Probing Bioactive Mechanisms - American Chemical Society

tor is a membrane embedded complex mediating the influx and efflux of chloride ion ... muscaria, i s quite t o x i c , ten times more potent than GABA...
3 downloads 0 Views 1MB Size
Chapter 19

Analysis of Binding at 4-Aminobutyric Acid Receptor Sites by Structure—Activity Relationships 1

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

Philip S. Magee and James W. King

2

1BIOSAR Research Project, Vallejo, CA 94591 and School of Medicine, University of California, San Francisco, CA 94143 U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, Aberdeen, M D 21010-5423 2

Series of GABA-ergic compounds were analyzed through the expressed binding response (IC50) in the brain, spinal cord and uptake systems of man and various animals. The technique used was multiple regression of the pIC50 values against the variations in substructural features (1.0/0.0). Nearly a l l substructural factors made negative contributions relative to the basic GABA structure. Spacing is c r i t i c a l and binding occurs in a sterically restricted lipophilic cleft between the amino and carboxyl sites. The cleft exhibits chiral selection and the most probable binding mechanism is ion-paring. There a r e two c l a s s e s o f n e u r a l r e c e p t o r s f o r b i n d i n g o f t h e i n h i b i ­ t o r y n e u r o t r a n s m i t t e r , 4 - a m i n o b u t y r i c a c i d (GABA). Of p r i m a r y i n t e r e s t t o t h i s study i s t h e GABA^ r e c e p t o r which p o p u l a t e s b o t h p r e - and p o s t - s y n a p t i c n e u r a l gaps i n t h e CNS. Of l e s s e r i n t e r e s t i s t h e p r e - s y n a p t i c GABAg r e c e p t o r and v a r i o u s n o n - n e u r a l r e c e p t o r sites. These s i t e s a r e r e a d i l y c l a s s i f i e d by b l o c k i n g r e s p o n s e s t o b i c u c u l l i n e (I) o r p i c r o t o x i n i n ( 2 ) . The p o s t - s y n a p t i c GABA^ r e c e p ­ t o r i s a membrane embedded complex m e d i a t i n g t h e i n f l u x and e f f l u x of c h l o r i d e i o n and p o s s e s s i n g a l l o s t e r i c b i n d i n g s i t e s f o r b e n z o d i a ­ z e p i n e s , p i c r o t o x i n i n and some a v e r m e c t i n s ( 3 ) . R e c i p r o c a l a l l o ­ s t e r i c m o d u l a t i o n s among t h e f o u r c l a s s e s o f r e c e p t o r s i t e s a r e e a s i l y observed i n v i t r o . The r e c e p t o r has been shown t o be a g l y c o p r o t e i n , l i k e most membrane p r o t e i n s ( 4 ) . Two and p o s s i b l y t h r e e GABA r e c e p t o r s i t e s on t h e complex c a n be i d e n t i f i e d k i n e t i c a l l y by use o f S c a t c h a r d p l o t s ( 5 - 9 ) . Krogsgaard-Larsen presents e v i d e n c e f o r t h r e e b i n d i n g s i t e s (6) which he terms Low, Medium and H i g h ( 3 ) . A f u r t h e r c o m p l i c a t i o n i s t h e p r e s e n c e o f an endogeneous p r o t e i n i n h i b i t o r b i n d i n g t o t h e h i g h a f f i n i t y s i t e s (10,11). These s i t e s c a n be exposed f o r b i n d i n g s t u d i e s t h r o u g h a complex washing p r o t o c o l (9) u s i n g t h e n o n - i o n i c d e t e r g e n t , t r i t o n X-100 ( 1 2 ) . Johnson and co-workers have shown e x t r a o r d i n a r y i n c r e a s e s i n GABA b i n d i n g t o r a t b r a i n p r e p a r a t i o n s by T r i t o n X-100 e x t r a c t i o n ( 1 3 ) . 0097-6156789/0413-028im00/0 © 1989 American Chemical Society

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

282

PROBING BIOACTIVE

MECHANISMS

A v a r i e t y o f GABA r e l a t e d c h e m i c a l s b i n d t o t h e GABA^ s i t e s t o p r o ­ duce b o t h a g o n i s t and a n t a g o n i s t r e s p o n s e s (3,14,15). B i c u c u l l i n e ( 1 ) , p i c r o t o x i n i n ( 2 ) , i s o - T H I P and iso-THAZ appear t o be s p e c i f i c GABA r e c e p t o r a n t a g o n i s t s (3,14). Muscimol, THPI, i s o g u v a c i n e and p i p e r i d i n e - 4 - s u l f o n i c a c i d (P4S) a r e s p e c i f i c GABA a g o n i s t s w h i l e muscimol, THPO, g u v a c i n e and n i p e c o t i c a c i d a r e s p e c i f i c GABA uptake i n h i b i t o r s (15,17). Muscimol, d e r i v e d from the mushroom Amanita m u s c a r i a , i s q u i t e t o x i c , t e n times more p o t e n t than GABA as an ago­ n i s t , and v e r y s p e c i f i c i n b i n d i n g o n l y t o h i g h a f f i n i t y s i t e s (5,18). DeFeudis and co-workers have r e p o r t e d a p p r o x i m a t e l y t w i c e as many b i n d i n g s i t e s f o r muscimol as f o r GABA ( 1 9 ) . Of t h e known s p e c i f i c a g o n i s t s , THPI i s t h e o n l y one c a p a b l e o f p e n e t r a t i n g t h e b l o o d - b r a i n b a r r i e r t o e x e r t a n a l g e s i c and a n t i c o n v u l s a n t e f f e c t s ( r e f e r e n c e s c i t e d i n 6). C l i n i c a l r e s p o n s e s o f GABA a g o n i s t s and a n t a g o n i s t s have been r e v i e w e d ( 2 0 ) . Of r e l a t e d i n t e r e s t i s the r e p o r t t h a t b o t h a n e s t h e t i c and c o n v u l s a n t b a r b i t u a t e s enhance GABA b i n d i n g i n a dose dependent manner, presumably an a l l o s t e r i c e f f e c t ( 1 3 ) . S t e r e o c h e m i s t r y i s c l e a r l y i n v o l v e d i n the b i n d i n g o f GABA and GABA-ergic compounds. Andrews and J o h n s t o n p o s t u l a t e t h a t GABA b i n d s to GABA r e c e p t o r s i n an extended c o n f o r m a t i o n and t o GABAg r e c e p t o r s i n a f o l d e d conformation (21). These c o n s i d e r a t i o n s l e d B l o c k and K i n g t o a d e t a i l e d c o n f o r m a t i o n a l s t u d y o f GABA, muscimol and n i p e ­ c o t i c a c i d based on X-ray c r y s t a l d a t a ( 2 2 ) . Differences i n binding a f f i n i t i e s o f s t e r e o i s o m e r i c GABA-ergic compounds range from s m a l l to l a r g e (14,17). A

A s t a t i s t i c a l a p p r o a c h t o mapping the GABA r e c e p t o r s i t e s i s presented i n t h i s study. We attempt t o a n a l y z e t h e c o n t r i b u t i o n s o f key s u b s t r u c t u r e s t o the measured b i n d i n g a f f i n i t i e s o f GABA-ergic compound s e r i e s . O l s e n has n o t e d v a r i a t i o n s i n t h e r a n k o r d e r p o t e n ­ cy o f GABA a n a l o g s between systems ( 2 3 ) . By use o f m u l t i p l e r e g r e s ­ s i o n a n a l y s i s , we a r e a t t e m p t i n g t o q u a n t i f y these o b s e r v a t i o n s i n terms o f s u b - s t r u c t u r e c o n t r i b u t i o n s ( F i g u r e 1 ) . 1

R e s e a r c h Method. Most s t u d i e s i n v o l v e c a r e f u l l y measured I C 5 0 s f o r a s u b s t a n t i a l number o f GABA-ergic compounds on membrane o r c e l l u l a r preparations. Most o f t h e p r e p a r a t i o n s a r e t r e a t e d by complex p r o ­ t o c o l s i n v o l v i n g e x t r a c t i o n w i t h T r i t o n X-100 ( 9 ) . I n many e x p e r i —-

n

ments, t h e GABA r e c e p t o r s i t e s a r e f i r s t s a t u r a t e d w i t h H-GABA, 3 3 3 H-muscimol, H-diazepam o r H-P4S f o l l o w e d by measurement o f t h e c o n c e n t r a t i o n o f GABA-ergic compound r e q u i r e d t o d i s p l a c e 50% o f t h e bound t r a c e r ( I C 5 0 ) . C o r r e c t i o n s f o r n o n - s p e c i f i c b i n d i n g a r e made to r e f i n e t h e v a l u e s . These numbers a r e c o n v e r t e d t o p I C 5 0 s ( l o g 1/IC50) f o r r e g r e s s i o n a g a i n s t the p r e s e n c e o r absence o f s p e c i f i c substructures. I n d i c a t o r v a r i a b l e s ( I • 1.0/0.0) a r e used t o code the p r e s e n c e or absence o f a key s u b s t r u c t u r e . R e g r e s s i o n o f r e a l numbers (pIC50 s) a g a i n s t a m a t r i x o f i n d i c a t o r v a r i a b l e s i s a v a l i d p r o c e ­ dure f o r l a r g e s e t s , as i n t h e F r e e - W i l s o n method. However, many o f the s e t s i n t h i s s t u d y a r e s m a l l (n * 7-10) and i t i s p r o b a b l e t h a t s t a t i s t i c a l measures f o r these s e t s a r e o n l y a p p r o x i m a t e . The o v e r ­ a l l c o n s i s t e n c y o f s u b s t r u c t u r e dependence i n b o t h s m a l l and l a r g e r s e t s i s c o n s i d e r e d t o v a l i d a t e these measures i n a s e m i - q u a n t i t a t i v e sense. f

f

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

19.

M A G E E & KING

Binding at 4-Aminobutyrk Acid Receptor Sites283

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

O

MUSCIMOL

GUVACINE

NIPECOTIC ACID

ISOGUVACINE

PIPERIDINE-4-SULFON1C ACID

THPO

Figure 1. G A B A agonists and antagonists.

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

284

PROBING BIOACTIVE MECHANISMS

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

There a r e major v a r i a t i o n s i n c h e m i c a l s t r u c t u r e among the s e t s , making g e n e r a l c l a s s i f i c a t i o n o f s u b - s t r u c t u r e s d i f f i c u l t . We have attempted t o use i n d i c a t o r v a r i a b l e s t h a t d e s c r i b e comparable changes i n the same b i n d i n g r e g i o n o f d i f f e r e n t s e t s a l t h o u g h the compounds d e s c r i b e d may not be i d e n t i c a l . The f o l l o w i n g v a r i a b l e s a r e t y p i c a l . IHETS « 1.0 IHETO « 1.0 IRNG « 1.0 IDB « 1.0 IME » 1.0 I20H, I30H 1.0 IS03 1.0 INSUB « 1.0 ILNG, ISL, ISHT » 1.0 INH2 1.0 IR = ING

for for for for for for for for for for

isothiazole ring isoxazole ring aliphatic ring closure c o n j u g a t e d double bond or equivalent r i g i d i t y b r a n c h i n g m e t h y l group 2- or 3-OH groups SO3H r e p l a c e m e n t o f COOH a l k y l - s u b s t i t u t e d amino l o n g and s h o r t s p a c i n g (2- o r 4 - C H s ) a d d i t i o n a l NH group f

2

£

1.0 f o r R - c o n f i g u r a t i o n i n c h i r a l 1.0 f o r u n u s u a l or "bad" f e a t u r e s

38

analogs

A r e a s o f study a r e d i v i d e d i n t o 1. B r a i n S t u d i e s , 2. S p i n a l Cord S t u d i e s , 3. Non-Competitive B i n d i n g S t u d i e s , 4. C e l l u l a r Uptake Studies. Brain

Studies

Human. D i s p l a c e m e n t o f H-GABA from 7 d i f f e r e n t r e g i o n s o f human b r a i n t i s s u e by GABA and 8 o t h e r GABA-ergic compounds p r o v i d e s a p o w e r f u l o v e r v i e w o f the GABA b i n d i n g s i t e ( 2 4 ) . Despite s e v e r a l f o l d v a r i a t i o n s i n the ICSO's f o r these r e g i o n s , a l l p I C 5 0 s a r e c o l i n e a r ( r - 0.938-0.983). The S u b s t a n t i a N i g r a c o r r e l a t e s lowest (r - 0.938-0.966), w h i l e the r i c h e s t GABA b r a i n r e g i o n , C e r e b e l l a r C o r t e x , c o r r e l a t e s h i g h e s t w i t h the o t h e r s ( r » 0.946-0.983). More­ o v e r , a l l p r o v i d e e q u i v a l e n t SAR e q u a t i o n s c o n t a i n i n g the same f a c ­ tors with s i m i l a r loadings. The f o l l o w i n g e x p r e s s i o n f o r b i n d i n g a t the Caudate Nucleus i s t y p i c a l o f the 9 e q u a t i o n s . f

pIC50(CN) - -1.35 T « 6.18 n 9

IRNG - 0.74 2.28 r - 0.985

IHETS + 0.88 4.02 s - 0.251

IDB

- 2.93 IME 10.77 F « 32.56

+

7.76

In a r e l a t e d s t u d y c o n t a i n i n g h y d r o x y l a t e d and s u l f o n i c a c i d a n a l o g s , we a g a i n f i n d e x c e l l e n t a d d i t i v i t y o f s u b s t r u c t u r a l f e a t u r e s (25). Data a r e membranes. pIC50 =• 0.813 T « 2.15 n - 11

f o r i n h i b i t i o n o f ^H-GABA b i n d i n g to human c e r e b e l l a r

IRNG - 1.20 13OH - 0.770 IS03 - 3.16 ISHT - 4.25 INSUB + 2.60 2.16 6.43 10.52 r - 0.981 s - 0.522 F - 25.98

7.78

Other s t u d i e s on human c e r e b e l l a r membranes d e a l w i t h c l o s e l y r e l a t e d a n a l o g s d i f f e r i n g m o s t l y by m e t h y l s u b s t i t u t i o n i n the 2,3and 4 - p o s i t i o n o f GABA (26,27). The SAR e q u a t i o n s show n e a r l y p e r ­ f e c t a d d i t i v i t y o f the p o s i t i o n a l m e t h y l e f f e c t s , a l l w i t h s t r o n g n e g a t i v e c o e f f i c i e n t s (-1.55 to - 2 . 5 1 ) .

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

19.

M A G E E & KING

285

Binding at 4-Aminobutyric Acid Receptor Sites

Mouse and Rat. D i s p l a c e m e n t 3H-GABA from a mouse b r a i n membrane p r e ­ p a r a t i o n shows a d d i t i v e r e s p o n s e s o f s u b s t r u c t u r e s s i m i l a r to those o b s e r v e d i n the human b r a i n ( 2 8 ) .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

pICSO « -1.94 T « 6.18 n - 14

ISL - 0.98 IS03 - 1.05 IRNG - 2.71 INH2 - 1.67 I0H + 2.12 2.71 6.58 2.70 r - 0.962 s - 0.536 F 19.70

7.07

B i n d i n g s t u d i e s i n r a t b r a i n p r e p a r a t i o n s i n v o l v e a broad diver­ s i t y o f compounds and r e v e a l a v a r i e t y o f i n t e r e s t i n g e f f e c t s . In­ h i b i t i o n o f %-GABA b i n d i n g by O l s e n and co-workers shows the c r i t i c a l i t y o f the 4-carbon s p a c i n g o f GABA as w e l l as s e n s i t i v i t y to m e t h y l s u b s t i t u t i o n alpha to the amino group ( 2 9 ) . pIC50 - -2.37 T 7.16 n - 14

ISL - 1.05 I4ME + 3.49 r * 0.909

6.72

s - 0.481

F - 26.32

Another study c o n f i r m s the s p a c i n g c r i t i c a l i t y and d i f f e r e n t n e g a t i v e c o n t r i b u t i o n s o f R- and S - c o n f i g u r e d i n the 4 - p o s i t i o n ( 3 0 ) . D i f f e r e n t n e g a t i v e e f f e c t s f o r — groups a r e a l s o a p p a r e n t . Data a r e f o r d i s p l a c e m e n t o f rat b r a i n receptor s i t e s .

shows m e t h y l groups 2- and 3-0H 3 H-GABA i n

pIC50 « -1.67 I4ME(R) - 2.14 I4ME(S) - 1.53 ILNG - 1.69 I20H - 0.84 BOH + T « 3.40 3.75 3.25 3.13 2.10 n = 13 r - 0.890 S « 0.576 F = 5.33

6.61

Bovine. A s i n g l e s t u d y o f b o v i n e c o r t e x membranes by K r o g s g a a r d L a r s e n and co-workers p r o v i d e s some comparison w i t h human, mouse and r a t p r e p a r a t i o n s ( 3 1 ) . The s e l e c t i o n o f compounds does not r e v e a l much d e t a i l , but r e a f f i r m s the importance o f o p t i m a l s p a c i n g . Data a r e f o r c o m p e t i t i v e d i s p l a c e m e n t o f H-GABA and H-P4S. The p I C 5 0 s a r e c o l i n e a r ( r * 0.963). 3

pIC50(GABA) « 0.67 T 2.68 n - 13

IHETO - 1.98 ISL + 6.90 7.92 r - 0.931 s - 0.377

pIC50(P4S) 0.43 IDB - 1.99 ISL + T « 1.16 4.46 (not s i g n i f i c a n t ) n - 14 S p i n a l Cord

3

r - 0.820

f

F - 32.73

6.88

s - 0.680

F -

11.26

Studies

Cat. K r o g s g a a r d - L a r s e n and co-workers p r e s e n t a d a t a s e t composed p r i n c i p a l l y o f h e t e r o c y c l i c and c y c l i c GABA-ergic a n a l o g s ( 3 1 ) . Data are IC50*s f o r b i n d i n g to r e c e p t o r s i t e s i n c a t s p i n a l c o r d . Nega­ t i v e e f f e c t s f o r the i s o t h i a z o l e and a l i c y c l i c r i n g s a r e c l e a r l y defined.

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

PROBING BIOACTIVE MECHANISMS

286 pIC50 « T n -

-1.35 2.44 14

IHETS - 1.21 3.00 r - 0.867

IRNG - 2.67 ING + 2.01 4.81 s » 0.710 F 10.08

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

Rat. E q u i m o l a r p o t e n c i e s f o r d e p o l a r i z a t i o n o f d o r s a l ( D R ) and v e n ­ t r a l (VR) r o o t f i b e r s o f the r a t s p i n a l c o r d have been measured f o r a v a r i e d s e t o f GABA-ergic compounds ( 3 2 ) . There a r e too many f e a t u r e s i n the d a t a s e t ( 6 ) f o r h i g h c o r r e l a t i o n o f non-IC50 d a t a , but the dominant f e a t u r e s a r e e a s i l y e x t r a c t e d . LogVR and LogDR a r e c o l i n e a r (r « 0.891). LogDR T « n -

-0.72 2.76 12

IRNG - 1.27 I30H + 0.306 2.70 r - 0.748 s « 0.429

LogVR « T -

-0.73 2.70

IRNG - 1.15 I30H + 0.260 2.35

12

r - 0.724

n -

Non-Competitive B i n d i n g

s * 0.447

F -

5.72

F -

4.95

Studies

B i n d i n g a t the GABA complex r e c e p t o r s i t e has

an a l l o s t e r i c

effect

o J

f

on the b i n d i n g o f H-diazepam a t i t s r e c e p t o r s i t e . EC50 s of diaze­ pam b i n d i n g have been measured f o r a v a r i e d s e t o f c y c l i c and a c y c l i c GABA-ergic compounds i n r a t f o r e b r a i n membranes ( 3 3 ) . The c o r r e l a ­ t i o n shows n e g a t i v e c o n t r i b u t i o n s by m e t h y l groups a l p h a to amino and e s p e c i a l l y those i n the R - c o n f i g u r a t i o n . These two e f f e c t s a r e c o n ­ founded i n the a n a l y s i s i n t h a t R-Me groups a r e c o u n t e d t w i c e . The o t h e r major e f f e c t i s the v e r y weak r e s p o n s e of c y c l i c v s . a c y c l i c s t r u c t u r e s (IRNG). pEC50 -2.54 IRNG - 1.73 IME - 1.60 IME(R) + 5.48 T = 6.97 3.94 3.65 n 11 r - 0.952 s - 0.506 F « 22.75 In a n o t h e r s t u d y o f n i n e o p t i c a l isomers o f s u b s t i t u t e d GABA, c r o t o n a t e and muscimol a n a l o g s , I C 5 0 s were measured f o r c o m p e t i t i v e b i n d i n g a g a i n s t H-GABA, H-THPI and H-P4S ( 3 4 ) . These were compared w i t h the n o n - c o m p e t i t i v e ( s t i m u l a t e d ) EC50 b i n d i n g o f H-diazepam. A l l p I C 5 0 s and the pEC50 were c o l i n e a r ( r - 0.905-0.993), d e s p i t e two o r d e r s o f magnitude i n the c o n c e n t r a t i o n r e s p o n s e . Correlations a r e weak ( r • 0.571-0.696) f o r t h i s s e t (n * 9 ) , but the major nega­ t i v e f a c t o r i s the double-bond r i g i d i t y o f the c r o t o n a t e s and m u s c i mols ( c o e f f i c i e n t s » -0.77 to -1.46). 1

3

3

3

3

f

B r a i n and

C e l l u l a r Uptake

Studies

E x t r a s y n a p t i c r e c e p t o r s i n the s u p p o r t i v e g l i a l c e l l s o f the CNS a r e r e s p o n s i b l e f o r the uptake ( s y n a p t i c gap c l e a r a n c e ) and t r a n s p o r t o f GABA t o t e r m i n a t e the n e u r o t r a n s m i s s i o n . These r e c e p t o r s i t e s d i f f e r markedly from the GABA^ s i t e s i n SAR response to GABA a n a l o g s . Other uptake s i t e s w i t h i n the n e u r o n a l s t r u c t u r e appear to d i f f e r from those i n the g l i a l c e l l s a c c o r d i n g t o c o m p a r a t i v e s t u d i e s by Schousboe

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

19.

MAGEE

287 Binding at 4-Aminobutyric Acid Receptor Sites

& KING

and co-workers ( 3 5 ) . Data a r e f o r a c y c l i c and c y c l i c GABA a n a l o g s w i t h uptake measured i n c u l t u r e d a s t r o c y t e s and mouse b r a i n m i n i slices. The p I C 5 0 s show o n l y moderate c o l i n e a r i t y ( r • 0.780), though t h e r e g r e s s i o n e q u a t i o n s show s i m i l a r f a c t o r s . f

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

pIC50(mouse b r a i n ) T n pIC50(astrocytes) « T « n -

-1.10 I4ME + 0.649 IR - 0.585 IRNG + 4.16 4.18 2.18 2.22 12 r - 0.856 s - 0.416 F - 7.31 -1.21 I4ME + 0.743 IR + 3.98 2.84 1.53(weak) 12 r - 0.699 s - 0.700

F - 4.29(weak)

R i n g s t r u c t u r e s and 4-methyl groups a r e n e g a t i v e f a c t o r s w h i l e the R - c o n f i g u r a t i o n i s f a v o r e d f o r b o t h c y c l i c and a c y c l i c a n a l o g s . The c o r r e l a t i o n s a r e weak t o modest but have t h e m e r i t o f b e i n g t h e o n l y a n a l y z a b l e s e t s known t o u s . S t r u c t u r a l c o m p o s i t i o n i n f i v e o t h e r d a t a s e t s was such t h a t no c l e a r d e d u c t i o n s were p o s s i b l e (28, 36-39). Summary o f S u b s t r u c t u r a l B i n d i n g E f f e c t s 3

B r a i n and S p i n a l Cord (CNS). In the b i n d i n g o f H-GABA t o human c e r e b e l l a r membranes, r i n g - c l o s e d a n a l o g s show enhanced p I C 5 0 s ( c o e f f i c i e n t « 0.813). T h i s i s an e x c e p t i o n as a l l o t h e r c o n t r i b u ­ tions are negative. The p r e s e n c e o f a c o n j u g a t e d double bond i s p o s i t i v e i n t h e Caudate N u c l e u s f o r H-GABA b i n d i n g (IDB - 0.88) as i s the o x a z o l i n e h e t e r o - r i n g i n b o v i n e c o r t e x membranes (IHET = 0.67). These s m a l l p o s i t i v e e f f e c t s a r e opposed by g e n e r a l l y l a r g e n e g a t i v e binding e f f e c t s i n a l l other f a c t o r s . f

3

IRNG IHETS IME, I4ME INSUB I20H, I30H INH2 IS03 ISHT, ILNG, I S L Non-Competitive IRNG IME, IME(R) -

-0.72 -0.74 -1.05 -4.25 -0.84 -2.71 -0.77 -1.53

t o -1.35(4) t o -1.35(2) t o -2.93(4)

(#) o f c o e f f i c i e n t s

t o -1.69(6) t o -0.93(2) t o -3.16(7)

Binding -2.54 -1.60 t o -1.73(2)

C e l l u l a r Uptake IRNG I4ME IR »

-0.585 -1.10 t o -1.21(2) 0.649 - 0.743(2) -

(R-configuration i s favored)

Conclusions. The f a c t o r s o u t l i n e d i n the Summary o f S u b s t r u c t u r a l E f f e c t s l e a d t o a number o f b i n d i n g s i t e c o n c l u s i o n s .

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

288

PROBING BIOACTIVE MECHANISMS

The r e c e p t o r s i t e i s c l e a r l y asymmetric. C h i r a l i t y i s important, b o t h by s i m p l e i n s p e c t i o n o f c a s e s and s u p p o r t e d by d i s c r e t e subs t r u c t u r a l c o n t r i b u t i o n s . The R - c o n f i g u r a t i o n f o r b o t h c y c l i c and a c y c l i c a n a l o g s i s f a v o r e d a t uptake s i t e s . I f we assume the amino and c a r b o x y l groups t o b i n d s p e c i f i c a l l y , then the c a v i t y between these s i t e s i s most l i k e l y a f l e x i b l e , narrow gap. Congeners are p e r m i t t e d to b i n d ( f l e x i b i l i t y ) , but a l l s u b s t i t u e n t s from the 2- t o 4 - p o s i t i o n reduce the b i n d i n g energy ( s t e r i c o b s t r u c t i o n ) . T h i s i s t r u e even f o r s m a l l H-bonding groups l i k e NH and OH. There a r e no H-bonding s i t e s i n the gap, hence these groups e x e r t a s i m p l e s t e r i c e f f e c t i n the same sense as a CH3~group. The v a l l e y between the amino and c a r b o x y l b i n d i n g s i t e s i s c l e a r l y h y d r o p h o b i c . It i s pro­ b a b l e t h a t the b i n d i n g o f muscimol i s s p e c i a l and o c c u r s w i t h the r i n g i n a v e r t i c a l , r a t h e r than f l a t o r i e n t a t i o n . The r e l a t i v e weak­ ness o f t h i o m u s c i m o l b i n d i n g s u g g e s t s a d i f f e r e n c e i n a c i d i t y r a t h e r than a s t e r i c e f f e c t f o r a m a r g i n a l l y l a r g e r r i n g .

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

2

The f a c t t h a t s u l f o n i c a n a l o g s b i n d w i t h r e s p e c t a b l e a f f i n i t y s u g g e s t s two f e a t u r e s about the b i n d i n g mechanism. F i r s t , t h e r e a r e s t e r i c r e q u i r e m e n t s f o r the a c i d group ( 1 - p o s i t i o n ) s i m i l a r t o those f o r the 2- to 4 - p o s i t i o n s . The b i n d i n g s i t e f o r the a c i d group a l s o l i e s i n a r e s t r i c t e d c a v i t y . Second, z w i t t e r i o n i c b i n d i n g i s assured f o r a l l a n a l o g s as the s u l f o n i c d e r i v a t i v e s a r e 100.00% z w i t t e r i o n i c w i t h no measurable e q u i l i b r i a to n e u t r a l s p e c i e s . T h i s would suggest t h a t b i n d i n g i s by i o n - p a r i n g w i t h no a c t i v a t i o n energy, much l i k e acetylcholine. D i f f u s i o n - c o n t r o l l e d i o n - p a i r i n g may be the o n l y p r o ­ c e s s f a s t enough f o r a n e u r a l r e s p o n s e . Another f a c t o r r e l a t i n g to the b i n d i n g mechanism i s the aminoc a r b o x y l a t e s p a c i n g , a f a c t o r t h a t i s s t r o n g l y n e g a t i v e whenever the s p a c i n g i s too s h o r t [(CH2)2l or too l o n g [ ( ^ 2 ) 4 ] . I t i s important to n o t e t h a t b i n d i n g i s not p r e v e n t e d i n these c a s e s , but o n l y weak­ ened. T h i s f a c t , and the many c o l i n e a r i t i e s o b s e r v e d , s u p p o r t s an i o n - p a i r i n g mechanism t h a t depends o n l y on a d i s t a n c e f u n c t i o n . Ion p a i r s a r e i n t a c t out to 5 A i n n o n - p o l a r s o l v e n t s such as benzene. I t i s r e a s o n a b l e then to assume t h a t such p a i r s a r e i n t a c t a t 2 % d i s t a n c e s on a l i p o p h i l i c enzyme s u r f a c e . T h i s degree o f l a t i t u d e would e x p l a i n the p o s i t i v e but weaker b i n d i n g o f a l l p o o r l y spaced analogs. There i s n o t h i n g i n t h i s study t h a t p r o v i d e s a l e a d to h i g h e r GABA-ergic a c t i v i t y as v i r t u a l l y a l l s u b s t r u c t u r a l f a c t o r s a r e nega­ t i v e i n b i n d i n g energy. The message may s i m p l y be t h a t t h e r e i s no point i n searching f o r b e t t e r analogs. R a t h e r , the d i r e c t i o n o f r e s e a r c h s h o u l d be toward d e g r a d a b l e pro-GABA or -muscimol a n a l o g s t h a t e f f i c i e n t l y l o a d the drug i n t o the CNS. Acknowledgment. T h i s study was s u p p o r t e d by the C h e m i c a l Systems L a b o r a t o r y (Aberdeen P r o v i n g Ground, MD) under C o n t r a c t No. DAAD0586-M-Q973. We w i s h to thank P r o f e s s o r John H. B l o c k o f Oregon S t a t e U n i v e r s i t y f o r h i s e x c e l l e n t G A B A - r e l a t e d l i t e r a t u r e s e a r c h under a subcontract.

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

19.

MAGEE & KING

Binding at 4-Aminobutyrk Acid Receptor S i t e 289

Literature Cited 1. 2. 3. 4. 5.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

6. 7. 8. 9. 10. 11. 12. 13. 14.

15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.

Bicuculline, Merck Index, Tenth Edition, No. 1214, p 171. Picrotoxinin, Merck Index, Tenth Edition, No. 7297, p 1069. Krogsgaard-Larsen, P. J . Med. Chem. 1981, 24, 1377. Gavish, M.; Snyder, S. H. Nature 1980, 287, 651. Frere, R. C . ; MacDonald, R. L.; Young, A. B. Brain Res. 1982, 244, 145. Falch, E; Krogsgaard-Larsen, P. J . Neurochem. 1982, 38, 1123. Jordan, C. C.; Matus, A. I.; Piotrowski, W.; Wilkinson, D. J . Neurochem. 1982, 39, 52. Napias, C . ; Bergman, M. O.; Van Ness, P. C.; Greenlee, D. V.; Olsen, R. W. Life Sci. 1980, 27, 1001. Gardner, C. R.; Klein, J.; Grove, J . Eur. J. Pharmacol. 1981, 75, 83. Greenlee, D. V.; Van Ness, P. C.; Olsen, R. W. Life Sci. 1978, 22, 1653. Toffano, G.; Guidotti, A; Costa, E. Proc. Natl. Acad. Sci. USA 1978, 75, 4024. Triton X-100(Octoxynol), Merck Index, Tenth Edition, No. 6601, p 971. Johnston, G. A. R.; Skerritt, J . H.; Willow, M. In Problems in GABA Research, Okada, Y . ; Roberts, E . , Eds.; Excerpta Medica, Amsterdam-Oxford-Princeton, 1982, 293-301. Krogsgaard-Larsen, P; Falch, E . ; Peet, M. J.; Leah, J . D.; Curtis, D. R. in CNS Receptors: From Molecular Pharmacology to Behavior, Mandel, P.; DeFeudis, F. V . , Eds.; Volume 37, Raven Press, New York, 1983, 1-13. Krogsgaard-Larsen, P. In Glutamine, Glutamate and GABA in the Central Nervous System, Hertz, L . ; Kvamme, E.; McGeer, E. G.; Schousboe, A. Eds.; Alan R. Liss, Inc., New York, 1983, 537-557. Krogsgaard-Larsen, P.; Hjeds, H . ; Curtis, D. R.; Lodge, D.; Johnston, G. A. R. J . Neurochem. 1979, 32, 1717. Krogsgaard-Larsen, P. Mol. Cell Biochem. 1980, 31, 105. Ferrero, P.; Guidotti, A.; Costa, E. Proc. Natl. Acad. Sci. USA 1984, 81, 2247. DeFeudis, F. V . ; Ossola, L . ; Mandel, P. Biochem. Pharmacol. 1979, 28, 2687. Enna, S. J . In The GABA Receptors, Enna, S. J . Ed.; The Humana Press, Clifton, New Jersey, 1983, Chapter 1. Andrews, P. R.; Johnston, G. A. R. Biochem. Pharmacol. 1979, 28, 2697. Block, J . H . ; King, J . W. In Proceedings of the 1986 Scientific Conference on Chemical Defense Research, Vol. 2, 1051. Olsen, R. W. J. Neurochem. 1981, 37, 1. Enna, S. J.; Ferkany, J . W.; Krogsgaard-Larsen, P. In GABA­ -Neuro-Transmitters; Krogsgaard-Larsen, P.; Scheel-Kruger, J.; Kofod, H . , Eds.; Academic Press, New York, 1979, 191-200. Breckenridge, R. J.; Nicholson, S. H . ; Nicol, A. J.; Suckling, C. J.; Leigh, B.; Iversen, L. J . Neurochem 1981, 37, 837. Iversen, L. L.; Spokes, E . ; Bird, E. In Neurotransmitters, Volume 2; Simon, P., Ed.; Pergamon Press, Oxford, New York, 1979, 3-10.

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.

290 27. 28. 29. 30. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on March 30, 2016 | http://pubs.acs.org Publication Date: November 14, 1989 | doi: 10.1021/bk-1989-0413.ch019

31. 32. 33.

34. 35. 36. 37. 38.

39.

PROBING BIOACTIVE

MECHANISMS

Nicholson, S. H.; Suckling, C. J.; Iversen, L. L. J. Neurochem. 1979, 32, 249. Roberts, E. In Neurotransmitters, Volume 2; Simon, P., Ed.; Pergamon Press, Oxford, New York, 1979, 43-65. Olsen, R.W.; Ticku, M. K.; Van Ness, P. In GABA-Neurotransmitters; Krogsgaard-Larsen, P.; Scheel-Kruger, J.; Kofod, H . , Eds.; Academic Press, New York, 1979, 165-178. Honore, T . ; Hjeds, H . ; Krogsgaard-Larsen, P.; Christiansen, T.R. Eur. J. Med. Chem. 1978, 13, 429. Krogsgaard-Larsen, P.; Jacobsen, P.; Falch, E. In The GABA Receptors; Enna, S. J., Ed.; The Humana Press, Clifton, New Jersey, 1984, 149-176. Allan, R. D.; Evans, R. H . ; Johnston, G. A. R. Br. J. Pharm. 1980, 70, 609. Braestrup, C . ; Nielsen, M.; Krogsgaard-Larsen, P.; Falch, E. In Receptors for Neurotransmitters and Peptide Hormones; Pepeu, G.; Kuhar, M. J.; Enna, S. J., Eds.; Raven Press, New York, 1980, 301-312. Krogsgaard-Larsen, P.; Falch, E . ; Jacobsen, P. In Actions and Interactions of GABA and Benzodiazepines; Bowery, N. G . , Ed.; Raven Press, New York, 1984, 109-132. Schousboe, A . ; Hertz, L.; Larsson, O. M.; Krogsgaard-Larsen, P. In GABA Neurotransmission, Brain Research Bulletin, Vol. 5, Suppl. 2, 1980, 403-409. Larsson, O. M.; Krogsgaard-Larsen, P.; Schousboe, A. J. Neuro­ chem. 1980, 34, 970. Schousboe, A . ; Larsson, O. M.; Hertz, L . ; Krogsgaard-Larsen, P. In Amino Acid Neurotransmitters; DeFeudis, F. V . ; Mandel, P., Eds.; Raven Press, New York, 1981, 135-141. Johnston, G. A. R.; Allan, R. D.; Kennedy, S. M. E.; Twitchin, B. In GABA-Neurotransmitters; Krogsgaard-Larsen, P.; ScheelKruger, J.; Kofod, H . , Eds.; Academic Press, New York, 1979, 149-164. Brehm, L.; Krogsgaard-Larsen, P.; Jacobsen, P. In GABA-Neuro­ transmitters; Krogsgaard-Larsen, P.; Scheel-Kruger, J.; Kofod, H., Eds.; Academic Press, New York, 1979, 247-262.

RECEIVED June 14, 1989

Magee et al.; Probing Bioactive Mechanisms ACS Symposium Series; American Chemical Society: Washington, DC, 1989.