k s s i m p l y a n d s u p p l i e s t h e c a l i b r a t i o n r e q u i r e d f o r h o m o g e n e o u s o b s e r v a t i o n m a t e r i a l (3, 4)· T h e r a d i o sonde i n c o r p o r a t e s t h e use of filters f o r t h e u l t r a v i o l e t region as i n p r e v i o u s c o n s t r u c t i o n s (1, 19), a n d of a s e l e n i u m p h o t o e l e m e n t . T h e light currents are amplified b y a threestage a m p l i f i e r a n d t h e i r i n t e n s i t i e s a r e t r a n s m i t t e d t o t h e r e c e i v i n g g r o u n d s t a t i o n b y a n a m m e t e r a n d a r o t a t i n g M o r s e c y l i n d e r . T h i s o p t i c a l m e t h o d seemed t o b e t h e m o s t s u i t a b l e f o r a n ozone s o n d e w h i c h w i l l be u s e d a t v a r i o u s s t a t i o n s w h e r e n o specialists are available. I f t h e o p t i c a l ozone sonde is t o w o r k w e l l , t h e s u n l i g h t m u s t be d i v i d e d i n a s u i t a b l e w a y i n t o t w o s e p a r a t e d s p e c t r a l regions : one r e g i o n i n f l u e n c e d b y ozone ( u l t r a v i o l e t l i g h t ) a n d one n o t i n f l u e n c e d b y ozone ( b l u e l i g h t ) . T o o b t a i n sufficient m e a s u r i n g p r e c i s i o n w i t h a s i m p l e i n s t r u m e n t , t h e ozone r e a d i n g m u s t r e s u l t f r o m t h e q u o t i e n t , u l t r a 3
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
PAETZOLD—VERTICAL
211
ATMOSPHERIC DISTRIBUTIONS
v i o l e t l i g h t / b l u e l i g h t . T h i s m e a n s t h a t t h e t w o s p e c t r a l regions m u s t n o t o v e r l a p e a c h o t h e r c o n t r a r y t o t h e p r e v i o u s l y d e v e l o p e d ozone sondes. S o m e filters n o w a v a i l a b l e are a c c e p t a b l e f o r t h e u l t r a v i o l e t l i g h t r a n g e b e l o w 3250 Α . , w h i c h i s affected b y ozone. T h e y a r e of sufficient c o n s t a n c y a n d t r a n s m i t t a n c e ( c o l o r a n d i n t e r f e r e n c e filters). A s regards t h e s p e c t r a l t r a n s m i t t a n c e c u r v e , t h e r e i s a n o p t i m u m i n t h e r e g i o n o f 3 1 0 0 A . of t h e degree of ozone a b s o r p t i o n a n d s u n l i g h t i n t e n s i t y . F i g u r e 2 shows v a r i o u s filters f o r u l t r a v i o l e t l i g h t . T h e f o r m e r c o l o r filter G G 19 m a d e b y S c h o t t i s v e r y g o o d . U n f o r t u n a t e l y , f o r t h e first sondes o n l y filter G G 1 9 + w a s a v a i l a b l e , w i t h a transmittance m a x i m u m a t a wave length somewhat too long f o r t h e desired purposes. R e c e n t l y a n i n t e r f e r e n c e edge filter h a s b e e n d e v e l o p e d ( S c h o t t , M a i n z ) s h o w i n g a v e r y h i g h t r a n s m i t t a n c e m a x i m u m a n d a v e r y a b r u p t descent a t l o n g e r w a v e l e n g t h s ( F i g u r e 2, N o . 4 ) . I n t h e f u t u r e t h i s filter w i l l b e u s e d . T h e b l u e l i g h t i s i s o l a t e d b y c o m b i n a t i o n o f filters U G 11 a n d W G 1 w i t h a t r a n s m i t t a n c e m a x i m u m a t 3700 A . T h e selenium photoelement w i t h a quartz layer is constant a n d l o w priced. I n Τ
2800
1
1
3000
1
3200
1
1
1
3400
1
3600
1
1
3800
4000
4200
λ,Α Figure 2.
Some optic filters in the ultraviolet region
1. Schott filter G G 19+ 2. 3. 4. 5.
Interference Schott filter Interference Interference
filter with a 200-A. half width G G 19 edge filter filter with a lOO-A. half width
the spectral region used f o r t h e measurements, i t s sensitivity varies o n l y v e r y little as c o m p a r e d t o p h o t o c e l l s w i t h m e t a l l a y e r s , w h e r e s e l e c t i v i t y enters c o n s i d e r a b l y i n t o t h e m e a s u r e m e n t s . A b o v e t h e p h o t o e l e m e n t t h e r e is a q u a r t z s p h e r e , t h e i n s i d e of w h i c h is covered w i t h a magnesium oxide layer, t o render t h e i l l u m i n a t i o n of t h e cell i n d e p e n d e n t of t h e s u n ' s a n g l e of i n c i d e n c e . T h e light falling o n t h e photoelement is extinguished b y a rotating dial a t a fre q u e n c y o f 5 0 s e c - . T h e p h o t o c u r r e n t s a r e a m p l i f i e d 1000 t i m e s b y t h e t h r e e - s t a g e R C a m p l i f i e r . F o r c h e c k i n g t h e a m p l i f i e r , a d i r e c t v o l t a g e i m p u l s e ( 6 0 0 s e c . ) is a m p l i f i e d a t t h e same t i m e . T h e i m p u l s e g e n e r a t o r consists o f a R e i n a r t z c i r c u i t (0.2 w a t t ) w i t h a f r e q u e n c y of 152 m e g a h e r t z e s . F i g u r e 3 shtfws t h e b l o c k d i a g r a m o f t h e sondé. T h e filters a r e m o u n t e d o n a d i s k w h i c h r o t a t e s step b y s t e p a n d closes t h e e l e c t r i c c i r c u i t s r e q u i r e d f o r t h e v a r i o u s m e a s u r e m e n t s . T h e sequence o f t h e a u t o m a t i c m e a s u r e m e n t s of t h e s o n d e i s ; 1
- 1
1. I n t e n s i t y of u l t r a v i o l e t l i g h t influenced b y ozone 2. I n t e n s i t y of blue l i g h t n o t influenced b y osône 3. Pressure
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
212
A D V A N C E S IN CHEMISTRY SERIES
MORSE CYLINDER
AMMETER
CONTROL
Z E R O POINT OR TEMPERATURE RELATIVE HUMIDITY
Figure 3.
Block diagram of ozone radio sonde
4. Control voltage for checking the amplifier 5. Temperature (may be measured by a Wollaston wire not influenced by radiation) A s o n e s u c h c y c l e lasts 2 0 seconds, a n ozone m e a s u r e m e n t t a k e s p l a c e e v e r y 2 0 0 m e t e r s . T h e sonde weighs 4 k g . a n d reaches a n a l t i t u d e of 2 8 t o 3 0 k m . w i t h a 2 - k g . neoprene balloon. I n o r d e r t o c h e c k t h e c a l i b r a t i o n of t h e ozone sonde, s e v e r a l ascents w e r e m a d e w i t h b o t h t h e s o n d e a n d u l t r a v i o l e t s p e c t r o g r a p h . F i g u r e 4 gives t h e single m e a s u r e m e n t s of u l t r a v i o l e t l i g h t , e t c . , f o r one ascent. I n F i g u r e 5 t h e r e s u l t s o b t a i n e d b y m e a n s of t h e sonde a n d t h e s p e c t r o g r a p h a r e c o m p a r e d a n d f o u n d t o agree s u f f i c i e n t l y . T h e s e m e a s u r e m e n t s w e r e m a d e w i t h t h e i n f e r i o r u l t r a v i o l e t filter G G 1 9 + ( F i g u r e Ο
τ
Γ"
ΟΟΟΟΟΟ'3 s a ,ΟΟ'
,οοο' 50
t ο
· · · · · ·( IOO
en -J 250 ZERO 300
3601
Ρ
POINT
0
5
10
15
NUMBER
Figure 4.
20 OF
25 TURNS
30 OF
35 THE
40 FILTER
45
50
DISK
Sonde measurements during one ascent
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
55
213
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
PAETZOLD—VERTICAL ATMOSPHERIC DISTRIBUTIONS
2) a n d t h e e r r o r a m o u n t s t o 2 0 % of e(h) f o r a n a l t i t u d e of 2 5 k m . T h e i n t e r f e r e n c e edge f i l t e r ( F i g u r e 2, N o . 4 ) reduces t h i s e r r o r t o a b o u t 3 % ; t h u s t h e sonde w o r k as w e l l as t h e u l t r a v i o l e t s p e c t r o g r a p h , as recent s o u n d i n g ascents h a v e s h o w n . Variations of O b s e r v e d Vertical
Ozone
Distributions
S e a s o n a l V a r i a t i o n s . F i g u r e 6 s u r v e y s t h e i n t e g r a l c u r v e s x(h) f o r v a r i o u s seasons as o b t a i n e d a t W e i s s e n a u ( 4 8 ° N ) (9). T h e ozone a m o u n t b e t w e e n 0 a n d 20 k m . shows p a r t i c u l a r l y s t r o n g v a r i a t i o n s i n s p r i n g , because of t h e s t r o n g m e r i d i o n a l ozone g r a d i e n t a t t h i s a l t i t u d e . I n p o l a r zones t h e r e i s m u c h ozone b e l o w 2 0 k m . i n 40i
X(H), CM 0
Figure 6.
X(H), CM 0
3
3
integral curves x(fi) observed by balloon ascents at Weissenau a. Summer and spring b. Autumn and winter
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES
214
IN CHEMISTRY SERIES
s p r i n g a n d s u m m e r , w h i l e a t l o w e r a l t i t u d e s o n l y v e r y l i t t l e ozone is f o u n d . Mean w h i l e recent d i r e c t m e a s u r e m e n t s w i t h t h e r a d i o o z o n s o n d e m a d e b y t h e a u t h o r i n n o r t h e r n N o r w a y a n d e q u a t o r i a l A f r i c a c o n f i r m e d t h i s p i c t u r e of t h e m e r i d i o n a l v a r i a t i o n s of ozone g a i n e d p r e v i o u s l y b y i n d i r e c t m e t h o d s [ " U m k e h r " effect a n d m o o n eclipses (13)1. W h e t h e r o r n o t t h e a i r is r i c h i n ozone d e p e n d s o n w h e t h e r t h e a i r comes f r o m l o w e r o r h i g h e r l a t i t u d e s . I n a u t u m n these m e r i d i o n a l g r a d i e n t s a r e m u c h weaker.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
T h e b a l l o o n ascents p e r m i t t e d , f o r t h e first t i m e , d e t e r m i n a t i o n o f t h e seasonal f l u c t u a t i o n s of t h e ozone c o n t e n t a t v a r i o u s h e i g h t s w h i c h p r o d u c e t h e seasonal changes of t h e t o t a l ozone a m o u n t , w i t h i t s k n o w n m a x i m u m i n s p r i n g i n m e a n a n d h i g h e r l a t i t u d e s . F i g u r e 7 shows t h a t t h e a n n u a l ozone course differs f o r t h e different
0.30 TOTAL
ν\ \
0.25 h
\ \ s \ Ν
0.20
0.05
^
" ο
S' ^/
ο
ο ο -
*
.—y
OZONE
LONG-TERM AVERAGE M E A S U R E D WITH T H E DOBSON SPECTRO PHOTOMETER ο ο
Λ *
Ο > ο ο
""ο
ο
5 ο ο
ο
ABOVE
30
KM
0
•»
0.05 ro
•
Ο
ο
•·
r%—;;
0 ο ο
°
ο
0.05
• • ο
KM
20 - 25
KM
15 - 2 0
KM
10 - 15
KM
0 - 1 0
KM
ο
ο ·~ο ο
Ίι
25 - 30
0
< uJ Ο Ν Ο
Ο
• • • • • • • ·
0.05
• • • •• ·· · • • ·· »•· -
I
Ο _ 0.05
ooc ο ο ο
ο
οο
— ο
%
ο ο ο ο
Ο ο Ο 0.05 JAN I
••• APR I
• JUL I
OCT I
ο ο
• •
Î.
-"V % JAN I
m..
APR I
SEASON
Figure 7.
Annual variation of ozone amount at different altitudes at Weissenau
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
215
PAETZOLD—VERTICAL ATMOSPHERIC DISTRIBUTIONS
h e i g h t s . T h e s u m m e r m a x i m u m a b o v e 3 0 k m . is c a u s e d p h o t o c h e m i c a l l y ( l o w e r m e a n z e n i t h d i s t a n c e of t h e s u n ) a n d is c o n s i s t e n t w i t h t h e p h o t o c h e m i c a l t h e o r y . T h e s p r i n g m a x i m u m b e l o w 2 0 k m . i s m a i n l y caused b y o z o n e - r i c h a i r b r o u g h t d o w n f r o m polar latitudes. T h e s u m m e r m i n i m u m a t a n a l t i t u d e b e t w e e n 2 0 a n d 25 k m . is p r o b a b l y c a u s e d b y a h i g h e r r e a c h i n g t u r b u l e n c e w h i c h b r i n g s m o r e ozone d o w n t h a n c a n b e p r o d u c e d p h o t o c h e m i c a l l y . I t is s t r i k i n g t h a t b e t w e e n 25 a n d 30 k m . t h e r e is n o seasonal v a r i a t i o n . O b v i o u s l y photochemical a n d atmospheric factors have n o great influence i n this region o r t h e y compensate each other.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
A p a r t f r o m these f a c t o r s t h e r e seems t o exist a n o t h e r i n f l u e n c e o n t h e a n n u a l fluctuations of t h e o z o n e ; t h i s f a c t o r c a n b e seen i n F i g u r e 8, w h i c h gives t h e m i x i n g
τ
1—ι
ι ι ι ι 11
1
1—I
M i l l
OCT
Ο ·
IxlO"
1
1
1 I I I I I I
IxlO"
7
I
I
I
I
I I I I I 1
IxlO"
6
5
OZONE/AIR Figure 8.
Ozone-air ratio for different seasons
r a t i o of ozone a n d a i r . T h e c u r v e s f o r J a n u a r y a r e 1 t o 2 k m . l o w e r t h a n those f o r O c t o b e r . L o w e r i n g of t h e s t r a t o s p h e r e w i t h a speed of 0.1 m m . p e r second causes b y c o n v e r g e n c e t h e n e w rise of t h e ozone i n N o v e m b e r , a c c o r d i n g t o t h e e q u a t i o n at
~ "
M
oh
~ pdtf ° V [
3
(
1
)
w h e r e [ 0 ] is t h e n u m b e r of ozone m o l e c u l e s p e r c u b i c c e n t i m e t e r , V is t h e v e r t i c a l s p e e d i n t h e a t m o s p h e r e , a n d is t h e a i r d e n s i t y . T h e l a s t effect shows t h e i m p o r t a n c e of t h e ozone v a r i a t i o n i n t h e a n a l y s i s of w o r l d wide circulations i n the atmosphere. Variations of Single Ozone Distributions. A c c o r d i n g t o t h e d i s p e r s i o n of t h e p o i n t s i n F i g u r e 7, single ozone d i s t r i b u t i o n s s h o w s t r o n g v a r i a t i o n s . T h e m o s t s t r i k i n g f a c t is t h a t t h e r e are d i s t r i b u t i o n c u r v e s w i t h s e v e r a l p e a k s ( F i g u r e 9 ) . W h i l e t h e p h o t o c h e m i c a l l y c a u s e d p r i m a r y m a x i m u m a t 2 3 k m . a l w a y s exists, t h e r e is a s e c o n d a r y n o n p e r m a n e n t m a x i m u m a t 15 k m . a n d a t e r t i a r y one a t 6 k m . Sometimes the m a x i m a are s h a r p l y separated f r o m each o t h e r ; sometimes they are smooth a n d m e r g e i n t o e a c h o t h e r . I n r a r e cases, t h e first m a x i m u m a t 23 k m . seems t o s p l i t u p i n t o t w o m a x i m a w i t h a d i s t a n c e i n a l t i t u d e of a b o u t 2 k m . A m o r e p e r f e c t e d o b s e r v a t i o n a l m e t h o d w i l l p r o b a b l y show still more details. H o w e v e r , the three m a x i m a mentioned h
3
p
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
216
A D V A N C E S IN CHEMISTRY SERIES
Figure 9.
O z o n e distribution with several summer
peaks in spring
and
a. Air from subtropical latitudes b. Air from polar latitudes
are o f t e n v e r y d i s t i n c t a n d a r e a l w a y s a t t h e same a l t i t u d e s , so t h a t we c a n c o n s i d e r t h e m as one of t h e m a i n c h a r a c t e r i s t i c s of t h e ozone f l u c t u a t i o n s . T h e t e r t i a r y m a x i m u m lies b e t w e e n t h e e a r t h a n d t h e t r o p o p a u s e a n d t h e s e c o n d a r y b e t w e e n t h e t r o p o p a u s e a n d t h e w e l l - k n o w n zone of t h e m i n i m u m of t h e m e a n w i n d speed a t 20 k m . , i n w h i c h t h e change f r o m west t o east w i n d s o c c u r s i n s u m m e r also. T h e t e r t i a r y a n d s e c o n d a r y m a x i m a a r e p r o b a b l y caused b y h o r i z o n t a l t r a n s f e r s of a i r of different ozone c o n t e n t s (6). T h e s e c o n d a r y m a x i m u m a t a h e i g h t o f 16 k m . can v e r y clearly be a t t r i b u t e d to advection. T h e secondary m a x i m u m i n s p r i n g a n d s u m m e r w i l l a l w a y s o c c u r w h e n t h e a i r i n these a l t i t u d e s o r i g i n a t e s f r o m p o l a r regions. O n t h e o t h e r h a n d , t h i s m a x i m u m does n o t a p p e a r w h e n t h e a i r comes f r o m s u b t r o p i c a l regions. I n a u t u m n , h o w e v e r , t h e s e c o n d a r y m a x i m u m w a s n o t o b s e r v e d o r w a s v e r y w e a k , e v e n w h e n t h e a i r c a m e f r o m p o l a r regions (5, 9). T h i s corresponds t o t h e a b o v e - m e n t i o n e d v e r y s l i g h t m e r i d i o n a l g r a d i e n t of t h e ozone c o n t e n t a t t h i s season. I n F i g u r e 9,a, i t is s t r i k i n g t h a t v e r y l i t t l e ozone is f o u n d i n t h e r e g i o n b e t w e e n 8 a n d 16 k m . P r o b a b l y t h i s o z o n e - p o o r a i r s t r e a m s f r o m t h e t r o p i c a l l a t i t u d e s t o h i g h e r ones t h r o u g h t h e g a p b e t w e e n t h e t r o p i c a l a n d m e a n l a t i t u d e t r o p o p a u s e . I n a l l cases w h e r e t h e r e w a s a s e c o n d a r y ozone m a x i m u m a n a b r u p t change of t h e w i n d w a s o b s e r v e d a t t h e same h e i g h t . H o w e v e r , n o t a l l v a r i a t i o n s of t h e h o r i z o n t a l ozone d i s t r i b u t i o n c a n b e a t t r i b u t e d to a d v e c t i o n of a i r masses of different ozone c o n t e n t . I t is s t r i k i n g t h a t t h e p r i m a r y m a x i m u m changes i t s f o r m s o m e t i m e s : a t one t i m e i t i s s h a r p e r , a t a n o t h e r s m o o t h e r . T h i s effect c a n n o t b e c a u s e d b y changes of t h e p h o t o c h e m i c a l c o n d i t i o n s o r a d v e c t i o n . F i g u r e 10 gives ozone d i s t r i b u t i o n s w i t h s h a r p a n d s m o o t h m a x i m a m e a s u r e d d u r i n g one m o n t h i n a u t u m n i n w h i c h t h e a d v e c t i v e influence is s m a l l . I t c a n b e seen t h a t the f o r m of t h e c u r v e s f o r t h e r a t i o of ozone t o a i r i s t h e s a m e , e s p e c i a l l y f o r t h e t w o ascents t o h i g h e r a l t i t u d e s , b u t t h a t t h e y l i e a t different h e i g h t s . T h e s e d i f f e r ences m u s t be cause b y v e r t i c a l a i r m o t i o n s . I t i s s t r i k i n g t h a t t h e c u r v e s cross e a c h o t h e r a t a n a l t i t u d e of 20 k m . , w h i c h m e a n s t h a t a t t h i s a l t i t u d e t h e v e r t i c a l m o v e m e n t s change t h e i r signs. T h e speed of t h i s v e r t i c a l m o v e m e n t c a n b e e s t i m a t e d , f r o m the i n t e r v a l s b e t w e e n t h e ascents a n d f r o m t h e e s t a b l i s h m e n t of t h e p h o t o c h e m i c a l e q u i l i b r i u m , t o be a t least 1 t o 10 c m . p e r second. F o r t h e regions of t h e t e r t i a r y a n d s e c o n d a r y ozone m a x i m a , some ascents
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
217
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
PAETZOLD—VERTICAL ATMOSPHERIC DISTRIBUTIONS
s h o w e d v e r y s h o r t d e v i a t i o n o r r e g i o n a l l y r e s t r i c t e d v a r i a t i o n s . V e r y o f t e n t h e same d i s t r i b u t i o n s were d e t e r m i n e d f o r ascent a n d descent of t h e b a l l o o n , b u t i n some cases t h e r e are c l e a r differences. F i g u r e 11 gives a n i n s t r u c t i v e e x a m p l e . Because of t h e p o s i t i o n o n t h e c h a r t of t h e i n d i v i d u a l o b s e r v a t i o n s a n d t h e e s t i m a t e d e r r o r m a g n i t u d e , t h e differences b e t w e e n ascent a n d descent m u s t be c o n s i d e r e d as r e a l . As s h o w n i n F i g u r e 12, t h e t e r t i a r y a n d s e c o n d a r y m a x i m a h a v e b e e n d i s p l a c e d t o c o n t r a r y d i r e c t i o n s b e t w e e n ascent a n d descent. A s t u d y of F i g u r e 12 i n d i c a t e s t h a t t h i s v a r i a t i o n m u s t also be c a u s e d b y v e r t i c a l m o v e m e n t s . A t a n a l t i t u d e of 9 t o 10 k m . these m o v e m e n t s o b v i o u s l y change t h e i r signs. A t a n a l t i t u d e of 5 k m . t h e r e is a n u p w a r d speed of 10 c m . p e r s e c o n d a n d a t 15 k m . one of 10 c m . p e r second, w h i l e a t a l t i t u d e s of 9 a n d 24 k m . t h e v e r t i c a l m o v e m e n t s d i s a p p e a r . O n the basis of these o b s e r v e d v a r i a t i o n s i n t h e v e r t i c a l ozone d i s t r i b u t i o n i t is possible t o p r o v e d i r e c t l y t h e s o - c a l l e d " z e r o l a y e r " i n w h i c h t h e v e r t i c a l m o v e m e n t s o f t e n change 40
1—r~T~i ι 1111
1
r
1 1 1 1II /
/
I
/
J
30
2 Ï ©
20
111 X 10
L 0
0.01
OZONE
1
0.02
1 1 1 1 1 ll 10
1I 1 1 1 1 II 100
(OZONE/AIR)
CONCENTRATION CM 0
χ
I0~
7
3
KM
Figure
10.
Sharp and smooth primary ozone maxima during at Weissenau in autumn of 1953 1. 2. 3. 4.
ascents
September 8 September 28 October 23 October 28
t h e i r signs. A c c o r d i n g t o F i g u r e 10, a s e c o n d " z e r o l a y e r " seems t o exist i n a n a l t i t u d e of 20 k m . F r o m r e c e n t ozone s o u n d i n g s , a c o r r e l a t i o n c a n be f o u n d b e t w e e n t h e c i r c u l a t i o n i n the troposphere a n d stratosphere. So i n the statistical m e a n the g r o u n d a i r p r e s s u r e is l o w i f t h e f i r s t ozone m a x i m u m is s m o o t h a n d i t is h i g h i f t h e l a t t e r is s h a r p (7). O z o n e t h u s assists r e s e a r c h o n t h e d y n a m i c r e l a t i o n s b e t w e e n t h e t r o p o s p h e r e a n d the lower stratosphere. U p w a r d a n d d o w n w a r d m o v e m e n t s a l t e r t h e n u m b e r of ozone m o l e c u l e s i n t h e v o l u m e u n i t a c c o r d i n g t o E q u a t i o n 1. I t is seen a t once t h a t t h e r e is n o a l t e r a t i o n if O / is c o n s t a n t — t h a t i s , i f t h e ozone s h o w s t h e s a m e decrease w i t h h e i g h t as t h e d e n s i t y of t h e a t m o s p h e r e . T h i s is n e a r l y t h e case i n t h e r e g i o n b e t w e e n 25 a n d 35 k m . B e l o w 2 5 k m . , t h e r a t i o 0 / p is m e a n p r o p o r t i o n a l t o ~ to p . I n this r e g i o n t h e ozone a m o u n t is i n c r e a s e d b y a d o w n w a r d c u r r e n t , a n d v i c e v e r s a . s p
3
P
1
-
3
I f t h e v e r t i c a l ozone d i s t r i b u t i o n is l o w e r e d b e t w e e n 10 a n d 20 k m . b y 1 k m . , t h i s m e a n s — e . g . , f o r a u t u m n — a n i n c r e a s e i n t h e t o t a l t h i c k n e s s of t h e l a y e r of 0.013 c m . of ozone, a p p r o x i m a t e l y 6 % . T a b l e I shows t h e r a t i o a t different seasons. T h e last
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
218
A D V A N C E S IN CHEMISTRY SERIES
10
20 H,
30
KM
Figure 11. Integral curve x(h) during ascent a n d descent of balloon at Weissenau on August 1, 1955
OZONE
Figure 12.
/AIR
Vertical distribution of ozone-air ratio for measurement in Figure 11
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
219
PAETZOLD—VERTICAL ATMOSPHERIC DISTRIBUTIONS
c o l u m n shows t h e o b s e r v e d m e a n i n t e r d i u r n a l fluctuations of t h e t o t a l ozone a m o u n t f o r c o m p a r i s o n (2). I n s p r i n g t h e fluctuations w i l l b e d u e 5 0 % t o a d v e c t i o n a n d 5 0 % to vertical movements. I n a u t u m n , h o w e v e r , v e r t i c a l m o v e m e n t s w i l l b e of m o s t i m p o r t a n c e . T h e d i u r n a l m e a n ozone v a r i a t i o n s g i v e n i n T a b l e I i n d i c a t e a T a b l e I.
Seasonal Variation in Vertical O z o n e Distribution in Stratosphere Vertical Displacement of Ozone Distribution, C m . O3
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
Raised by 1 K m . Season Jan. 1 April 1 July 1 Oct. 1
Between 10 and 15 km. -0.004 -0.008 -0.007 -0.002
Lowered by 1 K m .
Between 10 and 20 km. - 0.014 - 0.016 -0.015 -0.009
Between 10 and 15 km. +0.007 +0.011 +0.009 +0.003
Between 10 and 20 km. +0.019 +0.021 +0.019 +0.013
Obsd. fluctuations ±0.014 ±0.012 ±0.005 ±0.007
m e a n a m p l i t u d e of u p w a r d a n d d o w n w a r d m o v e m e n t s of a b o u t 1 k m . b e t w e e n a l t i t u d e s of 10 a n d 20 k m . A f u r t h e r f a c t o r i n f l u e n c i n g t h e v e r t i c a l ozone d i s t r i b u t i o n i s t h e v e r t i c a l t u r b u l e n c e . T h i s i s , h o w e v e r , n o t t h e cause of f a s t fluctuations. I f , for instance, a con s i d e r a b l e change s h o u l d b e c a u s e d b y t u r b u l e n c e a t a n a l t i t u d e o f 3 0 k m . a g a i n s t t h e t e n d e n c y t o r e - e s t a b l i s h t h e p h o t o c h e m i c a l e q u i l i b r i u m , t h e exchange f a c t o r m u s t t e m p o r a r i l y s h o w a v a l u e of 0.1 t o 1 g r a m p e r c m . - s e c o n d , w h i c h w o u l d b e 10 t o 100 t i m e s larger t h a n the m e a n value at this altitude. Ozone
Balance
T h e v e r t i c a l t u r b u l e n c e , o n t h e o t h e r h a n d , h a s a c o n s i d e r a b l e influence o n t h e m e a n ozone d i s t r i b u t i o n b e l o w 2 0 k m . A c c o r d i n g t o t h e p h o t o c h e m i c a l t h e o r y , t h e r e s h o u l d b e n o ozone b e l o w 10 t o 15 k m . , because a t 5 k m . o n l y a b o u t o n e o z o n i z i n g l i g h t q u a n t u m p e r cc.-second is a b s o r b e d (8). A s c o s m i c r a d i a t i o n a n d e l e c t r i c discharges p r o d u c e f a r t o o l i t t l e ozone (6), t r o p o s p h e r i c ozone of t h e a m o u n t of 1 t o 4 Χ 1 0 c m . of ozone p e r k m . m u s t b e b r o u g h t d o w n f r o m t h e p h o t o c h e m i c a l l a y e r b y v e r t i c a l m i x i n g processes (16), w h e r e b y i t is c o n t i n u a l l y d e s t r o y e d o n t h e g r o u n d a n d i n l o w e r a i r l a y e r s . T h i s t u r b u l e n t ozone s t r e a m i s g i v e n b y -
3
(2)
where [M] is t h e n u m b e of a i r m o l e c u l e s p e r c c . A (h) i s t h e s o - c a l l e d " e x c h a n g e f a c t o r " N is A v o g a d r o ' s n u m b e r is t h e d e n s i t y of a i r ( S T P ) F r o m t h e o b s e r v e d m e a n t r o p o s p h e r i c ozone d i s t r i b u t i o n i t f o l l o w s t h a t (5, 6) A
p o
~ U3 = i . i u i
i
m
i i J
Q molecules τ sq. cm.-second 3
T h e same v a l u e f o r ozone d e s t r u c t i o n r e s u l t e d f r o m ozone fluctuations n e a r t h e g r o u n d (6, 18). O n t h e basis of t h e d e v i a t i o n s i n v e r t i c a l ozone d i s t r i b u t i o n f r o m t h e p h o t o c h e m i c a l l y c a l c u l a t e d d i s t r i b u t i o n t h e r e also results a v a l u e of 1 . 1 0 c m . of ozone p e r sq. c m . - s e c o n d f o r t h e c h e m i c a l r e g e n e r a t i o n (6). T h e r e f o r e , t h e ozone b a l a n c e seems to be m a i n t a i n e d . 11
A l l o v e r t h e w o r l d 1 0 m e t r i c t o n s of ozone p e r y e a r a r e d e s t r o y e d a n d p h o t o c h e m i c a l l y r e g e n e r a t e d . W i t h o u t t h e p h o t o c h e m i c a l r e g e n e r a t i o n , t h e ozone a m o u n t w o u l d decrease t o o n e t e n t h of i t s p r e s e n t v a l u e w i t h i n 3 y e a r s . A t m o s p h e r i c o x y g e n w i l l t h u s go t h r o u g h t h e o z o n i z e d state i n 1 0 y e a r s . T h i s f a c t shows t h e i m p o r t a n c e 9
6
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
220
A D V A N C E S IN CHEMISTRY SERIES
which the ozone m a y have had i n the creation of the terrestrial atmosphere present state.
i n its
Downloaded by UNIV OF MASSACHUSETTS AMHERST on May 29, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch033
Conclusions T h e results of limited ozone measurements b y balloon ascents allow a far more detailed analysis of the factors influencing ozone distribution than the measurements of the total ozone amount made over many years at various locations b y the Dobson instrument. Some fundamental relations between ozone distribution and air movements have been obtained b y means of balloon ascents. T h e exact analysis of the fluctuations of total ozone amount, in conjunction with wind and temperature observations, permits something more definite to be said about ozone fluctuations at greater altitudes and the air movements connected with them. T h e course of the total ozone amount from February 27 to M a r c h 19 is a n example of this (IS). T h e strong influx of warm air on February 19 to 2 8 , 1956, into layers below 10 k m . caused a rapid decrease i n the ozone amount; accordingly, the warm air was of a subtropical character with little ozone. T h e increase on M a r c h 8 up to an amount of 0.335 cm. of ozone on M a r c h 12 coincided with a condition of mostly northern winds at all altitudes for several days. T h e increase was caused by the influx of air rich in ozone—that is, of polar air—below 20 k m . (secondary and tertiary maxima). When on M a r c h 12 the wind changed in the 100-mb region from N N E to W S W , the ozone amount began to decrease; this means that the secondary maximum was reduced b y the influence of subtropical air. This had been happening for 3 days before the tropospheric influx of warm air on M a r c h 15, by which the tropospheric ozone was also reduced. This example shows how changes of the ozone and thereby of the weather conditions make their way from higher to lower altitudes. A further striking fact is an abnormally quick increase on the morning of M a r c h 1, which can hardly be accounted for by advection only. Probably a strong local lowering of the atmosphere below 2 0 k m . was also influential.
Bibliography (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19)
Coblentz, W., Stair, R., J. Research Natl. Bur. Standards 22, 573 (1939). Götz, F. W. P., "Compendium of Meteorology," p. 275, Boston, 1950. Kulcke, W., Dissertation, Technische Hochschule, Stuttgart, 1956. Kulcke, W., Paetzold, H. K., Ann. Meteorol. 8, 47 (1957). Paetzold, H. K., Ibid., 8, 40 (1947). Paetzold, H. K., Habilitationsschrift TH. München, 1954. Paetzold, H. K., Intern. Union Geodesy and Geophysics, Toronto, 1957. Paetzold, H. K., J. Atm. and Terrest. Phys. 3, 125 (1953). Ibid., 7, 128 (1955). Paetzold, H. K., Naturwissenschaften 41, 320 (1954). Paetzold, H. K., Optik 6, 327 (1950). Paetzold, Η. Κ., Z. Naturforsch. 2a, 219 (1947). Ibid., 6a, 639 (1951); J. Atm. and Terrest. Phys. 2, 183 (1952). Paetzold, Η. Κ., Z. Naturforsch. 10a, 33 (1955). Paetzold, H. K., Zschörner, H . , Ann. Meteorol. 8, 54 (1957). Regener, V. H., Meteorol. Z. 60, 253 (1943). Regener, V. H., Nature 167, 276 (1951). Regener, V. H., Proc. Intern. Union Geodesy and Geophysics, Rome, 1954. Strantz, Ber. deut. Wetterdienst U. S. Zone No. 11, 44 (1949). RECEIVED for review M a y 17, 1957. Accepted June 19, 1957.
OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.