Raman spectroscopy - ACS Publications - American Chemical Society

Mass Spectrom. 1991,. 20, 186-190. (K24) Jarvis, J. K.;Pearsall, D.; Ollner, C. M.; Schoeller, D. A. Med. Sci. Sports Exerc., In press. (K25) Murray, ...
0 downloads 0 Views 3MB Size
Anal. Chem. lQQ2,64, 502R-513R (K21) R e 4 S.; Shackleton, C.; Wu, K.; Kaempfer, S.; Hellerstein, M. K. 8lomed. EnVLon. Meass Snectrom. 1990. 79, 535-540. _ .._ (K22) Picket?, A.; Overkamp, D.;Renn, W.; Lieblch, H.; Eggsteln, M. 8/01. Mess Spectrom. 1991, 2 0 , 203-209. (K23) Tayek, J. A.; Bergner, E. A.; Lee, W. P. 8/01.Mess Spectrom. 1991, 20, 186-190. (K24) Jarvls, J. K.; Parsall, D.; Ollner, C. M.; Schoeller, D. A. Med. Sci. Spwb Exert., In press. (K25) Murray, R. D.;Boutton, T. W.; Kleln, P. D.;Gilbert, M.; Paule, C. L.; Maclean, W. C.. Jr. Am. J. Clln. Nub.. 1990, 57. 59-66. (K26) Llfschk, C. H.; Torun, 6.; Chew, F.; Boutton, T. W.; Garza, C.; Klein, P. D. J. Pedktr. 1901, 778, 526-530. (K27) Normand, S.; Pachiaudl, C.; Khalfallah, Y.; Guliluy, R.; Mornex, R.; Rbu, J. P. Am. J. Clln. Nub.., In press. (K28) Korlet, J.; Gross, P.; Debry. 0.; Royer, M. J. 8/01.Mass Spectrom. 1881, 2 0 , 777-702. (K29) . . Proseer, S. J.; Brookes, S. T.; Linton, A.; Preston, T. Bld. Mess Spectrom. 1981, 20, 724-730. (K30) Klen, C. L.; Chang, D. H.; Murray, R. D.; Ailabounl, A,; Kepner, J. 8kmed. Envhon. Mass Spectrom. 1990, 79, 554-558. (K31) Leitch, C. A.; Jones, P. J. H. 8iol. Mess Spectrom. 1991, 2 0 , 392-398. (K32) Blackham, M.; Cesar, D.; Park, 0.4.; Vary, T.; Wu, K.; Kaempfer, S.; Shackleton, C. H. L.; Hellersteln, M. K. 8bcbem. J., In press. (K33) Hellerstein, M. K.; Wu, K.; Kaempfer, S.; Kletke, C.; Shackleton, C. H. L. J. Blol. Chem. 1901, 266, 10912-10919. (K34) Park. 0.4.; Cesar, D.;Falx, D.; Wu. K.; Schackleton, C. H. L.; Hellersteln, M. K. 8&chem. J., in press. (K35) Hellersteln, M. K.; Kletke, C.; Kaempfer. S.; Wu, K.; Shackleton, C. H. L. Am. J. Physlol. 1991, 267, E479-E486. ~

(K36) Hellerstein. M. K.; Chrlstlansen, M.; Kaempfer, S.;Kktke, C.; Wu, K.; Reid. J. S.; Mulligan, K.; Heilerstdn, N. S.; Shackleton, C. H. L. J . C h . Invest. 1981, 87, 1841-1852. (K37) Wong, W. W.; Hachey, D. L.; Feste, A.; LeggHt, J.; Clarke, L. L.; Pond, W. G.; Klein, P. D. J. L w Res. 1991. 3 2 , 1049-1056. (K38) Jones, P. J. H.; Schoeller, D. A. J. UpH Res. 1990. 3 7 , 667-673. (K39) Casper, R. C.; Schoeller, D. A.; Kushner, R.; Hnllicka, J.; odd,S. T. Am. J . Clln. Nub.. 1981, 53, 1143-50. (K40) Esteban. N. V.; Yergey. A. L. Sterdds 1990. 55, 152-158. (K41) Kraan, G. P. 6.; Drayer, N. M. Sterolde 1990, 55, 159-164. (K42) Chapman, T. E.; Kraan, G. P. 6.; Nagel, 0. T.; Wolthers, B. (3.; Drayor, N. M. J. SteroMBlOchem. Mol. W .1991, 38, 489-496. (K43) Shackleton, C. H. L.; Fallck, A. M.; Green, B. N.; Witkowska, H. E. J. Chrometogv. 1991, 562. 175-190. (K44) Green, 8. N.; Oliver. R. W. A.; Falick, A. M.; Shackleton. C. H. L.; Roitman, E.; Wkkowska, H. E. I n Wo&&xl Mess Specfromeby; Burlingame, A. L., McCloskey, J. A., Eds.; E l s e v k Amsterdam, 1990 pp 129- 146. (K45) Fallck, A. M.; Shackleton, C. H. L.; Green, B. N.; Wkkowska, H. E. RapU Commun. Mass Spectrom. 1990, 4, 396-400. (K46) Falick. A. M.; Witkowska, H. E.; Lubln, B. H.; Nagel, R. L.; Shackleton. C. H. L. I n Techniques In Proteln Chemistry I I ; Vlllafranca. J. J., Ed.; Academic Press: New York, 1991; pp 557-565. (K47) Prome, D.; Blouquit, Y.; Ponthus, C.; Prome, J.C.; Rosa, J. J. 8/01. Chem. 1991, 266, 13050-13054. (K48) Wkkowska, H. E.; Lubln, B. H.; Beuzard, Y.; Baruchel, S.; Esseltine, D. W.; Vlchinsky, E. P.; Kleman, K. M.; BardakdJlanMlchau.J.; Plnkoskl, L.; Cahn, S.; Roitman, E.; Green, 8. N.; Fallck. A. M.; Shackleton, C. H. L. N. Engl. J. Med. 1991, 325, 1150-1154.

Raman Spectroscopy D. L. Gerrard' and J. Birnie The British Petroleum Company PLC, BP Research Centre, Chertsey Road, Sunbury-on- Thames, Middlesex, England

The period of this review is from late 1989 to late 1991. In this period nearly 6000 papers have been published in the scientific literature, dealing with all as cta of the theory and application of Raman spectroscopy. $e rapid growth in the number of publications which occurred in the 197Oa and 1980s has now slowed down, and the past 2 years have actually seen a slight decrease since the previous review in this series (1). This reflecta the fact that some traditionally productive areas are ieldin very little new information and some areas of stud; whic! promised to be fruitful have not realized their early promise. Furthermore, the technique in general is now a mature s ectroscopic technique whose strengths and weaknesses Eave been very fully explored, althou h recent instrumental developments, notably in the area of near-infrared-excited Fourier transform Raman spectroscopy, promise a further major expansion in the application of the techni ue. It is still the case that the great ma'ority of pa ers publis\ed are of a highl academic nature andhave very ittle analytical relevance. J h e technique is still not as widely used by industrial analysts as it should be, and unfortunately many of the wcalled lndustrial applications, particularly those relat' to on-line analysis, appearing in the literature are propose by groups with little appreciation of the problems of industrial analysis or of the alternative methods available. If Raman spectroscopy is to be used effectively in an industrial environment, and it undoubtedly has an important role to pla in this area, it has to be shown to be better in terms of speed: accuracy, and/or cost than alternative techniques. Too many of the applications published in the past 5 years or so have merely shown that it is capable of undertaking the same analyses as those already performed adequately by other analytical techniques. Not enough attention is being paid to the real strengths afforded by the Raman effect, notably ita capability for studying systems in situ under nonambient conditions, the use of fiber optics for analysis in "hostile" environments, and the high degree of spatial resolution offered by the Raman microprobe. Nonetheless, Raman spectroscopy is still a very active analytical technique, and although it is

"li

502 R

of great value in ita own right, it is also becoming useful when used in combination with other techniques, notably in the B ~ W L of microscopy, kinetics, and the qualitative, quantitative, and mor hological analysis of polymers. This article covers the pubished papers that are relevant to the analytical chemist, and hence the approach adopted has necessarily been highly selective. There are areas of study that have produced large numbers of papers, very few of which have been of s analytical interest. In these cases the reader is re erred to appropriate review articles which are detailed in this section. In the past 2 years the first book to appear for some time on the practice of Raman spectroscop has been produced (2). Reports have appeared on the metho& and application of the technique (3,4) the rinciples of linear and nonlinear techniques (5), recent (67and predicted future (7)trends, and theoretical aspects (8). The dramatic upsurge in interest in near-infrared-excited Fourier transform Raman s ectroscopy is reflected in several reviews covering instrument fevelopment and the use of fiber optica (9, IO),inorganic and o anometallic studies (111, possible future advances (121, x e study of polymeric biomaterials and delivery systems (13),ita use in an industrial environment 14), and studies of materials and compounds of biolo i d importance (15). Other aspects of Fourier transform (FSI') Raman spectroscopy which have been reviewed have included its potential for use in rocess analysis (16),pol eric studies (19,qualitative anfquanthe specific advantages of using near titative analysis infrared excitation with respect to both FT and conventional dispersive systems (19),and FT Raman spectroscopy in the analysis of polypeptides (20). Other areas of application of Raman spectroscopy which have been reviewed during the period of this review have included the analysis of olycyclic aromatic compounds @I), the study of molecules agorbed on solid surfaces (22,231, the use of Raman spectroscopy in mineralogy and material science (24), the study of surfactant a gregates in solution and on and the use of the techni ue for studyin adsorbates (W), surfaces (BXB). s am an spectroscopy is nowBeing used m u g

Pifi-t

9

E),

0003-2700/92/030~502R~lQ.QQ~Q 0 1992 American Chemical Society

RAMAN SPECTROSCOPY

Professor Don L. Goward Is the Research Associate responsible for vibrational spectroscopy at the BP Research Centre at SUI+ bury-on-Thames. He received his Ph.D. degree from the City University, London, and joined BP In 1970. He became involved in the industrial applications of Raman spectroscopy in 1972, and since that time the BP Raman group has expanded into many areas of application and includes FT-Raman and tunable pulsed laser systems. Prof. Gerrard’s areas of current activity Include resonance and surface enhanced techniques, the study of catalysts, polymers, composltes, and semiconductors. He is also active In the application of Raman techniques to mechanistic and kinetic studies of reacting systems, especially in situ studies at elevated temperatures and pressures, using specialized cells and fiber optics. Dr. Joanna Blmk forms part of the Raman f spectroscopy group at the BP Research Centre at Sunburyon-names. She received her Applied Chemistry degree from Newcastle Polytechnic in 1985. Then as a research assistant she used Raman microscopy for the measurement of stress distributions In corrosion scales, receiving her Ph.D. in 1989. She joined BP in 1988 specializing In Raman microscopy. Dr. Birnle’s current interests Include the application of Raman microscopy and other microanalytical techniques for problem soking particularly relating to polymers, the industrial applications of microline focus spectrometry (MiFS), including catalyst studies, and the use of in situ Raman spectroscopy to follow reaction kinetics.

more frequently for addressing complex analytical problems, where its intrinsic advantages can be fully exploited. This is reflected in several of the review articles, which include the analysis of surfactants, micelles, and model membranes in aqueous media (29),the in situ study of chemical vapor deposition processes (30),and the use of Raman techniques for stress measurements (31). The technique of Hadamard transform m a n spectroscopy has been slow to prove itself of value to the analytical chemist, but a recent review (32) suggests that the technique is now a useful analytical tool, and it is also being used to study biological systems (33). The Raman effect has proved useful for many years for the analysis of fibers, both organic and inorganic, and this application has been reviewed (34,35). Analysis of polymers has always been a strength of the Raman technique, and in particular it has been valuable for crystallinity studies (36). Another area of application which has traditionally proved amenable to study by a ran e of Raman techniques is combuetion diagnostics ( 3 9 , a n t t h i s has now been extended to diagnostics of industrial chemical processes (38). Raman spectroscopy is also particularly applicable to inorganic systems, and its use in this area has been reviewed (39). Other topics in the area of inorganic chemistry which have been the subject of review articles include in situ catalysis studies (40),mineralogy and geochemistry (41),and zeolites (42). Other review articles relating to semiconductors, superconductors and the various forms of carbon are discussed separately below. Other areas of interest which have been reviewed include the application of Raman spectroscopy in an industrial laboratory (43), transient and time-resolved Raman spectroscopy (M),studies at metal surfaces (45),and low-frequency vibrations in molecules and aqueous solutions (46) Apart from the introduction, which is mainly concerned with summarizingthe wide range of review articles that have appeared over the past 2 years, this report is divided into 10 categories. The sections previously allocated separately to solids and to thin films and surfaces have now been combined because of the diffculty in many cases of making a satisfactory distinction between them. As anticipated the decrease in work relating to gases and matrix isolation has continued and so this section has been terminated, although mention should be made of reported work relating to airborne recontamination of the Three Mile Island Unit 2 Reactor Building (47),to the

study of volatiles trapped in coals (48),and to the study of Athabasca oil sands (49).

INSTRUMENTATION AND SAMPLING There is still a considerable amount of work being reported in the literature which relates to the development of spectrometers, lasers, sample handling, and photon collection/ detection. Since the last review in this series there has been, as expected, a massive increase in the use and applications of charge-coupled devices (CCD’s), and their role in Raman spectroscopy has been reviewed (50,51). Most of the CCD work reported to date has related to the visible region of the spectrum, but a device suitable for operation in the near-infrared has been described (52). Another valuable development in Raman spectroscopy,which was first reported some years ago, but has still not realized its full potential in the use of fiber optics for remote sampling, and the use of a fiber optic sampler in conjunction with a diode laser and a CCD detector has been reported (53,54). Fiber optic probes are of particular value in the near-infrared region because of the very high throughput available, and their use in near-infrared (NIR) Fourier transform (FT)Raman studies has been reported (55, 56). The potential use of fiber optic Raman systems for process control has been considered (57). A disposable protective sheath has been described for use with fiber optic probes (58),and a fiber optic based instrument for on-line Raman analysis has been developed (59). The application of such a probe to a wide range of samples has been reported (60),and the use of a fiber optic system coupled to capillary glass tubes for the analysis of liquids and solutions offers a potential for signal enhancement (61). The use of a fiber-based method to reduce background signals from samples has been reported (62). By far the most significant area of instrumentation and sampling development relates to the use of NIR excitation, particularly in conjunction with F T instrumentation. Such systems are rugged, versatile, relatively inexpensive, and do, a t least in principle, offer an opportunity for the application of Raman spectroscopy in on-line analysis/control of industrial processes. Several papers have been published which describe a range of F T Raman spectrometers, some of them being commercially available (63-69). The use of conventional Raman dispersive instrumentation in the NlR region has also been considered (70),but the current trend definitely favors the more robust and less expensive FT instrumentation, which also has superior commercial software available, notably in the area of correlation studies. The range of samples that can be studied using NIR excitation is much greater than with visible excitation, and the application of the technique has also been the subject of many papers. Fluorescence-free spectra have been obtained from a range of polymers (71,72), its use as a routine analytical tool has been described (73), and its value for analyzing materials which fluoresce when irradiated in the visible region has been demonstrated (74). Instrumentation for NIR Hadamard spectroscopy has been described and the advantages of the technique considered (75, 76). Although the technique of Hadamard transform spectroscopy has been available for some time and its advantages have been well publicized ( 7 9 , it still appears to be the preserve of only one group and has not yet made the impact on analytical Raman spectroscopy that the early work suggested it might. Other aspects of the FT technique that have been reported include the analysis of small samples (78), the use of doubled multiplexing whereby Stokes and anti-Stokes spectra may be obtained simultaneously (79),and polarization modulation (80). The practical advantages of the technique for both macro- and microsampling have been considered (81) as have signal to noise considerations (82), optimization of the sampling technique (83),and sensitivity optimization (84). A well-considered evaluation of FT Raman spectroscopy with respect to its industrial application and limitation has been published (85). Other instrumentation/sampling aspects of Raman spectroscopy worthy of note are an apparatus for analyzing organic solids at liquid helium temperature (86),a mixer/jet cell for Raman studies (89,a small cryostat (88),and spectrometer control with a PC computer (89). In this latter context it is noteworthy that software packages being supplied by instrument manufactures are now far superior to those available only a few years ago and have gone a long way toward esANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

503R

RAMAN SPECTROSCOPY

tablishing Raman spectroscopy as a versatile analytical technique. An imaging detector has been used to characterize high-temperature materials (90);a ver interesting development with potential for on-line and q d t y control application is a Raman analysis apparatus with a nondispersive filter rather than a dispersive monochromator (91), and a Raman gas monitoring system has also been reported (92).

LIQUIDS AND SOLUTIONS Much of the Raman work reported in the literature relates to studies of liquid-phasesystems, but this section is restricted to those reports that do not fit into subse uent categories. The study of chemical reactions in aerosol roplets has been reviewed (93),surface layers on iron in situ in aqueous sodium hydroxide have been identified (94), and in situ studies have also been reported for film formation on copper, silver, and zinc in an alkaline medium (95). Aqueous systems in general offer considerable scope for Raman studies, and many of these are considered se arately in the biological section. Spectra of industrial mem\ranes immersed in aqueous solution have been reported (96),and relaxation processes in liquids have been reviewed (97). Raman spectroscopy has been used to study the action of hair dyes in situ (98) and the hydration of carbohydrates (99). An interestin application which is of potential analytical importance is t i e study of wettin and fluid flow of binary liquids in porous media (100). &her studies which have been reported relate to the effect of salts on the dynamics of water, with reference to the water-additive interactions (101,102). Raman spectroscopy is a technique which lends itself very well to in situ studies in liquids, notably water, and as such is ideall suited for in situ electrochemical work (103). The electroctemical passivation of iron in alkaline solution has been reported (104),and anodic corrosion film formation on iron-molybdenum alloys has been studied (105). Another area where the particular nature of the Raman effect offers sgecific advantages is in studies relating to molten salts. Stu ies on molten systems which have been reported during the period of this review have included the diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells (106), studies of relaxation in molten nitraterr of alkaline-earthmetals (IO?'), and use as an aid to the computer simulation of vibrational dephasing in molten lithium nitrate (108). As Raman spectroscopy is becoming more widely appreciated as an analytical technique it is becoming increasingly used in conjunction with other spectroscopic, thermal, and separation methods to rovide the maximum amount of is particularly the c&4e in polymer analytical information. studies and microscopy but also applies in other areas. It has been used in combination with proton NMR measurements to study the hydrolysis of zirconium(IV) in aqueous solution (109) with mass spectrometry to identify components in fluid inclusions in rocks (110),with XPS for the investigation of anodic corrosion film formed on iron-molybdenum alloys in alkaline solution (105), and with infrared spectroscopy for studies of surfactants and micelles (111). Another promising area, where the value of Raman spectroscopy, especially with NIR excitation, is just becoming apparent is in the analysis and potentially in the quality control of commercial fuels. The use of Raman s ectroscopy to determine gas oil cetane number and cetane in&= has been reported (112) although this might arguably be better approached by conventional NIR correlation techniques. A similar type of study has been used to determine the chemical properties of gasoline, their aromatic contents, and their octane numbers (113,114). In all three cases correlation techniques were used, which are now readily available software packages from the instrument manufactures. Quantitative analysis of liquid fuel mixtures of unleaded gasoline, superunleaded asolines, and diesel fuel have been succesfully undertaken

8

TRS

7115).

SOLIDS AND SURFACES This section essential1 relates to the analysis of solid materials not covered in t i e other sections. There has been a dramatic upsurge of interest in the past 2 years in the use of Raman spectroscopy to study chemical vapor deposited (CVD)films, particularly of carbon in its various forms, but especially of b o n d . Activities relating to CVD will comprise the most significant aspect of this section of the review. The 504R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

use of Raman spectroscopy to determine the physical and chemical properties of CVD diamond has been reviewed (116, 117). A wide ran e of parameters which govern the uality of diamond films %as been investigated (118,119),an! these include the effects of noble gases on the deposition process (120),the role of heat transfer and fluid flow (121),the effect of boron doping (122, 123), the electrical conductivity as a function of the process parameters (124),and the effect of oxygen (125) and hydrogen (126). The various methods for deposition of diamond and diamond-likefilms have benefittad from Raman studies, and these include deformation by electron cyclotron resonance microwave plasmas (127,128) from ace lene-oxygen combustion flames (129),hot filament assisted VD (130,131) in microwave discharges (132-134) by laser-induced CVD (135),arc discharge lasma jet CVD (136-138), and ion beam deposition (139). &man s ectroscopy has been used to evaluate new devices for CV of diamond films (140) and to study the initial s es of deposition (141-143). Another important feature of C D is the nature of the substrate, and this has also been the subject of considerable study (144). Substrates studied have mainly related to silicon (145-148), silicon monocarbide (1491, glass (150), and boron nitride (151). The study of diamond films is an area where Raman spectroscopy has had a hly successfulapplication in its own right, and it is undoub y the single most valuable technique for this type of study. However, results are increasingly being reported which use other analytical s edrosco y techniques in conjunction with Raman studies. Fhese incfude scannin electron microscopy (152), X-ray diffraction (152),infrare (153), laser-induced fluorescence (154), photoluminescence (155),XANES (1561,transmission electron microscopy (157), cathodoluminescence (1581, and positron annihilation (159). Among a wide range of other aspecta of diamond films studied by Raman spectroscopy that have been reported in the literature in the past 2 years, the following are worthy of note: the synthesis of high quality diamond in combustion flames (160),the Characterizationof synthetic diamond powder (1611, the morphology of diamonds prepared in combustion flames (162), selective low-temperature synthesis (163), studies of defects (164), quality evaluation (165), diamond growth in combustion flames (1661, line shape analysis of the Raman spectrum (167), high growth rate synthesis (1681,mechanism of growth using carbon-13 studies (1691, the mixed nature of the carbon bonding (170),electrical properties of boron-doped film (171), and crystal quality (172). Other forms of carbon are also amenable to study by Raman spectroscopy, and the interest generated by diamond film studies has produced an upsurge of interest and activity in these other forms. The same techniques used to evaluate diamond film have been used successfully with diamond-like film,as in the study of self-lubrica deposited coatings (173), synthesis studies (174,175),the ef ect of implanting ions of various ener ies (176), bonding studies (177), and microstructure (I 787. Studies relatin to other forms of carbon have included carbonaceous m a t e A o f astrophysical interest (1791, characterization of hydrogenated carbon f i (180-1821, the amorphization of graphite under neutron irradiation (183), ultrahard carbon f i from p r e p d carbon powder (184), carbon condensates (185), amorphous carbon structure in carbon/ ermanium multilayers (186), characterization of carbon f!m containing boron and nitrogen (187),pulsed laser deposition of amorphous carbon film (188),properties of films deposited from pyrolytic aphite (1891, resonance Raman studies of amorphous carron and graphite (190),graphite intercalation compounds .(191),ion effects in carbon films (192),laser heating effects in the characterization of carbon films (193),and formation of graphite flakes from aromatic precursors (194). Other asp& of diamond study, other than diamond films, have related to natural diamonds (195), timereeolved studies of shock-compresseddiamond (1961,and the origin of diamonds in meteorites (197). While studies of carbon in its various forms constitute by far the largest area of publication relatin to this section of the review, Raman spectroscopy has muc to offer in other aspects of solid-state and surface studies. One of the most important of these is the area of catalysis, where the noninvasive nature and versatile sampling capability of the Raman technique prove to be of particular value. The use of Raman spectroscopy for the characterization of catalytic systems has

8

9

8

a

d

7

Ifi

RAMAN SPECTROSCOPY

been discussed (198), and this is an area where the FTNIR technique has great otential(199). Methanol oxidation over transition metal oxiie catalysts has been reported (2001, and the F T techni ue has been used for the in situ study of thermally and p\ooChemically induced curing reactions (201). Raman spectroscopy has been used to characterize an iron molybdate catalyst system (202) and for in situ studies (2031, and the structure and pro erties of molybdenum/silicon catalysis have been evaluaJ(204). The FT technique has been used to study species adsorbed on catalyst surfaces (205),and work has been reported on chromium oxidealumina catalyst (206). Another traditional area of application which is still producing useful work is in the area of corrosion studies, and in situ aspects of this type of work have been considered in the section relating to liquids and solutions. The structure of corrosion oxide film on carbon steels has been evaluated (203,and corrosion filmsgrown on iron and iron-molybdenum in pitting conditions have been identified (208). Phase transition in rust layers due to atmospheric corrosion has been reported (209), and the corrosion of metals in concrete has been reported (209) and verified by examination of field failures (210). The oxidation films on iron alloys have been characterized (211),and the passivity of iron and iron alloys has been studied by a combination of voltammetry and Raman spectroscopy (212). There are manv other aDDlications which relate to solids and surfaces, and the md& significant of these, from an analytical point of view, will be mentioned briefly. Raman intensities and interference effects have been reported for thin f i i adsorbed on metals (213),titanium dioxide films own by CVD have been characterized (214,215) and solidEbrication has been studied (216). Cellulose structure has been related to paper properties (217), and Raman spectroscopy has been applied to the study of monofibers of natural and mercerized cotton cellulose (218). The structure of oxide gels and glasses has been elucidated by a combination of Raman and infrared spectroscopies (219, 220), and total reflection experiments have been used to stud surface layers and thin films (221). Inorganic species have t e e n identified in single aerosol droplets (222, 223), and strain has been studied in allium arsenide e itaxial films grown on various substrates 224). Zeolites exc anged with uranyl(V1) cations have been characterized (225),and a kinetic study of the decomposition of ammonium chromate has been reported (226). Finally, in this section, a comparison has been made of NIR FT Raman spectroscopy with FTIR photoacoustic and reflection measurements of solids (227).

f

K

POLYMERS Raman spectroscopy provides valuable information to polymer chemists, physicists, and materials scientists, and this is reflected in the very diverse nature of the papers published in this area. For many years the main Raman activity in the field of polymers has related to the whole range of electroactive polymers, but the trend reported in the last review in this series has continued, and the number of papers published has declined considerably as little more new work remains to be done. Reaonance Raman spectra of conducting polymers with aromatic rings have been re rted (228),and analysis has been carried out of the various x p i n g mechanisms in polyaniline (229). Chromatic roperties of polydiacetylene films have been derived (230) a n 1orientation studies reported for cis-polyacetylene (231). The theory of Raman scattering in transpolyacetylene has been elucidated (232),and the olarization properties of cis- and trans-polyacetylene have Yleen determined (233).Bands in the absorption spectra of polythiophene due to defects have been assigned (234), and Raman spectroscopy has been used as a probe for high conductivity polyacetylene films (235). Other work of interest in this area has concerned in situ studies of pol yrrole and polythiophene fiims on platinum electrodes (236yand in situ studies of polyaniline in a nonaqueous electrolyte solution (237). The application of Raman spectrosco y to polymers of commercial interest is now beginning to {e reported in the literature more often, and there is no doubt that the technique has a great deal to offer in this area. Polyethylene is the most studied of the commercial polymers, and papers have been ublished relating to changes in the hase structure after characterization Eng-time storage at room temperature of functional groups produced by chemical etching (2391,and

b ~ ,

a detailed study of secondary crystallization (240). A complete normal coordinate analysis of the vibrational spectrum of polyethylene has been reported (2411,and Raman s ectroscopy has been used to produce phase diagrams of byends of high density, low densit , and linear low density polymers (242). Work on high mdulus polyeth lene fibers has related to the determination of the number of bonds during stress relaxation (243) and h-streas molecular eforGc mation studies (244). Another commercial polymer to have benefitted from Raman studies is polystyrene. The kinetics of polymerization of styrene in microemulsions have been followed (2451, a study has been made of molecular conformation in glasses and gels of syndiotactic and isotactic polystyrene (2461, and the structure and bonding in the ion-irradiated polymer have been probed (247). Another interea study relates to the role of pendant double bonds in networ formation during the copolymerization of styrene and divinylbenzene (248). Other commercially important polymer systems that have been studied include wet PVC gels (249, 2501, FT Raman characterization of polyimide components (251, 2521, characterization of the structure and properties of crystalline polymers (2531,stretch-induced crystallization in poly(ethy1eneterephthalate) (PET) films (2541, detailed information on the microenvironments created b the s inning and drawing processes in PET fiber has been o&aine$ (255), and studies of stressed s a m les of PET have shown which chains support the load (2569. Raman techniques have also been used to determine the level of grafting on to a polyethylene matrix (257). The swelling mechanisms of waterswollen poly(viny1 alcohol) has been studied in detail (258). FT Raman studies have yielded useful information in the polymer area. The technique has been used to study natural a r e of synthetic polymers (%I), rubber (259),nylons (260), paints (262),and thin polymer% (263), and the degradation of PVC (264). Other interesting studies relating to polymers which have appeared since the last review include the use of Raman techni ues for the noninvasive study of polymerization reactions ( 2 6 8 , the structural analysis and interaction of water-soluble Dolvmers (266).DhotoDolvmerization kinetics of polyacryladde (267); thediffusidn i f small molecules in glassy polymer thin films using waveguide techniques (2681, and a study of the molecular structure of flowing polymer melts (269).

L

9

9

BIOLOGICAL SYSTEMS The application of all aspects of Raman spectrcscopy to the study of biological systems has been the major application of Raman spectroscopy for many years in terms of the number of publications although many of them do not have direct analytical ap lications. Workers in the biological area have traditionally lee, at the forefront of new developments, but in the last 2 years there has been a significant decline in the number of publications. This presumably is a reflection of the maturity of the technique, and the increasin difficulty in finding novel applications. Nonetheless the biofogical area is stell well represented, and groups working in the area are still highly innovative. Protein represents an area which has proved amenable to study by Raman spectroscopy, and the past 2 years has roduced many papers relating to all aspects of protein stuges. as a probe of structural The use of resonance Raman scatte inhomogeneities in heme proteins h a s x n reviewed (270) and techniques have been developed for obtain' Raman spectra of transient intermediates in protein l i g x binding (271). Raman difference s ectroscopy has been used for the measurement of molecds and molecular groups inside proteins (272) and the use of resonance Raman spectroscopyto probe protein structure and dynamics has been reviewed (273). Membrane protein has been studied by ultraviolet resonance techniques, an area where biological groups have found several useful ap lications of ultraviolet excitation (274), and surface enhancef techniques have also been applied to membrane proteins (275). DNA is also a popular material for study and publications in this area have included the determination of the local destabilisation region in the doub!e helix (276),DNA structure studies (277), complexes mth antitumor drugs (278), and interactions in crystals and solutions (279). Biological workers have always been quick to use new instrumental techniques to advant e and FT Raman spectroscopy is no exception. The tecY lnique has been used to ANALYTICAL CHEMISTRY, VOL. 64,

NO. 12, JUNE

15, 1992

505R

RAMAN SPECTROSCOPY

determine unsaturation in natural oils and fats (BO), to study photobiological systems (281)and photoactive proteins (282) and its general a plication to biolo ical materials has been discussed (283). &her applications fave related to the study of selected proteins (284),human lenses (285),the analysis of pharamceuticals and biomaterials (286) and studies of human arteries (287). Other instrumental and technique developments relating to biological studies that have been reported are an automated spectrometer for the precise recording of polarized Raman spectra of biopolymers and their components (2881,a commercial anesthetic-respiratory gas monitor (289),and the use of confocal Raman spectroscopy to study single living cells and chromosomes (290). An ultraviolet micro-Raman spectrometer has been used to carry out resonanceenhanced spectroscopy within single living cells using 257-nm excitation (291), and ultraviolet resonance Raman spectra have been obtained for bacteriorhodopsin using 229 nm excitation (292). Multichannel Raman spectroscopy has been used for opthalmic studies and has been roposed for in vivo examination of lens diseases (293). ourier deconvolution techniques have been used for the quantitative analysis of a range of biomolecules (294). The study of biological systems provides one of the few genuine analytical a lications of surface enhanced Raman spectroscopy (SI&%), and it has been used very effectively in this area. It has been used, for exam le, to study water-soluble proteins, dipeptides and amino aci& (2%5),structurepotential dependence of adsorbed enzymes (296),and eye lens pigments (297). There are many other applications to biological systems reported in the literature, and some of the most notable ones are mentioned below. Raman methods have been used to identify calcium oxalate type (298) and cystine type (299) kidney stones, resonance Raman studies of bacterial reaction centers have been reviewed (3001, and resonance techniques have also been used to detect malignant disease (301). Molecular reor anization in biological membranes has been reviewed (3027,blood gas analysis has been carried out in vivo (303),protein-ligand dynamics have been reviewed (304)and Raman s ectroscop has been roposed for the examination of opaci&ation of tge lens in c h c a l practice (305). Studies on lenses seems to be an expanding area and papers have also been published relating to Raman microspectroscopyof rabbit and human lenses (306) and the use of Raman techniques in ophthalmology (307).

F.

SEMICONDUCTORS AND SUPERCONDUCTORS Raman spectroscopy is still being widely used to provide unique structural information relating to semicondudow and superconductors and to defects, including strain defects, in semiconductors. The use of Raman scattering in superconductor analysis has been reviewed (308-310). A critical review has been published concerning the use of Raman s ctroscopy as a diagnostic tool for semicondudor microcrys~(311),and reviews have also appeared on impurity characterization in 111-V semiconductors (312)and the probing of semiconductor surfaces (313). In the area of superconductors Raman spectroscopy has been applied to the characterization of yttrium barium copper oxide (314-316), yttrium barium copper iron oxide ( 3 1 3 , metal-substituted yttrium barium copper oxide (318),barium-based oxide superconductors (319-322), lead strontium rare-earth calcium copper oxide (323,324),thallium calcium barium copper oxide (325), yttrium barium cop er oxide fluoride (3261, neodymium cerium copper oxide &27), and several other related materials. The main area of activity still relates to yttrium barium copper oxide, and Raman spectroecopy has been successfully used to probe various properties of this material. Lattice dynamics have been reported (328, 3291, phase chan es have been monitored (3301,the effect of transition metal iopants evaluated (331,332),ordered defect structures characterized (333),and the influence of annealing under oxygen on the chemical and superconducting properties studied (334). Transport critical current densities of partially aligned bulk samples have been determined (335),the magnetic transition has been studied (336), and the effect of ambient temperature determined (337). Other, more general, papers have also appeared conceming the value of Raman spectroscopy for studies relating to su506R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

perconductors. These have included the correlation of the critical temperature with the vibrational spectra (338),the use of Raman spectroscopy as a local probe in the unit cell, and the determination of the orientation of crystals and thin films (339). Raman scattering peculiarities in hi h-temperature superconductors enable the nature of the vfence bond to be determined and the anharmonicity of vibrational modes to be estimated (340). The use of Raman spectrosco y to study magnon and phonon scattering has been d d b e d and the use of the technique as a probe of superconductivity has been reported (342). In the area of semiconductors the major application still lies in the detection and identification of defects, including strain. Residual impurities have been studied in doped 111-V semiconductors (343,M),and low-dose ion implantation has been monitored in silicon (345). The Raman microprobe has been used to characterize structural defects in atterned gallium arsenide on silicon (346),and im urities fave been identified in gallium phosphide (347). The &aman microprobe has also been used to analyze strain induced in patterned dielectric f i i by gallium aluminum arsenide structures (348); strains have also been determined in gallium arsenide/silicon (349),in gallium arsenide heteroepitaxial film grown on sapphire, and in silicon-on-sapphire substrates (350) in the interface region of gallium arsenide/gallium phosphide layers (351),and stress measurements have been made of aluminum gallium arsenide on silicon (352). Other applications of Raman spectroscopy to the study of semiconductors have included studies of semiconductor microcrystallites on glass (3531, the study of microstructural geometries (354),the interpretation of the spectra of germanium/silicon ultrathin superlattices (355),and a correlation of transmission electron microscopy and Raman data in the invest' ation of ion implantation damage in silicon (356). The c r y s d i n e to amorphous transformation in gallium arsenide during krypton ion bombardment has been studied (357),and Raman spectroscopy has been used to determine alloy composition in gallium indium arsenide/aluminum indium arsenide quantum wells (358). Removal of elemental arsenic from a gallium arsenide surface has been monitored (359),and spectra have been reported of the novel semiconductors cadmium manganese selenide and cadmium zinc selenide (360).

b1),

HIGH-TEMPERATURE AND -PRESSURE STUDIES One of the great advantages of Raman spectroscopy is its ability to analyze, noninvasively, systems that are not amenable to study by other techniques. Specialized cells and fiber optic accessories can be constructed to operate under conditions where other spectroscopic techniques cannot be applied. In particular, systems can be studied under spectroscopically "hostile" conditions such as high temperatures and pressures. The application of Raman spectroscopy at very high pressures using a diamond anvil cell has been reviewed (3611, and an overview of the spectra of simple molecular substances at high pressures has been published (362). The influence of high ressures on the disorderin of the crystal structures of soli& rapidly quenched from e!t melt has been investigated (363). High-pressure studies have been made of phase transitions in titanium dioxide thin f i i (364) and of amorphous semiconductors (365). Pressure-induced phase transitions of poly(oxymethy1ene) have been studied ra have been in some detail (3661,and cubic boron nitride s obtained a t pressures up to 34 GPa (367). ovalent to ionic phase transformations have been observed at high static pressures (368),and an amorphous phase of carbon at pressures reater than 23 GPa has been reported (369). Of potentiaf commercial interest is a study of ultrahigh molecular we' ht polyethylene under h pressures (370) and of graphite anfferric chloride/ aphite 371). Other hi h-preasure studies of interest i n c l u g the analysis of si%con/germanium strained-layer superlattices under hydrostatic pressure (372) and transition in diamond at ultrahigh pressures (373). The use of Raman s ectroscop for high-temperature studies has been reviewe1 (3741,ancrhigh-temperature work has been undertaken on diamond (375),boron nitride (376), and boron nitride on gra hite surfaces (377). High-temperature studies of reactions &tween silicon carbide and latinum have shown the formation of platinum silicides (3787. Other

E"t

4

RAMAN SPECTROSCOPY

high-temperature studies reported have related to dimer formation in methacrylic acid (379) and acetic acid (380)and in situ studiea of silver catalystsand electrodes during ethylene epoxidation (381). Some work has also been undertaken at high temperatures and pressures simultaneous1 Notable examples of this have been boron nitride (382),norLmadiene (383),and fluids, gels, and glasses under extreme conditions of temperature and pressure (384).

RAMAN MICROSCOPY Possibly the single greatest analytical advantage of the Raman technique is the ability it affords to be able to obtain spatially resolved vibrational spectra down to -1-pm spatial resolution usin a conventional optical microscope system. Although the fkst studies with a Raman microscope were reported some 15 years ago, it is onl recently that the value ap reciated. Several of this technique has begun to be review of Raman microsco y have appeardduring the riod covered by this review. Tiese have concerned the evop" ution and perspective of Raman microanalysis (385),the characterization of microelectronic materials, and the analysis of manufacturing defects (386),the application of micro-Raman analysis to surface studies (387),instrumental aspects (388), and the application to determine chemical composition, molecular conformation, and the degree of crystallinity in polymers (389). This section will refer to those applications which have not been covered elsewhere in this review, but the range of application is now so great that it is a technique which is relevant to most of the other sections. Raman microscopy has been used to estimate the concentration distance rofile within the electrochemid diffusion layer (390,3911,in &e microstructure analysis of thin films de osited b reactive evaporation and by reactive ion plating &92), anBto study the distribution of graphitic microcrystals, and the sensitivity of their Raman bands to strain, in silicon carbide fibers (393). Micro-Raman techniques have proved valuable in the understandin of the factors which influence the qualit of diamond syntResized by electron-assisted hot filament 8VD (394),and in general the Raman microscopeprovidea the most important analytical results on CVD diamonds and diamond films (395-397). A microprobe study has been made of stress and crystal orientation in laser-crystallized silicon (3981, transformed zones have been identified in ma nesium-partially-stabilized zirconium (399),and structurd differences have been observed between different types of natural carbonaceous matter (400). The Raman microscope has been used to classify a range of natural zeolites by structural groups (4011, and the same approach has been applied to natural micas (402). An elegant application has been the study of a working elastoh drodynamic contact (403) designed to give information atout lubrication processes. One of the most rapidly expanding areas of application of Raman microscopy is in the spatially resolved study of eo logical materials, particularly in the characterization of fuid inclusions. The technique has been used to determine salinity in fluid inclusions using changes in the OH stretching region of water (404);a range of components has been identified in Spanish apo anite (4051,and fluid inclusions have also been characterizefin quartz, scheelite, beryl, fluorite, and calcite (406) and in grflnites p d eclogites from Norway (407). Other types of inclusion which have been identified include garnet in diamond (408) and the determination of carbon oxygen stable isoto es in geological materials (409). The same techniques &at have been used to characterize inclusions in geological materials have been used to characterize bubbles in lass (410)and gaseous and solid inclusion in fluorite glass an% optical fibers (411). More general papers on the application of Raman microscopy in this area have related to advances in fluid geochemistry based on micro-Raman analysis of individual fluid inclusions (412),the value of Raman microspectroscopy for the analysis of individual fluid inclusions has been discussed in some detail (413), and advances in carbon-oxygen-hydrogen-nitrogenaulfur fluid geochemistry based on Raman studies of fluid inclusions has been discussed (414). Other general papers relating to the microprobe technique have considered the structural analysis of minute substances (415),the principles of the technique (416),and the use of

withy

Hadamand transform microscopy (41 7,418). Other papers worth mentioning relate to the measurement of strain at silicon-silicon interfaces (419),the study of silylated ribonucleosides (420),evaluation of local stress in carbon (421), the compressional behavior of carbon fibers (422),and the analysis of lichen encrustation involved in the biodeterioration of Renaissance frescoes in central Italy (423).

RESONANCE-ENHANCED A N D SURFACE-ENHANCED RAMAN SPECTROSCOPY Although the Raman effect is normally very weak, which tends to make the technique relatively insensitive, the use of resonance-enhanced and/or surface-enhanced Raman spectroscopy can greatly increase both sensitivity and s ecificity. Many of the applications of both effects relate to Eiological studies and have been considered separately in that section. The development of tunable ultraviolet lasers continues to maintainactivity in the field of resonance Raman (RR) studies while the limited range of useful substrates still severely limits the ap lication of surface-enhanced Raman spectroscopy

(SERSP. Reviews have been published relating to the theory of SERS

(424),its application to Lan muir-Blodgett films (425) and the general status and applica%ilityof the technique (426428). SERS has been used to address a wide range of systems including the characterization of polymer interphases (429),the passive f i i on iron (430),and model acrylic adhesive systems (431). Other SERS studies of interest have related to the adsorption properties of some biomolecules (432),surfaceenhanced hyper-Raman spectroscopy of a range of dyes using a picosecond laser and gold and copper colloids (433),and the use of optical fibers for SERS studies (434). SERS has been used to stud CVD diamond films (#), surfactants adsorbed on to colloii particles (436) and electrodes (437),oxidation reaction of gases on metal surfaces (438),and molecular dyes on metal surfaces (439). The technique has also been ap lied to the structural study of thin organic f i i (440), acid ra8cals (441) and Langmuir-Blodgett monola ers (442). SERS at a silver electrode has also been proposedras a detection system in flowing streams, particularly for biological systems (443). Resonance Raman spectroscopy is, as mentioned above, very widely used in biological systems and also in the study of conjugulated polyene systems such as those present in electroactive olymers, and the bulk of current RR activity is considerel in the sections relating to those materials. However, a timely review has appeared relating to the use of RR in the analysis of electronic and molecular structures of conjugated polymers (444)which contains much information relevant to RR studies in general. Other applications of RR not discussed elsewhere relate to the identification of chromophore states in allophycocyanin and phycocyanin (4451, an overview of far ultraviolet RR spectroscopy (446),a study of the Meisenheimer complexes of 1,3,5-trinitrobenzene(447), and azo dyes (448). As with most other sections in this review there has been activity in the area of NIRFT Raman spectroscopy, and resonance enhancement of the bacteriorhodopin Raman spectrum has been reported (449).

NONLINEAR RAMAN SPECTROSCOPY Although the techniques of coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) and to a lesser extent Raman-induced Ken effect spectroscopy (RIKES) are applied to systems of analytical intereat, it is still true to say that nonlinear Raman techniques do not make a great impact in the area of analytical Raman spectroscopy despite their maturity in terms of sampling and instrumentation. The main advantage of the nonlinear techniques from the analyst's point of view is their sensitivity and their ability to produce fluorescence-free spectra. Their main disadvantages are that they are expensive, difficult to o erate, and provide data which is often difficult to interpret. #ith respect to fluorescence rejection the advent of NIR FT Raman s stems has largely solved this problem, and the system proviies conventional Raman spectra, a t low cost, and is simple to operate. A review has been published discussing the advantages of CARS (450),the use of charge-coupled device detectors has been described (451),a computer code has been developed ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

507R

RAMAN SPECTROSCOPY

for calculating theoretical CARS spectra (452), a multipass cell has been designed which permits the measurement of CARS signals from spatially separated points in one laser shot (453), and a pulsed CARS spectrometer has been described (454). Because of the improved sensitivity that nonlinear techniques offer in relation to conventional Raman spectroscopy, they have traditionally found application in the area of gas and combustion diagnostics. In the period covered by this review CARS has been used for temperature and concentration measurements of molecular hydrogen in a filamentary discharge (455), to study the concentration of hydroxyl radicals in high-pressure flames (456, 457), and for temperature measurements in high ressure combustion syatems (458). CARS has also been usexto advantage to make temporally and spatially resolved simultaneously velocity and temperature measurements in a turbulent pressurized flame (459), for temperature measurements in high-pressure comfor fuel-air ratio determination in diesel bustion systems (4601, spray combustion (4611, and to determine the structures of artially pressurized diffusion flames (462). General reports ave been published on the use of CARS in gas-phase analytical chemistry (4631,the effect of detector nonlinearity and image persistance on CARS-derived temperatures (464), and sim lified CARS thermometry for practical use (465), and funiamental data have been presented to support CARS diagnostics of tem rature, preasure, and species concentration (466). Other appEations of CARS that have been reported include gas-phase process diagnostics of plasma CVD of amorphous silicon and related materials (467) and of diamond (468) and the simultaneousmeasurement of temperature and carbon dioxide and molecular hydro en concentrations in a combustion environment (469). CIRS has been used to monitor oup V hydride and trimethylgallium decomposition (470) anffor high speed thermometry (471), and resonance CARS has been used to study tetracene impurity in anthracene (472). The current theory of SRS has been ublished (473,474), but the only significant applications of in the past 2 years have been the monitoring of the droplet size and concentration of a range of species in injected liquid fuel sprays (475-479). Finally, in this section, the application of coherent hyperRaman scatteringto amorphous materials, particularly quartz, has been discussed (480).

E

Sh

LITERATURE CITED (1) Gerrard, D. L.; Bimle, J. Anal. Chem. 1990, 62, 14013-150R. (2) Ractlcal Ramen Spectroscopy; Gardiner, D. J., Graves, P. R., Eds.; Springer-Verlag: Heldelberg, 1989. (3) Klefer, W. Nachr. Chem. Tech. Lab. 1989, 37(Spec. Issue), 183-196; Chem. Abstr. 1890, 772, 27317b. (4) Gerrard, D. L.; Birnle, J. Annu. Rep. Rog. Chem., Sect. C 1989, 85, 77-90. ( 5 ) Long, D. A. Chem. 61. 1980, 25(6), 592-596. (6) Krishnan, R. S. IndbnJ. Phys., A 1989, 63(15), Sl-S25. (7) Hochstrasser, R. M. Int. Conf. Ramen Spectrosc. Roc. 77th 7988; 83-86, Clark, R. J. H., Long, D. A,, Eds.; Wiiey; Chlchester (UK). (8) Bucklngham, A. D. Int. Conf. Raman Spectrosc., R o c . 77th 7988, 3-6, Clark, R. J. H., Long, D. A., Eds.; Wiiey: Chlchester (UK). (9) Schrader, B. GIT Fachz. Lab. 1989, 33 (lo), 981-987; Chem. Abstr. iago, 712, 2 7 2 8 1 ~ . (10) Schrader, 6.; Hoffman, A.; Simon, A.; Podschadlowskl, R.; Tischer, M. J . Mol. struct. isgo, 277,207-220. (11) Almond, M. J.; Yates, C. A.; Orrin. R. H.; Rice, D. A. Spectrochim. Acta, PartA 1990, 46A (2), 177-166. (12) Pew, C. J.; Bennett, R. Spectrochlm. Acta, Part A 1990, 46A (2), 331-337. (13) Davies, M. C.; Binns, J. S.;Meiia, C. D.; Bourgeois, D. Spectrochim. Acta, Part A 1990, 46A (2), 277-283. (14) Williams, K. P. J.; Mason, S.M. TrAC. Trends Anal. Chem. (Pers. Ed.) isgo, 9 (4), 119-127. (15) m a l , J.; ZMy, V. Spectrochh. Acta, PaHA 1990, 46A (2), 253-275. (16) Schrader. B. Wlss. Z Tech. Hochsch. “Carl Schorlemmer” LeunaMerseburg 1990, 32(1), 34-42; Chem. Abstr. 1981, 774, 156333~. (17) Chase, 8. P w m . Mater. Sci. Eng. 1991, 64, 189-190. (18) Hendra, P. J. Lab. Ract. 1990, 39(10), 61-69. (19) Barbillat. J. Spectra 2000 (Deux Mllle) 1889, 742, 17-19; Chem. Abstr. 1990, 773, 223819b. (20) Ganl, D.; Hendra. P. J.; Maddams, W. F.; Passingham, C.; Royaud, I.A. M.; WlHls, H. A.; Zlchy, V.; Cudby, M. E . A. Analyst (London) W90, 775 (10). 1313-1318. (21) brrard, D. L.; Bowley, H. J. Chem. Anal. ( N . Y . ) 1988, 707 (Chem. Anal. Polycyclic Arom. Compd.), 433-450. (22) Perry, S. S.; Shannon, C.; Campion, A. R o c . SPIE-Int. SOC. Opt. Eng. 1989, 7056 (Petrochem. Thin Films), 2-8. (23) Kasser. W. Chem. Br. 1989, 25 (6). 818-622. (24) Oriov, R. Y.; Guseva, E. V. Izv. Akad. Nauk SSSR, Ser. Geol. 1989 (4) 84-95; Chem. Ab&. 1990, 772, 23578q.

SOBR

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 199

(25)839-646. KunMppu, J. T.; Somasundaran, P. J. Indlan Chem. SOC.1989. 66(8), - - - - . -. (26) Yoshkawa. M.; Ishida, H.; Ishltani, A. Petrotech(Toky0) 1989. 72(10), 836-841; Chem. Abstr. 1990, 772, 86881d. (27) Ohtsuka, T. Women Gl/utsu 1989. 40 (9), 1000-1004 Chem. Abstr. 1989, 7 7 7 , 242681a. (28) Osawa, M. Women GJutsu 1989, 47 (9), 894-899; Chem. Abstr. 1990, 773, 1 9 8 6 2 1 ~ . (29) Kartha, V. 6.; Patei, N. D.; Venkateswaran, S.;Kartha, S. B. Indbn J . Phy~.,A 1989, 83 (lS), S83-S94. (30) Ho, P.; Breiland, W. G.; Coltrin, M. E. Roc. SPIE-lnt. Soc. Opt. Eng. 1990, 7378 (Opt. Specwosc. Instrum. Tech. 199O’s), 68-70. (31) Anastassakis, E. Roc.-fhsctrochem.Soc.1990, 90-11 (Anal. Tech. Semlcond. Mater. Rocess. Charact.). 298-328. (32) Hammaker. R. M.; Bohike, A. P.; Jaw& J. M.; Tate, J. D.; Whke. J. S.; Paukstelis, J. V.; Fateley, W. G. Roc. SPIE-Int. Soc. Opt. Eng. 1990, 7336 (Ramen Lumln. Spechosc. Technol. 2), 124-134. (33) Bohlke, A. P.; Un-Vbn. D.; Hammaker, R. M.;Fateley, W. G. NATO ASI Ser. Ser. C 1989, 280(Spectrosc. Inorg. Blaact.). 439-454. (34) Tashlro, K. Sen’l Gakkakhi 1990, 46 (9). P401-P407; Chem. Abstr. 199, 774, i8737ij. (35) Gaiiotls, C.; Jahankhan, H.; Melankis. I. Batchelder, D. Dev. Scl. Technol. Compos. Mater. f u r . Conf. Compos. Meter., 3rd 7989, 765-770; Bunseli, A. R.; Lanlcq, P., Masslah. A.. Eds.; Elsevler, London (UK). (36) Mandeikem, L. Adv. Chem. Ser. 1990, 227 (Polym. Charact.), 377-395. (37) D’Aiesslo, A.; Caveliere, A. NATO ASI Ser., Ser. B 1990, 247 (Appl. Laser Spectrosc.), 393-401. (38) W o h m , J. Ettore Mabane Int. Sci. Ser.; Phvs. Scl. 1888, 35(Leser Sci. Techno/.), 187-196. (39) Davles, J. E. D. Chem. Br. 1989, 25(6), 807-610. (40) Bobrov, A. V. Teubner-Tente Phys. 1988, 20(Rog. Mol. Spectrosc.), 192-202. _ _._ (41) McMillan, P. F. Annu. Rev. Earth Planet Sci. 1888, 77, 255-283. ) 271 (I), 219-222. (42) PIIZ, W. Z.mys. chem. ( ~ e i p z b1990, (43) Grasselll, J. G. NATO ASI Ser., Ser. C . 1989, 280 (Spectrosc. Inorg. Blaact.), 191-227. (44) Hamaguchi, H. Int. Conf. Ramen Spectrosc. Roc. 7 7th 7968, 55-58; Clerk, I?.J. H.; Long, D. A., Eds.; Wlley: Chichester (UK). (45) Moskovlts. M. Int. Conf. Ramen Spectrosc. Roc. 77th 7986. 11-14 Clark, R. J. H.; Long, D. A.; Eds.; Wky: Chlchester (UK). (48) Chrlstensen, D. H. Teubner-Tente Wys. 1888, 20 (hog. Mol. Spectf O S . ) , 91-101. (47) Tarpinlan, J. E. Nucl. Technol. 1989, 8 7 (2), 429-432. (48) Halpern, J. 6.; Sutter, J. R. Report 1989, DOEIPCI90539-TB; Order No. DE 89018362 Avail. NTIS. From Energy Res. Abstr. 1989, 74 (20), Abstr. No. 41449. (49) Ram, S.;Saraswat, D. K.; Nasagen, K. A. Fuel1990, 69(4), 512-515. (50) Campion, A.; Peny, S. S. Laser Focus WWM 1990, 26 (e), 113-124. (51) Pemberton, J. E.; Sobocinskl, R. L.; Bryant, M. A.; Carter, D. A. Spectroscopy (Eugene, OR) 1990, 5 (2), 26-36. (52) Biihorn, R. 6.; Ferris, N. S. Roc. SPIf-Int. Soc. Opt. Eng. 1990, 1336 (Ramen Lumln. Spectrosc. Techno/. 2), 159-168. (53) Alfred, C. D.; McCreery, R. L. Appl. Spectroscopy 1990 44 (7), 1229-1231. (54) Wang, Y.; McCreery, R. L. Anal. Chem. 1989, 67 (23), 2647-2651. (55) Zlmba, C. G.; Rabolt, J. F. Appl. Spectrosc. 1991, 45(2), 182-185. (56) Williams. K. P. J. J . Ramen Spectrosc. 1990, 27 (2), 147-151. (57) Gantner, E.; Steinert, D. Fmsenlus’ J. Anal. Chem. 1980. 336(1), 2-8. (58) Yang, 6.; Morris, M. D. Appl. Spectrosc. 1991, 45(3), 512-513. (59) Kercel, S. W.; Roberts, M. J.; Garrison, A. A. Roc. SPIE-Int. Soc. Opt. f n g . 1990, 7336 (Raman Lumln. Spectrosc. Techno/., 2), 144-15 1. (60) Leugers, M. A.; McLachlan, R. D. Proc. SPIE-Int. Soc.Opt. Eng. 1989, 990 (Chem., Blochem., Envkon. Appl. Flbers), 88-95. (61) Bonnaventure, 6.; Lucas, M. Analysb 1989, 77 (4), 185-187. (62) Myrlck, M. L.; Angel, S. M. Appl. Spectrosc. 1980. 44 (4), 565-570. (63) Cutler, D. J. Spectrochlm. Acta, PartA 1990, 46A (2), 131-151. (64) Ellis, G.; Hendra, P. J.; Hodges, C. M.; Jawhari, T.; Jones, C. H.; Le brazer, P.; Passingham. C.; Royaud, I.A. M.; Sanchez-Blarquer, A.; Warres, G. M. Analyst (London) 1989, 774 (9). 1061-1068. (65) Guy, H.; Beauchesne, P.; Bulla, H. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 7745 (Int. Conf. Fourier Transform Spectrosc. 7th) 197-201. (66) Wright, N. A.; Stout, P.; Krishnan, K. Fresenlus’ J. Anal. Chem. 1991, 339 (5),271-275. (67) Crookell, A.; Hendra. P. J.; Mould, H. M.; Turner, A. J. J. Raman Spec~~OSC 1990. . 21 (2), 85-90, (68) Vogt, H. Labor Praxis 1989, 73 (Special), 147-148; Cbem. Abstr. 1989, 7 7 7 , 1 4 6 0 2 7 ~ . (69) Hannah, R. W.; Ganz, A.; Schiering, D.; Larsen. R.; Mould. H.; Cutler, D.; Turner, A,; Bennett, R. Roc. SPIE-lnt. Soc. Opt. Eng. 1989, 7745(Int. Conf. Fourfer Transform Spectrosc. 7th), 286-287. (70) Barbillat, J.; Chapput, A. Roc. SPIE-Int. Soc. Opt. fng. 1990. 734 (Inffared Technol. 76), 233-238. (71) Purceli, F. J.; Bello, J. M. Roc. SPIE-Int. Soc. Opt. Eng. 1990, 7336 (Ramen Lumln. Spectrosc. Technol. 2 ) 135-143. (72) Sanchez, A. Opt. Pura. Apl. 1989.22(1), 25-37; Chem. Abstr. 1989, 7 7 7 , 204308b. (73) Hanniet, M.; Jawhari, T.; Royaud, I . A. M. J. Chlm. Phys. Fhys.-Chlm. Bbl. 1989, 86(3), 431-450; Chem. Abstr. 1988. 7 7 7 . 122905e. (74) Wright, N. A.; Krishnan, K. Roc. W I E - I n t . Soc. Opt. Eng. 1988, 7745 (Int. Conf. Fourier Transform Spectrosc. 7th) 186-187. (75) Bohike, A. P.; Hammaker, R. M.; Fateley, W. 0. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 7745 ( I n t . Conf. Fourier Transform Spectrosc. 7th) 188- 189.

RAMAN SPECTROSCOPY (76) Bohlke, A. P.; Tate, J. D.; White, J. S.; Paukstaiis, J. V.; Hammaker, R. M.: Fatelev. W. G. THEOCH€M1988. 59. 471-481. (77) Fateley,'W. G.; He"ek&, R. M.; Paukstalls, J. V.; Bohlke, A. P.; Tate, J. D.; Whb, J. S.; Jarvls. J. M. Roc. SPIE-lnt. Soc.Opt. Eng. 1990, 7320 (Infrered Techno/. Appl.), 39-45. (78) WHilams. K. P. J. J . Raman Specmc. 1990, 27 (2). 143-146. (79) Radziszewski, J. G.; Mlchi, J. Appl. Spectrosc. 1990, 44 (3), 414-418. Acte, PartA 1990, 46A (2), 171-175. (80) Pdavarapu, P. L. Spectr&m. (81) Purceii, F. J.; Heinz, R. E. Mlcrobaem Anal. 1988, 23rd, 175-178. (82) Everall, N. J.; Howard, J. Appl. Spectrosc. 1989, 43 (5), 778-781. (83) Schrader, 8.; Hoffmann, A.; Tlscher, M.; Podschedlowski, R.; Simon, A. Proc. SPIE-Int. Soc.Opt. Eng. 1989. 1745 ( I n t . Conf. F o W Transf m Spectrosc 7th) 190- 19 1. (84) Chase, D. 8. Int. Conf. Raman Spectrosc., Roc. 77th 1988, 39-42 Clark, R. J. H.; Long, D. A. Eds.; Wlley: Chichester (UK). (85) Shurveii, H. F.; Bergin, F. J. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 7745(Int. Conf. Fowier Transform Spectrosc. 7th) 192-193. (86) Hase, H.; Ishbka, K. Annu. Rep. Res. React. Inst. Kyoto Univ. 1990, 23, 183-187. (87) Varotsis, C.; Oertllng, W. A.; Babcock, G. T. Appl. Spectrosc. 1990, 44 (4), 742-744. (88) Vakuiln, A. A.; Shavlov, A. V.; Plastonova, L. A. R l b . Tekh. Eksp. 1990, 5 , 234-236; Chem. Ab&. 1991, 714, 174527q. (89) Interdonato, S.; Majdino, D.; Mailomace, F.; Alioth, F.; Micall, N.; Vasi, C. Rev. Scl. Instrum. 1990, 67 (8), 2243-2245. (90) Rosenblatt. G. M.: Veirs. D. K. HEoh Temo. Scl. 1988-1989 (Pub. ' 1990), 28, 31-44. (91) Batchelder, D. N.; Cheng, C.; Smith, B. J. E. PCT Int. Appl. WO 90 07.108 (CI.GOlN21/8J) 28 Jan. 1990. (92) Adler-Golden. S.;Goldstein, N.; Bien, F. U.S. US4,953,976 (Ci.356-301; GOlJ3144) 04 Sep. 1990. (93) Davis, E. J.; Buehler, M. F. MRS Bull. 1990, 75 (I), 26-33. (94) Hugotldhff, A.; Fils. J.; Bouchartt, N.; Jolret, S.; Wliinski, J. J. Electrochem. Soc. 1990, 737(9), 2684-2690. (95) Mayer, S. T.; Muller, R. H. Report 1989 LBL-28085, Order No DE90007064. Avail. NTIS. From Energy Res. Ab&. 1990, 75 (e), Abstr. No. 20003. (96) Bribes, J. L.; El Boukari. M.; Maillois, J. J. Raman Spectrosc. 1991, 22 (5),275-279. (97) Illescu, T.; Bratu, I.; Cozar, 0. Stud. Cercet. Fiz. 1988, 40 (9), 777798; Chem. Abstr. 1989. 1 7 1, 6 6 6 9 5 ~ . (98) Klkuchl, M.; Matsude, H. Sen'/ Gakkalshl 1989. 45 (6), 272-277. (9g) Mathlouthi, M.; Larreta-Garde, V.; Xu, 2 . F.; Thomas, D. J. Carbohydr. Chem. 1989, 8 (2), 233-245. (100) Dlerker, S. 8.; Dennis, B. S.; Wlkius, P. J. Chem. Phys. 1990, 92(2), 1320- 1328. (101) Terpstra, P.; Combes, D.; Zwlck, A. J. Chem. Phys. 1990, 92(1), 65-70. (102) Luu. D. V.; Cambon, L.; Mathlouthi, M. J. Mol. Struct. 1990, 237, 411-419. (103) Melendres. C. A. J. Electrmnal. Chem. Interfaclel Electrochem. . 1890, 286 (1-2). 273-277. (104) Rubin, J. C. J. Chem. Soc., Fara&iy Trans. 1 1989, 85 (12), 4247-4258. (105) Thleny, D.; Persson, D.; Leygraf, C.; Boucherit, N.; Hugot-LeGoff, A. C m . Scl. 1991, 32 (3), 273-284. (106) Sadoway, D. R. Report 1988. DOE/CE/40545-25, Order No DE 89004637. Avail. NTIS. From Energy Res. Abstf. 1989, 74 (6),Abstr. No 11263. (107) hfurov, M. M.; Akmedov, I.R.; Aliyev, A. R. Zh. R/kl.Spektfosk. 1990, 52 (3). 429-434 Chem. Abstr. 1990, 712, 225843h. (108) Keto. T.; Machida, K.; Oobatake, M.; Hayashl, S. J . Chem. mys. 1990, 93 (e),3970-3977. (109) Hannane, S.; Berti. F.; Bouix, J. Bull. SOC.Chlm. Fr. 1990, 7 , 50-56; Chem. Abstr. 1990, 713, 4 7 3 0 4 ~ . (110) Hall, D. L.; Bodner, R. J. W h i m . C o s m h l m . Acta 1990, 54 (3), 641-651. (111) Kartha, S. B.; Galkar, V. G.; Sherma, M. M.; Kartha. V. B. Roc. Indlen Aced. Scl. Chem. Scl. 1990, 702(5), 681-685. (112) Williams, K. P. J.; Aries, R. E.; Cutler, D. J.; LMlard, D. P. Anal. C t " . 1990, 62 (23), 2553-2556. (113) Clarke, R. H.; Chung, W. M.; Wang, Q.; DeJesus, S. Roc. SPIE-Int. s0c. Opt. Eng. 1991, 7437(Appl. Spectrosc. Mater. Sci.), 198-204. (114) Clarke, R. H.; Chung, W. M.; Wang, Q.; DeJesus, S.; Sezerman, U. J. Raman Spectrosc. 1991, 22 (2), 79-82. (115) Seashok, M. B.; Archlbold, D. D.; Lorber, A.; Kowaiski, B. R. Appl. Spectrosc. 1989, 47 (B), 1067-1072. (116) Feldman, A.; Robins, L. H.; Frederikse, H. P. R.; Farabaugh. E. N.; Etz, E. R o c . - E / e c ~ o d " .SOC.1989, 89-12 (Proc. Int. Symp. Diamond Diamnd-Llke Films, lst, 1989), 162-172. (117) Herb, J. A.; Bailey, C.; Ravi, K. V.; Dennig, P. A. Roc.-E/ectrochem. Sot. 1889, 89-12 (Proc. Int. Symp. Diamond Dlamond-Like films, lst, 1989) 366-379. (118) Zhu, W.; Messier, R.; Badzlan, A. R. Roc.-Electrochem. Soc. 1989, 89-12 (Proc. Int. Symp. Diamond DlamonbLike Films, 1st 1989) 61-72. (119) Zhu, W.; Inspektor, A.; Badzlan, A. R.; McKenna, T.; Messier, R. J . Appl. Phys. 1990, 68 (4), 1489-1496. (120) DebRoy, T.; Tankala, K.; Yarbrough, W. A.; Messier, R. J. App/. Phys. 1990, 66 (9, 2424-2432. (121) Yarbrough. W. A.; Inspektor, A.; Messier, R. Mater. Scl. Forum 1990, 52-53 (RopCharact. Amorphous Carbon Films), 151-154. (122) Okano, K.; Narukl, H.; Akiba, Y.; Kurosu, T.; Iida. M.; Hirose, Y.; Nakamura, T. Jpn. J. Appl. Phys. Part 11989, 28 (e), 1066-1071. (123) Mort, J.; Kuhman, D.; Machonkin, M.; Morgan, M.; Jansen, F.; Okumura. K.; LeGrice, Y. M.; Nemanich, R. J. Appl. Phys. Lett. 1989, 55 (l), 1121-1 123.

.

-

(124) Mort, J.; Machonkin, M.; Morgan, M.; Jansen. F.; Okamura, K.; Kuhman, D.; Nemanich, R. J. Roc.-€eCtrochem. Soc. 1989, 89-12 (Proc. Int. Symp. Dlamond Diamond-Like Fllms. 1st 1989). 420-427. (125) Liou, Y.; Inspektor, A.; Weimer, R.; Knight, D.; Messier, R. J . Mater. Res. 1990, 5(11), 2305-2312. (126) Oakes, D. B.; Butler, J. E.; Snail. K. A.; Carrington, W. A.; Hanssen, C. H. J . Appl. PhyS. 1991, 69 (4), 2602-10. (127) Pool, F. S.; Shing, Y. H. J. Appl. P h p . 1990, 68(1), 62-65. (126) Nagal, I.; Ishltani, H.; Kuroda, H.; Yoshikawa, M.; Nagal, N. J . Appl. PhyS. 1990, 87 (6), 2890-2693. (129) Takaya. M.; Mlura, T.; Sakamoto, Y. Hyomen Gjutsu 1990. 47 (5). 574-575; Chem. Abstr. 1990. 173, 6 8 6 5 4 ~ . (130) Bonnot, A. M. Thln S d U F i / m 1990, 785(1). 111-121. (131) Buckiey, R. 0.;Moustakas, T. D.; Ye, L.; Varon, J. J. Appl. Phys. 1989, 66 (8), 3595-3599. (132) Hsu, W. L.; Tung, D. M.; Fuchs, E. A.; McCarty, K. F.; Joshi, A.; Nimmagadda, R. Appl. mys. Lett. 1989, 55(26). 2739-2741. (133) Wort. C. J. H.; Lettington, J. H.; Smith, C.; Hetherington, A. V. Roc. S P E - I n t . SOC. Opt. Eng. 1989, 772 (Window Dome Technol. Mater.), 199-204. (134) Muranaka, Y.; Yamashka, H.; Miyadara, H. J. Appl. Phys. 1991. 69 (12), 8145-8153. (135) Goto, Y.; Yagi, T.; Nagal, H. Mater. Res. SOC.Symp. Roc. 1989, 729 (Laser-Part-Beam. Chem. Processes Surf), 213-217. (136) Ohtake, N.; Yoshikawa, M. J . Electrochem. Soc. 1990, 137 (2). 7 17-722. (137) Kawarada, M.; Kurlhara, K.; Sasaki. K.; Teshima, A.; Koshino, K. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 1746(Diamond Opt. 2), 28-36. (138) WIM, C.; Herres, N.; Wagner, J.; KoMI, P.; Anthony, T. R. Roc.-Electrochem. Soc. 1989, 69-12 (Proc. Int. Symp. Diamond Dlamond-Llke Films. 1st. 1989) 283-295. (139) Greenwald, A. C.; Hirvonen, J. K.; Jaggi. N. K. Mater. Res. Soc. Symp. Roc. 1989, 728 (Process Charact. Mater. Unlng Ion Beams), 109-1 12. (140) Hirose, Y.; Moriguchi, J. Kapku to Kyo/ku 1989, 3 7 (3), 314-317; Chem. Abstr. 1989, 7 1 7 , 114443n. (141) Meiiunas, R.; Wang, M. S.; Shang, K.; Ony, T. P.; Chang. R. P. H. Mater. Res. Soc. Symp. Roc. 1989, 729(Laser-Part.-Beam Chem. Processes - ....Surf.). - -. .. 533-538. --- --(142) Nemanich, R. J.; Shroder, R. E.; Glass, J. T.; Lucovsky, 0. Int. Conf. Phvs. Semicond. 79th 1988. 7 . 515-518. (143)- kiiunas, R.; Wang, M. S:; Shang, K. C.; Chang, R. P. H.; Van Duyne, R. P. Appl. Phys. Lett. 1989. 54(22), 2204-2206. (144) Lee, Y. H.; Bachmann, K. J.; Glass, J. T.; Le Grice, Y. M.; Nemanich, R. J. Appl. Phys. Letts. 1990, 57(18), 1916-1918. (145) Hwang, J.; Zhang, K.; Kwak, B. S.; Erbii, A.; Feng, 2. C. J . Mater. Res. 1990, 5 (1 l ) , 2334-2336. (146) (6), DavMson, 711-715. J. C.; Ellis, C.; Ramesham, R. J . Electron. Mater. 1989, 78 I .

(147) Tzeng. Y.; Cutshaw, C.; Phillips, R.; Srhrinyunon, T.; Ibrahim, A,; Loo, B. H. Appl. Phys. Lett. 1990, 56(2), 134-138. (148) Okano, K.; Kurosu, T.; Iida, M.; Elckhoff. T.; Wlihoim, H.; Zahn, D. R. T. Vacuum 1990, 47 (4-6). 1389-1391. (149) Oki. T.; OkMo, M.; Ando, M.; Sugle, Y. Shigen to Sazai 1989, 705 (2), 205-208; Chem. Abstr. 1989, 7 1 7 , 68215q. (150) Lbu, Y.; InspeMor, A.; Knight, D.; Weimer, R.; Pickrell, D.; Bodzlan. A. R.; Messier, R. Roc. SPIE-lnt. Soc. Opt. Eng. 1989, 7746 (Dlamond opt. 2), 12-20. (151) Koizumi, S.; Murakami, T.; Inuzuka, T.; Suzuki, K. Appl. Phys. Lett. 1990. 5 7 (6).563-565. (152) Ramesham, R.; Roppel, T.; Ellis, C.; Hajek, B. F. J . Elecirochem. Soc, 1890, 737 (10). 3203-3205. (153) Okano, K.; Kurosi, T.; Iida, M.; Eickhoff, T.; Wilheim, H.; Zahn, D. R. T. R O C . SPIE-Int. Soc. Opt. Eng. 1990, 1275 (Hard Mater. Opt), 25-35. (154) Butler, J. E.; Ceiii, F. 0.;Oakes, D. B.; Hanssen, L. M.; Carrington, W. A.; Snail, K. A. High Temp. Scl. 1988-1989 (Pub. 1990), 27, 183-197. (155) Perry, T. A.; Boetz, C. P. Roc. SPIE-Int. Soc. Opt. €4.1989, 7055 (Raman Scattering. Lumln. Spectrosc. Instrum. Technol.). 152-161. (156) Tukata, T.; Edamatsu, K.; Yokoyama, T.; Seki, K.; Tohnan, M.; Okada, T.; Ohta, T. Jpn. J . Appl. Phys. Part 2 1989. 28 (7), L1262-L1285. (157) Clauslng, R. E.; Heathorly, L.; More, K. L.; Regan, G. M. Surf. Coat. Technd. 1989, 39-40 (1-3), 199-210. (158) Chen, C. F.; KO, E.; Nishimura, K.; Hosomi, S. Hyomen Gjutsu 1990. 47 (5),555-589; Chem. Abstr. 1990, 773, 105667~. (159) Sharma, S. C.; Dark, C. A.; Hyer, R. C.; Green, M.; Black, T. D.; Chourasla, A. R.; Chopra, D. R.; Mishra, K. K. Appl. Phys. Len. 1990, 56 (18h 1781-1783. (160) Hirose, Y.; Amonuma, S.; Okada, N.; Komaki, K. Proc.-Electrochem. soc. 1989, 89-12 (Proc. h t . Symp. Dlamond Diamond-Llke Films, lst, 1989) 80-92. (161) Chonon. T.; Venura, M.; Futaki, S.; Nlshii, S. Jpn. J . Appl. Phys. Part 2 1989, 28 (6), L1058-Ll060. (162) Okada, K.; Komatsu, S.; Matsumoto, S.; Moriyoshi, Y. J . Meter. Scl. 1991, 26 ( l l ) , 3081-3085. (163) Ramesham. R.; Roppel. T.; Ellis. C.; Jaworska, D. A.; Baugh, W. J . Meter. Res. 1991, 6(6), 1278-1286. (164) Robins, L. H.; Farsbaugh, E. N.; Feldman, A. Roc. SPIE-Int. Soc. opt. Eng. ISSO, 1325 ( D W I O ~ opt. ~ 3), 130-141. (165) Bou, P.; Beny. C.; Vandenbuleke, L. V& Couches Mlncs 1989, 246 (Suppi. colloq. Int. Plasmas Pubverizatlon Cathod.), 129-137. (166) Yalomanchi, R. S.; Harshavardhan, K. S. J . Appl. Phys. 1990, 68 ( l l ) , 5941-5943. (167) Robins, L. H.; Farsbaugh, E. N.; Feldman, A. J . Meter. Res. 1990, 5 (11). 2456-2458. , . .,, .- . -. (168) Cappeiii, M. A.; Owano, T. 0.;Kruger, C. H. J. Mater. Res. 1990, 5 (11). 2326-2333.

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

SOOR

RAMAN SPECTROSCOPY

(169) Chu, C.; D'Evelyn. M. P.; Hauge, R. H.; Margrave, J. L. J . Meter. Res. 1000, 5 (11). 2405-2413. (170) Harshawardhan, K. S.; Vljayaraghawan, M. N.; Chandrabhas, N.; Sood, A. K. J . Appl. Phys. 1090. 68 (7). 3303-3306. (171) Nlshlmura, K.; Das, K.; Glass, J. T.; Kobashl, K.; Namanlch, R. J. NATO ASI SER., Ser. E 1990, 1856 (Phys. Chem. Carbides. Nltrldes, Borides), 183-194. (172) Yoshlkawa, M.; Kataglrl, G.; Ishlda, H.; Ishltanl. A.; Ono, M.; Matsumura, K. Appl. Phys. Len. 1989, 55 (25). 2608-2610. (173) Hlrvonen, J.; Hahrerson, W.; Report 1989, FR-10102. WRDC-TR-894119; order No. ADA221756. Avail. NTIS. From Oov. R e p . Announce. Index (US) 1090,90 (la), Abstr. No. 045,706. (174) Hayashl, H.; Ohnlshl, Y.; Kobashl, K.; Nlshlmura, K.; Mlyata, K.; Kawate; Y. KOBELCO Techno/. Rev. 1080,6 , 14-17. (175) Krlshnaswamy, J.; Reagan, A.; Srivasta, A.; Narayan. J.; Long, Y.; Collins, R.; Vedam, K. Meter. Res. Soc. Symp. Roc. 1989, 729(LaserPart-Beam Chem. Processes Surf.), 219-224. (176) Xlang, J.; Zheng, 2.; Xlong, J.; Zhang, F. Wull Xuebao 1900, 39 (3), 420-423; Chem. Absfr. 1090, 173, 62190~. (177) Yoshlkawa, M. Meter. Scl. Forum 1990, 52-53 (Prop. Charact. Amorphous Carbon Fllms), 365-385. (178) &gal, N.; Yoshlkawa, M.; Ishlda, H.; Nagal, I.; Ishltanl, A.; Kvoda, H. Roc. SPIE-Int. SOC. Opt. Eng. 1989, 7745 (Int. Conf. Fourler Transform Spectrosc. 7th), 496-497. (179) Fontl, S.; Blemo, A.; Bassoletti, E.; Colangell. L.; Lugara, M.; Monnella, V.; Oroflno, V.; Scamarclo, G. InfraredPhys. 1990, 30 (l), 19-25. (180) Thompson, D. G. Meter. Scl. Forum 1990, 52-53 (Prop. Charact. Amorphous Carbon Fllms), 5 15-542. (181) Shlmozuma, M.; Tochltanl, G.; Ohno, H.; Tagashlra, H.; Nakahara, J. J. Appl. Phys. 1089,66(1), 447-449. (162) Catherlne, Y. Meter. Scl. Forum 1990. 52-53(Prop. Charact. Amorphous Carbon Fllms), 175-195. (183) Kelly, B. T. J . Nucl. Meter. 1090, 172(2). 237-238. (184) Tither, D.; Dehbl, A.; Hollday, P.; Matthews, A.; Fitzgerald, A. G.; Henderson. A. E.; Storey, 8. E.; Dines. T. J.; John, P.; Wilson, J. I.8. Carbon 1990,28 (9,641-655. (185) Bakal, A. S.; Baranov, A. V.; Strel'nltskll, V. E. Powerkhnost 1000,3, 92-99; Chem. Absfr. 1000, 772, 166500~. (166) Long, N. J.; Trodahl, H. J. J. Appl. phvs. 1990, 67(4), 1753-1756. (187) Tither, D.; Matmews, A.; Fitzgerald, A. 0.; Storey, B. E.: Henderson, A. E.; Mdr, P. A.; Dines, T. J.; Bower, D. I.; Lewis, E. L. V. Carbon 1989,27 (6), 899-907. (168) Demers, R. T.; Harrls, D. 0. Roc. SPIE-Int. Soc. Opt. Eng. 1080, 7 146 (Dlamond Opt. 2), 48-55. (189) Malske, A. P.; Cheudharl, S. M.; Kanetkov, S. M.; Ogale, S. 6.; Rajarshl, S. V.; Kshlrsagar, S. T. J. Meter. Res. 1989, 4 (5). 1236-1242. (190) Slnha, K.; Mnendez, J.; Varhue, W. J.; Shlnsekl, B. S. Roc. SPIEInt. Soc. Opt. Eng. 1089, 7055(Raman Scattering, Lumln., Spectrosc. Instrum. Technol.), 170-175. (191) Nakamlzo, M.; Nlshlkull, K. Kyushu Kcgyo c3lutsu Shlkensho Hoguku 1988,(41), 2617-2622; Chem. Absfr. 1989. 7 7 7 , 669558. (192) Malske, A. P.; Chaudharl, S. M.; Kanetkov, S. M.; -le, S. 6.; Kshlrsagar, S. T. Thln Solld FWms 1900, 793-794 (1-2), 588-594. (193) Ager, J. W.; Velrs, D. K.; Shamal. J.; Rosenblatt, 0. M. J . Appl. Phys. 1990,68 (7), 3598-3606. (1941 Klm. D. P.: Labes. M. M. Chem. Mater. 1900.215). 599-603. il95j Reshetnysk, N. 6.; Ezerskil. V. A. Mineral. Zh.'l990, 72 (5), 3-9; Chem. Ab&. 1901. 774. 250769n. (196) Gupta, T. M.; Horn, P.'D.; Yoo, C. S. Appl. Phys. Len. 1089,55(1), 33-35. (197) Mlyamoto, M.; Nashlmura, Y.; Matsuda, J.; Ito, K. Geochlm. Cosmochlm. Acta 1989. 53 (11). 3059-3060. (198) Barr, T. C. ACS Symp. Ser. 1088, 477 (Charact. Catal. Dev.), 180-1 82. (199) Bursh, R.; Passingham, C.; Wames, G. M.; Rawlence, D. J. Specfrochlm. Acta, PartA 1900,46A (2), 243-251. (200) Ozkan. U. S.; Kueller. R. F.; Moctezuma. E. I d . Eng. Chem. Res. 1990, 29 (7), 1136-1 142. (201) Walton, J. R.; Williams, K. P. J. Vlb. Specfrosc. 1091, 7(4), 339-345. (202) Hill, C.; Wilson, J. H. J . Ab/. &tal. 1090,63 (I), 65-94. (203) Wilson, J. H.; HIII, C.; Dumeslc, J. A. J . Mol. Catal. 1900, 67 (3), 333-352. (204) RocchlcclolCDeitcheff, C.; Amlroucha, M. J . Catal. 1990, 725 (2), 292-310. (205) Hendra, P. J.; Passingham, C.; Warnes, 0. M.; Busch. R.; Fmwlence, D. J. Chem. Phys. Len. 1089, 764(2-3). 178-184. (206) Vuuman, M. A.; Stufkens. D. J.; Oskam, A.; Moulijn, J. A.; Kapteljn, F. J . Mol. Catal. 1990,60 (I), 83-96. (207) Vovk, S. M.; Tolstykh, A. N.; Sharygln, L. M.; Denlsov, V. 1.; PodobedOV, U. B. At. 1900, 6.9(3), 185-186. (208) Boucherit, N.; Hugotle-Goff, A.; Jolret, S. C w o s . Sci. 1991. 32 (5-6), 497-507. (209) DuennwaM. J.; Otto, A. Cones. Scl. 1989,2 9 ( 9 ) , 1167-1176. (210) Kumar, S.; HeMersbach. R. Am. Concr. Inst. SP 1987, SP-100 (Concr. Durability, VoI. 2) 1727-1741. (211) Boucherit, N.; Hugot-Le Oaff, A.; Jolret, S.; Beranger, G.; Chaudarson, H. Thin S O l M F l l ~1089, 774, 111-116. (212) Boucherlt. N.; Dellchare, P.; Joiret, S.; Hugotle Oaff, A. Meter. Scl. Forum 1088. 44-45 (Electrochem. Methods Corroslon Res.) 51-62. (213) Agar, J. W.; Velrs, D. K.; Rosenblatt, G. M. J . Chem. Phys. 1000,92 (3), 2067-2076. (214) Parker, J. C.; Chang, H. L. M.; Xu, J. J.; Lam, D. J. Meter. Res. Soc. Symp. Roc. 1990, 768 (Chem. Vac. Deposltlon Refrac!. Met. Ceram.), 337-341.

S1OR

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

(215) Turkovlc, A.; Ivanda, M.; Drasner, A.; Vranesa, V.; Persln, M. Thln SolM Fllms 1991, 798 (1-2), 199-205. (216) Law,J. L. Report 1969, ARO-23760.2 Order No ADA209008. Avall. NTIS. From Oov. Rep. Announce. Index(US) 1989,89(20), Abstr. No. 954,171. (217) Sukhov, D. A.; Zhllkln, A. N.; Valov, P. M.; Tarent'ev. 0. A.; Tappi. J . 1901, 74 (3), 201-204 Chem. Abstr. 1091, 175, 52071m. (218) Zhlkln, A. N.; Sukhov, D. A.; V a b , P. M. P v . Vyssh. Uchebn Z e d . Lem. Zh. 1989,(7), 86-91; Chem. Abstr. 1969, 111, 99186k. (219) Colombon. P. J. Meter. scl. 1080, 24 (e), 3002-3010. (220) Colombon, P. J. Meter. Scl. 1089,24 (a), 3011-3020. Rlchter, A. J . Mol. Sbuct. 1090. 273, (221) Hoelzer, W.; Schroeter, 0.; 253-264. (222) Tang, I.N.; Fung, K. H. J . Aerosol. Scl. 1080. 20 (5), 609-617. (223) Fung, K. H.; Tang, I.N. J. C o / M Inrefface Scl. 1080, 730 (I), 219-224. (224) Humphreys. T. P.; Posthlll, J. 8.; Das, K.; Sukow, C. A.; Parlkh, N. R.; Nemanlch, R. J. Mlcrobaem Anel. 1080,24th, 171-172. (225) Bartlett, J. R.: Cooney, R. P.; Specffochim. Acta, Part A 1989. 45A (5), 541-547. (226) De Waal, D.; Heyns, A. M.; Range, K. J. J . S W State Chem. 1989, 80 (2), 170-177. (227) Deeley, C.; Sellors, J.; Spragg, R. Roc. SPIE-Int. Soc.Opt. Eng. 1989. 1145 (Int. Conf. Fourier Transform Spectrosc., 7th), 195-196. (226) Lefrant, S.; Bulsson, J. P.; Eckhardt, H. Synfh. Met. 1000, 37 (1-3), 91-96. (229) Serlclttcl, N. S.; Bartonek, M.; Kuzmany, H.; Neugebauer, H.; Neckel, A. Spth. Met. 1980,29 (I), E193-E202. (230) Wengel, M.; Atkinson, G. H. J . Am. Chem. Soc. 1989, 7 1 7 (16), 6123-6127. (231) Lanreni, G.; Luuatl, S.; Tublno, R.; Delleplane, 0. J. Chem. Phys. 1989,97 (2), 732-737. (232) Teral, A.; Ono, Y.; Wade. Y. J . Phys. Soc. Jpn. 1989, 58 (10). 3798-38 13. (233) Sauvajol, J. L.; Chenounl, D. Synfh. Met. 1980, 31 (3), 335-346. (234) Pousslgue. G.; Benolt, C. J . Phys.: Condens. Mefter 1989, 7 (48), 9547-9560. (235) Lefrant, S.; Verdon, R.; Mulazzl, E. Synfh. Met. 1000, 35 (1-2), 123-128. (236) Bukowska, J.; Jachowska, K. Synth. Met. 1900, 35 (1-2). 143-150. (237) HYado, S.; Okabayashl, K.; A b , K. Denbl Kaga&u @ob/ Kcgyo Butswl Kagaku 1900,58 (2), 143-146. (238) ALamo, R. G.; McLaughlln, K. W.; Mandelkern, L. Polym. Bull. (serlln) 1089, 22 (3), 299-306. (239) Slperko, L. M.; Greasy, W. R.; Brenna, J. T. J . Vac. Sci. Technol., A 1989, 7 (3, Pi 2), 1750-1753. (240) Mendlekern, L.; Alamo, R. G. Report 1988, TR-3; Order No. A D A197395 Avall. NTIS. From Oov. Rep. Announce. Index(U.S.) 1988,88 (24) Abstr. No. 860,685. (241) Mohan, S.; Prabakaran, A. R. Asian J . Chem. 1080, 7 (2), 162-165. (242) Wang, J.; Pang, D.; Huang, B. Polym. Bull. ( W l n ) 1000, 24 (2), 241-246. (243) Van Eljk, M. C. P.; Leblans, P. J. R.; M e r , R. J.; Kip. B. J. J . Meter. SC/. Len. 1900,9 (II), 1263-1265. (244) Kip. B. J.; Van Eljk, M. C. P.; Meler, R. J. J . Pdym. Scl. Part B : Powm. Phys. 1991,29 (l), 99-106. (245) Feng, L.; Ng, K. Y. S. C o / W Surf. 1991. 53 (3-4). 349-361. (246) Kobayashi, M.; Nakaokl. T.; Ishlhara, N. Mecromo/cu~s1990. 23 (l), 78-83. (247) Fotl, G.; Reltano, R. Nucl. Insfrum. Methods Phys. Res. Sect. B 1900. B46 (1-4), 306-306. (248) Jlang, L.; Wang. S.; He, B. React. Polym. 1900, 12 (3), 269-275. (249) Jackson, R. S.; Bower, D. I.J. Po@. Scl., Part 6 : W m . Phys. 1090,28 (6).837-659. (250) Jackson, R. S.; Bower, D. I.; Maddams, W. F. Polymer 1990, 77 (5). 857-860. (251) Johnson, C.; Wander, S. L. S A M E J . 1990,26 (2), 19-25. (252) Savatlnova, 1.; Tonchev, S.; Todorov, R.; Venkova, E.; Llarokafls, E.; Anastassakk, E. J . Appl. Phys. 1900, 67 (4). 2051-2055. (253) Mamlelkern, L.; Alamo, R. G. Polym. Meter. Scl. Eng. 1991,64, 1. (254) Boukenter, A.; Archlbat, T.; Dwal, E.; Lorentz, 0.; Beautemps, J. Po@. Commun. 1001,3 2 ( 9 ) , 258-260. (255) Ader. F.; Annelllno, D.; Noether, H. Roc. SPIE-Int. Soc. Opt. Eng. 1990,1336 (Raman Lumln. Spectrosc. Technol. 2), 182-163. (256) Flna, L. J.: Bower, D. 1.; Ward, I.M. Roc. .PI€-Int. Soc. q r . Eng. 1089, 1145 (Int. Conf. Fourier Transform Spectrosc., 7th), 546-547. (257) El Boukarl. M.; Brlbes, J. L.; Malllals, J. J . Raman Spectroc. 1090,27 (1l), 755-759. (258) Krzemlnskl, J.; Mollsak-Tdwlnska. H. J . Mecromol. Scl. Chem. 1991, A28 (3-4), 413-429. (259) Ellls. 0.; Hendra, P. J.; Jones, C. H.; Jackson, K. D. 0.; Loadman, M. J. R. Kautsch Gumml Kundtst 1000,43 (2). 118-123. (260) Hendra, P. J.; Maddams, W. F.; Royaud, I.A. M.; Wlllls, H. A.; Zlchy, V. Spectrochlm. Acta, Part A 1000,46A (5), 747-756. (261) Agbenyega, J. K.; Ellls, G.; Hendra, P. J.; Maddams, W. F.; Passingham. C.; Wlllk, H. A.; Chalmers. J. Smrmchlm. Acta. PartA 1000.46A (2), 197-216. (262) Ellis, 0.; Claybourne, M.; Richards. S. E. Spectrochhn. Acta, Part A iaao. 4.-.6. (2). ~ 227-241 ,-, - . .. (263)-2lmba, C. 0.; Tunell, S.; Hallmark, V. M.; Rabdt, J. F. J . Phys. Chem. 1000. 94 (21, 939-943. (264) k a r d , ' D. L.; Wllllams, K. P. J. €IN. W m . J . 1090, 26 (12), 1355-1358. (265) Bowby, H. J.; Gerrard, D. L.; Smlth, M. J. C.; Blggln, I.S. A&. Org. Coal. SCi. Technol. Ser. 1989, 7 7 , 1-6.

.

.

RAMAN SPECTROSCOPY

(266) Urban, M. W. A&. Chem. Ser. 1969, 223 (Potym. AQWW wla) 295-314. (267) Melhot, 0.;mimppelt, J. L.: mer,M. w m . commun.1991, 32(8), 229-231. (288) Schbtter, N. E. J. phvs. &em. 1990, 84(4), 1692-9. (289) h n M . L. A.; Hendra. P. J.; Hodgson. D. A.; Ellb. G.; T a w , M. A,; WUIk Hn A, €Wn polym. J . 1990, 26 (6), 667-673. (270)C h a m , P. M. Roc. SPIE-Int. Soc. Opt. €4. 196S, 1055 (Raman scattdng, Lumln. Spectrosc. Instrum. Technd.), 229-234. (271) Peticolas. W. L.; Wllson, K. J.; Brk, B. M. hc. SPIE.Int. Soc. Opt. €4. 1969, 1057 (Blomol. SPOCVOSC.), 161-174. (272) Yue, K. T.; Deng, H.; Callender, R. J. Remen speclroec. 1969, 20(8), 541-545. (273) Spko, T. G.; Smulevitch, G.; Su, C. skchemlpby 1990, 29 (19), 4497-4508. (274) Fwfanov, A. V.; Efremov, R. G.; Dzhandzhugazyan, K. N.; Nablev. I. R. Bld. Msmbr. 1990, 7(4),341-351;Cham. Abstr. 1990, 113,19997d. (275) Nablev, I. R.; Chumanov, G. D.; Efremov, R. G. J. R 8 m n Specbosc. 1990, 27 (l),49-53. (278) Nablev, 1. R.; Sokolov, K. V.; Voloshln, 0. N. J . R8n” Specfroc. 1990, 27 (8). 333-338. (277) Twpln, P. Y.; Chlnsky, L.; Lalgle, A.; Jdles, 8. J . Mol. Sbuct. 1969, 274,43-70. (278) Bra&, V. Stud. Ekphvs. 1969, 730 (1-3),55-58. (279) Peticolas, W. L.; Patapoff. T. W.; Wang, Y.; Thomas, 0. A. Ber. BunsSn-&S. PhyS. Chem. 1969, 93 (3),295-300. (280)SadeghMorabchl, H.; Hendra, P. J.; Wllson, R. H.; Belton, P. S. J . Am. 011 Chem. Soc. 1990, 67(8), 483-488. (281) Sawatzkl, J.; Flscher, R.; Scheer, H.; Slebert, F. Roc. M f l . Aced. SCI. U . S . A . 1990. 87(15),5903-5906. (282) Johnson, C. K.; Rublnovitz, R. Appl. Spectrosc. 1990. 44 (7). 1103-1108. (283) Levln, I. W.; Lewis, E. N. Anal. Chem. 1990, 62(21),1101A. (284) Barnett, S.M.; Dlcalre, F.; Ismall, A. A. Cen. J . Chem. 1990, 68(7), 1196-1200. (285) Nk,S.; Bergbauer, K. L.; Kuck. J. F.; Yu, N. T. Ezp. €ye Res. 1990, 57 (5). 819-823. (286) ’T&, A. M.; Mella. C. D.; Blnns, J. S.; Hendra, P. J.; Church, S.; Davbs, M. C. J. pherm. E b W . Anel. 1990, 8(8-12),717-720. (287) Rave, R. P.; Baraya, J. J.; Feu, M. S. Spectrochim. Acta, Pert A 1991,47A (3-4),509-512. (288) Qovorun, D. N.; Kondratyuk, I. V.; Mlschuk. Y. R.; Samollenko, S. A,; Zeltovskll. N. V. BbpollmKlefk8 1990, S(5), 48-51;Chem. Abstr. 1991, 774, 181489a. (289) Gregonls, D.; Van Wagenenen, R.; Cokman, D.; Mitchell, J. Roc.

SPIE-Int. Soc. Opt. €178. 1990, 7336 (Raman Lumln. Spectrosc. Tech. nOl. 2) 247-255. (290) Puppls, 0.J.; De Mul, F. F. M.; Otto, C.; Greve, J.; Robert-Nicoud, M.; Arndt-Jovln. D. J.; Jovln, T. M. Nature (London) 1990, 347 (6290),

301-303. (291) Sweau, F.; Chlnsky, L.; Amirand, C.; Balllnl, J. P.; Duquesne, M.; Lab gle, A.; Turpln, P. Y.; Vlgny, P. Appl. Specbosc. 1990, 44 (8).

1047-105 1. (292) Netto, M. M.; Fodor, S. P. A.; Mathles, R. A. photochem. photobbl. 1990, 52 (3),805-607. (293) Bertduua, A.; Fagnano, C.; Montl, P.; Slmonl, R.; Caramazza, R.; Barbaresl, E.; Manclni, S. NATO ASI Ser. Ser. C 1969, 280 (Spectrosc. InOrg. Bloect.) 279-291. (294) Lee, H. I.; Chol, M. U.; Klm, M. S.; Such, S. W. BUM. K m n Chem. Soc. 1969. 70 (4), 368-371. (295) Chwmnov, G. D.; Efremov, R. G.; Nablev, I.R. J. R9.” Spectrosc. 1990, 27 (I),43-48. (298) Vldugkls, 0.J. A.: Gudedclus, A. V.; Razumas, V. J.; Kulys, J. J. Eur. Bkphve. J . 1969, 77(1), 19-23. (297) Nb, S.; Cartlllo, C. 0.;Bergbauer, K. L.; Kuck, J. F. R.; Nablev. I.R.; YU. N. T. Appl. Spectros~.1990. 44 (4),571-575. (298)Tomasl, 0.E.; Turumln, J. L.; Tu, A. T. Appl. Specbosc. 1900, 44 (a), 1408-1411. (299) Kodotl. V. R.; Tu, A. T. Appl. Spectfosc. 1990, 44 (5), 833-839. (300) Robert. B. Bbchlm. srophvs. Acta 1990, 7077(2),99-111. (301) VOrIna, S. P. U.S. US4,832,483(Cl. 35539;W I N 33/48),Appl. 92, 424,03 Sep 1987. (302) Levln, I. W. rnt. Conf. Ramen Specbosc. hc. 7 7 t h 7988, 23-26; Clark, R. J. H., Long, D. A., Edr.; Wlley: Chlchester, UK.

(303) Ness, K. M. M.; Hopklne, A. R. PCT Int Appl. WO 88 06, 728 (Cl. WIN21/85),07 Sep 1988. (304) Pstlcdas. W. L.; Wilson, K. J.; Deneumaux, P.; Vergotan, G. Chem. Ser. 1969, 29A, 113-122. (305) Baranska, H.; Labudzlnska, A.; Bottcher, A.; Gutsze, A.; Kaluzny, J. KM. Ocrne 1966, 90(10),333-338;chsm.Ab&‘. 1969. 7 7 7 , 190705q. (306) Bot, A. C. C.; Hulzlnga, A.; De Mul, F. F. M.; Vrenwn, G. F. J. M.; Greve, J. Exp. €ye Res. 1969, 49 (2),161-169. (307) Bertduua, A.; Fagnano, C.; Montl. P.; Slmonl, R.; Qarcla-Ramos, J. V.; Caramazza. R. Opt. Are Appl. 1968, 27 (2), 43-50. (308) Zawadowskl, A. Sprtngw Ser. W - S t a t e Scl. 1990. 99 ( € W o n . Prop. Hlgh-Tc Supercond. Relet. Compd.), 306-311. (309)Uch(de,S.; KOtalBUtSvll990, 25(10),890-700;Chem. Ab&. 1991. 174. 31954f. (310) sugal, S. S p r h p Sw. Meter. Scl. 1969. 71 (Mech. Hlgh Temp. SUPWCOnd), 207-219. (311)Fauchet, P. M.; Campbell, I. H. Meter. R e s . Soc. Symp. Roc. 1990, 764 (Mater. Issues Mlcroccyst. Semlcond.). 259-264. (312) Wagner, J. Appl. Surf. Scl. 1991, 50, 79-86. (313)WIIHsms, R. H. L%X78: Turk. F k . h r g . 1990, 74(Suppl. 1 Proc. Int. Conf. BsamSolld Interact., 1989),98-112.

(314) Roughanl, 8.: Sengupta, L. C.; AubeI, J.; Sundaram, S. AIP Conf. Proc. 1990. 200 (High Tc Supercond. Thin Films: Process Charact Appl), 165-1 71. (315) Creile, R.: R a ~ r k k w i c z ,J.: Gordon, W.; Szuba, S. Reg. H&h Temp. Supercond. 1990,24 (hoc. Eur. Conf. High TC Thin FllmS Shgb Cryst.. 1989). 704-709. (316) Denlsov, V. N.; Mavrln, 8. N.; Podobdov. V. B.; Goncharev, A. F. PhYS. R e p . 1990, 794 (5-6), 397-405. (317) Uarokapls, E.; Wllle, L. T.; Leventourl, T.; Martinez, L.; Lu, H.; Hadjev, V.; Illev, M. phvsice C (Amsfed8m) 1990, 770 (5-6), 419-426. (318) Kaklchana. M.; b j e s s o n , L.; Torell. L. M.; Erlksson, S. NATO ASI SSr. Ser. E 1990, 78 (PhYS. Mater. SCi. HI& Temp S~percond),581-593. (319)Moto,A.; Morlmoto, A.; Shimku, T. Mol. Cryst. us. Cryst. 1990, 7 8 4 , 285-289. (320) Denisov, V. N.; Mawln, B. N.; Podobedov. V. B.; Aleksandrov, I.V.,

Bykov, A. 8.; Goncharov, A. F.; Melnlkov, 0. K.; Romanova, N. I.S o w State Commun. 1969, 70 (9). 885-888. (321) PI“,V. H.; Oh-Klm, E.; Klm. K. H.; Kim, D.; Chol, J. S. J . Less-Common Met. 1969, 751,133-138. (322) Prdhan, A. K. Physkx C (Amsterdam) 1969, 759 (3),277-280. (323) Llu, R.; Cardona, M.; Gegenhelmer, B.; Heyan, E. T.; Thomsen, C. Phys. Rev. E : condens.M e m 1969, 40 (4),2654-2657. (324) Thomaen, C.; Cardona, M.; Liu, R.; Mattawh, H.; Koenig. W.; (3erclaAlvarado, F.; Suarez, B.; Moran, E.; AlarbFranco, M. solld-State Commun. 1969, 69 (a), 857-865. (325) Mod. T.; Nakaoka, K.; Onarl, S.; Arai, T. SdM-State Commun. 1969, .72 _fl1. ., 125-130. .-- .- -. (326) Cho, S. K.; Kim, D.; Chol, J. S.; Kim. K. H. J . Phys. Chem. SoHds ~

.

inno. .- - -. 51 - . (21. 113-121. . -(327) Orera, V. M.; Sanjuan, M. L.; Alcala, R.; Fortcuberta, J.; Plnol, S. Physic8 C (Amsterdam) 1990, 768 (1-2),161-168. (328) Ylm, K. K.; Oltmos. J.; Elcombe, M. M. SM-State Commun. 1991, 77 (5).385-388. (329) Mazuenko, V. 0.; Kortov, V. S. F k . T v d . Tele (Len/ngmd)1990. 32 (lo),3034-3037; Chem. Absb. 1991, 774, 238801k. (330) Aleksandrov, 0.V.; Aleshchenko. Y. A.; Vodop’yanov, L. K.; Karaba1-11

drev, S. G.; Klseleva, K. V. SverklyKovodhrost: F k . , Khhn. Tekh. 1969,

2(1O). 149-152; Chem. Ab&. 1991, 774. 14152k. (331) Roughanl, B.; Sengupta, L. C.; Aubel, J. L.; Sundaram, S.; Jolner. W. C. H. Physla C (Amsterdem) 1990, 777 ( 1 4 ,77-86. (332) Kakihana, M.; Boerjesson, L.; Erlksson, S.; Svedllndh, P.; Norling, P. Phys. Rev. E : Condens. Mem 1969, 40 (lo),6787-6796. (333) Llu, Y.; Lee, J. Y.; Sumner, M. J.; Sooryakumar, R.; Lemberger, T. R. Phys. Rev. E : Condens. Metter 1990, 42(16-A),10090-10097. (334) Nganga, L.; Hwng, P. V.; Chamlnade, J. P.; Dordov, P.; Frohllch, K.; Jergel, M. J . Less-Common Met. 1990, 764-765(1-2),208-214. (335) Hescicsk, Y. S.;Testardl, L. R.; Leventourl, T.; Llarokapls, E.; Martinez, L. J . Apple P h y ~ 1990, . 68 (e), 4178-4182. (336) Ponosov, Y. S.;Bolotln, 0. A.; Chebotaev, N. M. Phys. Lett. A 1990, 746 (9),551-555. (337) Zheng, S.;Cao, Y.; Mho, B.; Luo, W.; Hua. Z. Ohm Wull Xuebeo 1969, 7 7 (3),218-221;Chem. Abstr. 1969, 7 7 7 , 208989~. (338) Bush, A. A.; Dubenko, I.S.; U m o v , M. F.; Markov, Y. F.; Panflkv, A. G.; RazbHn, B. S.; Sokobva, 0. V. Ws’mZh. Eksp. Teor. F k . 1989, 50 (9,250-253;Chem. Abstr. 1969, 7 7 7 , 223266~. (339)Thomsen, C.; Cardona, M.; Llu, R. J . Less-Common Met. 1966, 750, 33-37. (340) Mlsochko, 0.V.; Tlmofeev, V. B. Physice C (Amsterdam) 1969, 762-764 IPt 11). 1249-1250. (341) Sugah’S.F&oelecM 1969. 96, 105-109. (342)Thomsen, C.; Frledl, B. Sprihger Ser. Wkl-State Scl. 1990, 99 ( E b tron. Rop-Hlgh-Tc Supercond. Relat. Compd.), 312-317. (343) Wagner, J. Defect Confrol.Semlcond. 1989. 7. 715-724. (344) Wagner, J. Meter. Scl. Fwum 1990, 65-86 (Shallow Impurities Sem bond.), 1-10. (345) Hare. T.; Haglwara, H.; Ichkawa, R.; Nakashlma, S.; Mlzoguchl, K.;

Smith, W. L.; Welles, C.; Hahn. S. K.; Larson, L. I€€€ Electron Dev/ce Lett. 1sso, 11 (ii),485-488. (348) Duncan, W. M.; Matyi, R. J.; ShlchlJo, H.; Kao, Y. C.; Liu, H. Y. Appl. Phys. Lett. 1990. 57(16),1831-1633. (347) Balramov, B. H.; Irmev, G.; Monecke. J.; Toporov, V. V. J. Mol. Sbyct. 1990, 279,19-24. (348) Radens, C. J.; Roughani, 8.; Jackson, H. E.; Boyd, J. T.; Bwnham, R. D.; I€€€ J . Quantum Electron. 1969, 25 (5. Pt. 1). 989-992. (349) Landu, 0.; Carles, R.; Fontaine. C.; Bedel, E.; Munoz-Yague, A. J . Appl. Phys. 1969, 66 (1).196-200. (350) Humphreys, T. P.; Posthill, J. B.; Das. K.; Sukow, C. A.; Nemanlch, R.J.; Parikh, N. R.; Majeed. A. Jpn. J . Appl. Phys.,p81-t 2 1980, 28 (9). L 1595-Ll598. (351) Takeuchi, T.; Maezawa. C.; Nomura, T.; Ishikawa, K.; MuJso,M.; Haag InO. M. A&. Swf. SCl. 1969. 47-42. 530-533. (352) Ikuka, K.; YOShide. T.; Hasobe, M.; Matsuda, I.; Suzakl, T. Appl. W . S d . 1969, 47-42,587-590. (353) a n , F. J. N o n - w t . SOW 1991, 729 (1-3).299-310. (354) Polhk, F. H. Report 1989,Order No. ADA209247. Avall. NTIS From ( b v . Rep. Announce Index (US) 1969, 89 (20).Abstr. No 955,174. (355)DhamUr-WWdana, M. W. C.; AWS, 0. C.; Lodt~ood.D. J.; J. M. Phys. Rev. E : Condens. Miter 1990, 47 (e), 5319-5331. (356) DeWliton, A. C.; Weaver, L.; Oliver, B. A. Inst. Phys. Conf. Ser. 1969, 700 (Mlcrosc. Semicond. Mater.), 525-530. (357) Sham, R. P.; Bhadna, R.; Rehn. L. E.; Baldo, P. M.; Orlmsditch, M. J. Appl. Phys. 1969, 66(1),152-155. (358)Davy, S.T.; Halllwell, M. A. 0.; Rogers, D. C.; Taylor, M. R.; Scott, E. G. J . Cryst. &oMh 1969. 96 (2),258-264. JALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

511 R

RAMAN SPECTROSCOPY (359) Bdyl. V. 1.; Sysoeva, N. P Kolesov, B. A. POwefkhnOst. 1980, (E), 86-91; Chem. Abstr. 1989, 7 7 7 , 202566k. (360) Alonso, R. 0.; Suh, E. K.; Ramdas, A. K.; Samanth, N.; Luco, H.; Furdyna, J. K. fhys. Rev. B : condens. Matter 1989. 40 (6). 3720-3728. (361) Sharma, S. K. Roc. SfIE-Int. Soc.Opt. Eng. 1989, 1055 (Raman Scattering Lumln., Spectrosc. Instrum. Technol.), 105-1 16. (362) Schlferl. D.; Le Sar, R.; Moore, D. S. NATO ASI Ser. Ser. 6 1989, 786 (Simple Mol. Sist. Very High Density), 303-328. Popova, S. V.; Skrotskaya, 0. 0. fhys. (363) Brayhkh, V. V.; Larchev, V. I.; scr. 1989, 39 (3), 338-340. (364) Hess, N. J.; Exarhos, 0. J. Roc. SHE-Int. Soc. Opt. Eng. 1989, 7055 (Raman Scattering Lumln. Spectrosc. Instrum. Technol.), 194-203. (365) Onarl, S.; Inokama, T.; Hlroskl, T.; Kataura, H.; Aral. T. Semlcond. Sci. Technol. 1089. 4 (4), 254-256. (366) Kobayashl, M.; Morlshb, H.; Shlmomura, M. Macromobcuks 1989, 22 (9), 2728-3730. (367) Yakovenko, E. V.; Aleksandrov, I.V.; Goncharov. A. F.; Stlshov, S. M. Zh. Eksp. T W . F k . 1989, 95(6), 2097-2102 Chem. Abstr. 1989, 7 7 7 , 160793~. (368) Swanson, 8. I.Int. Conf. Raman Spectrosc., Roc 7 7 t h 7988, 4750; Clark, R. J. H., Long, D. A., Eds.; Wlley: Chlchester (UK). (369) Goncharov, A. F. tis’ma zh. Ursp. T w . flz. 1990, 57 (7), 388-370; Chem. Abstr. 1990, 773. 150756. (370) Zheo, Y.; Wang, J.; CUI, Q.; Llu. Z.; Yang, M.; Shan, J. fo3/mer 1990, 37 (E), 1425-1428. Zhao, ; Y.; Cui, Q.; Llu, Z.; Zou, G. J . fhys. Condens. (371) Llu, Z.; Wang, I. Matter 1890, 2 (40), 8083-8088. (372) Sui, Z.; Herman, I.P.; Bevk, J. Appi. fhys. Lett. 1991, 58 (21), 2351-2353. (373) Mao, H. K.; Hemley, R. J. Nature (London) 1991, 357 (6329), 721-724. (374) McCarty, K. S. High Temp. Sci. 1988-1989, 26, 19-30. (375) Hershen, H.; Cappelll, M. A. fhys. Rev. B: Condens. Matter 1991, 43 (14), 1740-1744. (376) Exahs, G. J.; Schaaf. J. W. J. Appl. fhys. 1991, 89(4). 2543-2548. (377) Exarhos, G. J.; Schaaf, J. W. Roc. SfIE-Int. Soc. Opt. Eng. 1989, 1055 (Raman Scattering Lumln, Spectrosc. Instrum. Technol), 185-193. (378) Chou, T. C. J . Mater. Scl. 1901. 26(5),1412-1420. (379) AnJeneyulu, Y.; Lal, K.; Bhatnagar, H. L. Indian J. Pure Appl. fhys. 1989, 27(3), 103-107. (380) Semmler, J.; Irish, D. E. J . Mol. Liq. 1990, 46, 1-6. (381) Boghoxlan, S.; Bebells, S.; Vayenas, C. G.; Papatheodorou, G. N. J. &tal. 1989, 117 (2), 581-585. (382) Exarhos, G. J.; Hess, N. J. Mater. Res. Soc. Symp. Roc. 1990, 762 (Diamond Silicon Carbide Relet. Wide Bandgp Semicond.), 561-566. (383) Kawal, N. T.; Gllson, D. F. R.; Butler, I.S. J . fhys. Chem. 1990, 94 (15), 5729-5734. (384) Jones, J. Report 1989, AFOSR-TR-89-0283; Order No. ADA205292 Avail. NTIS. From Gov. Rep. Announce. Index ( U . S ) 1989, 89 (14). Abstr. No 938, 632. (385) Delhaye, M.; Dhamellncourt, P.; Barbillat, J. Mlcrobe8m Anal. 1988, 23rd, 153-156. (388) Adar, F. Roc SfIE-Int. Soc. Opt. Eng. 1089, 7786 (Surf Interface Anal. Microelectron Mater. Process. eo*), 79-95. (387) Kataglrl, Q.; Ishida, H.; Ishbnl, A. fetrotech (Tokyo) 1990, 73 (2), 164-169; Chem. Abstr. 1990, 773, 13851e. (388) Schrader, B. Fresenius’ J. Anal. Chem. 1900, 337 (7). 824-829. (389) Corset, J.; Dhamellncourt, P.; Barbillat. J. Chem. Br. 1980, 25 (6), 612-616. (390) Ozekl, T.; Irish, D. E. Report 1990. Order No. ADA219521 Avail. NTIS. From Gov. Rep. Announce. Index(US) 1990, 90(14). Abstr. No. 036, 002. (391) Ozekl, T.; Irish, D. E. J . Electroenai. Chem. InterfecialElectrochem. 1990, 280 (2), 451-455. (392) Guenther, K. H.; Loo, B.; Burns, D.; Edgell. J.; Wlndham, D.; Muller, K. H. J . Vac. Scl. Technol., A 1989, 7(3 Pt. l), 1436-1445. (393) Day, R. J.; Plddock, V.; Taylor, R.; Young, R. J.; Zaklkhanl, M. J. Meter. Sci. 1989, 24 (8). 2898-2902. (394) Bonnot, A. M. Roc.-Electrochem. Soc. 1989, 89-72 (Proc. Int. Symp. Diamond Dlamond-Llke Films, 1st. 1989), 579-593. (395) Etz, E. S.; Schroeder, T. D.; Farsbaugh, E. N.; Robins, L. H.; FeMman, A. Roc. SHE-Int. Soc. Opt. Eng. 1989, 7746 (Diamond Opt. 2), 104- 118. (396) mope, T. P.; Morrlsh, A. A.; Hanssen, L. M.; Butler, J. E.; Snail. K. A. h o c . SfIE-Int. Soc. Opt. Eng. 1990, 7325(DlamondOpt. 3), 230-237. (397) Ager, J. W.; Velrs, D. K.; Rosenblatt, G. M. fhys. Rev. B : Condens. Matter 1991, 43 (E), 6491-6499. (398) Kolb, 0.; Salbert, T.; Abstreiter, G. J. Appl. fhys. 1991, 69 (5), 3387-3389. (399) Dauskardt. R. H.; Velrs, D. K.; Ritchle, R. 0. J. Am. Ceram. Soc. 1989, 72(7), 1124-1130. (400) Beny. C.; Jehllcks, J. Vestn. Ustred. Ustevu W. 1991, 66(1). 1-12.

(404) Mernagh, T. P.: Wllde, A. R. Geochlm. Capmochlm. Acta 1989, 53(4), 785-77 1, (405) Mengas, J.; Arrlbas, A. Mineral Mag. 1991, 55 (379), 21 1-223. (406) Schank, P.; Hoell, R.; Ivanova, 0. F.; Naumov, V. B.; Kopneva, L. A. G d . Rundsch. 1990, 79(2), 451-468.

512R

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

(407) Andersen, T.; Austrhelm, H.; Burke, E. A. J . Mlneral Mag. 1990, 54 (375), 145-148. (408) Llu, L. G.; Mernagh, T. P.; Jaques. A. L. Contrlb. Mineral., fetroi. 1990, 705(2), 156-161. (409) Burruss, R. C.; Ging, T.; Carlson, D. Microbeam Anal. 1989, 24M, 173-1 75. (410) Lee, S. W.; Condrate, R. A,; Melanl, N.; Tammaro, D.; Wooley, F. E. S ~ ~ C ~ ~Lett. O S 1990, C . 23 (7), 945-966. (41 1) Bowden, M.; Dlxon, N. M.; Gardiner. D. J.; Carter, S. F. J. Mater Sci. Mater. Electron. 1S90, 7 (I), 34-30. (412) Dubessy, J.; Poty, B.; Ramboz, C. Mem-oeol. SOC. India 1988, 7 7 (Fluid Inclusions), 125-147. (413) Wopenka, B.; Pasterls, J. D.; Freeman, J. J. Geochim. Cosmochim. Acta 1990, 54 (3), 519-533. (414) Dubessy, J.; Poty, B.; Ramboz, C. Eur. J . Mineral. 1989, 7 (4), 517-534. (415) Ishida, H. Kagaku to Kogyo (Tokyo) 1989, 42 (5), 852-854; Chem. Abstr. 1989, 7 7 7 , 135263~. (416) Huong, P. V.; Verma, A. L.; Chaminade, J. P.; Nganga, L.; Frlson, J. C. Mater. Sci. Eng. 61990, B5 (2), 255-260. (417) Treado, P. J.; Morris, M. D. Appl. Spectrosc. 1990, 44 ( l ) , 1-4. (416) Treado, P. J.; Govll, A.; Morris, M. D. Appl. Spectrosc. 1990, 44 (E), 1270-1275. (419) Brunner, K.; Abstreiter, G.; Kolbesen, B. 0.; Meul, H. W. Appi. Surf. SCi. 1989, 39 (1-4), 116-126. (420) Butler, 1. S.; Zhu, Z. H.; Ogllvie, K. J. Ramen Spectrosc. 1989, 20 (6), 391-398. (421) KbJeml. M.; Nakamura, K. J. Nucl. Mater. 1990, 775 (3), 251-253. (422) Melanitis, N.; Galiotls. C. J. Mater. Sci. 1090, 25 (12), 5081-5090. (423) Edwards, H. G. M.; Farwell, D. W.; Seaward, M. R. D.; Glacoblnl, C. Int. Bbdeterior. 1991, 27(1), 1-9. (424) Otto, A. Colbids Surf. 1989, 38 (1-3), 27-36. (425) Takenaka, T. Nlppon Shashiri Gakkaishi, 1989, 52 ( l ) , 62-69; Chem. Abstr. 1989, 7 7 7 , 103081s. (426) Crelghton, J. A. Spec. Pub/.-R. SOC. Chem. 1990, 84 (Surf. Anal. Tech. Appl.), 13-26. (427) Mal’shukov, A. G. Phys. Rep. 1990, 794 (5-6), 343-349. (428) Boerlo, F. J. Thln Solid Films 1989, 787, 423-433. (429) Boerio, F. J.; Young, J. T.; Tsal, W. H. Report 1990, TR-9; Order No. ADA223103 Avail. NTIS. From G o v . Rep. Announce. Index ( U . S . ) 1990, 90 (20) Abstr. No. 050, 824. (430) Gul, J.; Devine, T. M. J . Electrochem. Soc. 1991, 738 (5), 1376-1384. (431) b e & , F. J.; Hong, P. P.; Clark, P. J.; Okamoto, Y. Report 1989, TR-4; Order No. ADA216117. Avail NTIS. From Gov. Rep. Announce. Index ( U S ) 1990, 90 (E), Abstr. No. 017,733. (432) Aktslpetrov, 0. A.; Mlshlna, E. D. m k i . Akad. Nauk SSSR 1989, 308 (3), 569-600; Chem. Abstr. 1990, 772, 43274r. (433) Llpscomb. L. A.; Nie, S.; Feng, S.; Yu, N. T. Chem. Phys. Lett. 1990, 770 (5-6). 457-461. (434) Myrlch, M. L.; Angel, S. M. Roc. SfIE-Int. Soc. Opt. Eng. 1990, 7772 (Chem. Blochem. Envlron. Fiber Sens.) 38-48. (435) Knight, D. S.; Welmer, R.; Plllone, L.; White, W. B. Appl. fhys. Lett. 1990, 56 (14), 1320-1322. (436) Wiesner, J.; Wokaun, A.; Hoffmann, H. Rog. Colloid. Po/ym. Sci. 1988, 76 (Trends Colloid Interface Scl., 2), 271-277. (437) Sun, S.; Blrke, R. L.; Lombardl, J. R. J . fhys. Chem. 1990, 94 (5), 2005-20 10. (438) Doraln. P.B Report 1988, Order No. ADA196728. Avail. NTIS. From Gov. Rep. Announce. Index ( U . S . ) 1988, 88 (23) Abstr. No. 857, 657. (439) A r m , R.; Battlstl, D.; Kovacs, G. J.; Loutby, R. 0. J. Electrochem. SOC. m a , 136 (io), 2902-2905. (440) Ferris, N. S.; LRman, J. E. Roc. SPIE-Int. Soc. Opt. Eng. 1989, 1055 (Raman Scattering Lumln, Spectrosc, Instrum. Technol), 117-122. (441) Zhang, C.; Yu, F.; Zhang, G. J. Ramen Spectrosc. 1989, 20 (7), 431-434. (442) A r m , R.; Gahathakurta-Ghosh, V. J. Am. Chem. SOC. 1989, 7 7 7 (20), 7681-7683. (443) Pothla, N. J.; Force, R. K. Anal. Chem. 1990, 62(7), 678-680. (444) Kuzmany, H. Makromol. Chem. Macromol. Symp. 1990, 37(Invited Lect. Int. Summer Sch. Light-Sensitbe Conduct. Polym. 1989). 61-97. (445) Szalontal, B.; Gombos, Z.; Csizmadla, V.; Csatorday, K.; Lutz, M. Biochemistry 1989, 28 (15), 6467-6472. (446) Hudson, B.; Senslon, R. J.; Brudzynski, R. J.; Ll, S. Int. Conf. Raman spectrmc.. Roc. 7 7 t h 7988, 51-54; Clark, R. J. H., Long, D. A., Eds.; Wlley: Chlchester (UK). (447) Santos, P. S; Goncalves. N. S. J. Raman Spectrosc. 1989, 20 (8), 551-554. (448) Cataliottl, R. S.; Morresl, A.; Pallanl, G.; Zgierski, M. Z . J . Ramen Spectrosc. 1989, 20 (g), 601-604. (449) Bennett, R.; Cutler. D. J.; Mould, H. M.; Chapman, D. J . Raman Spectrosc. 1990. 27 (lo), 899-702. (450) Taran, J. P. Int. Conl.Raman Spectrmc. Roc. 7 7 t h 7988, 31-34; Clark, R. J. H.; Long, D. A. Wlley: Chlchester, U.K. (451) Rakestraw. D. J.; Lucht, R. P.; Dreier, T. Appl. Opt. 1989, 28 (19), 4116-4120. (452) Palmer, R. E. Report 1969, SAND-89-8206; Order No. DE 89007551, Avail. NTIS From Energy Res. Abstr.. 1989, 74 (9), Abstr. No. 18586. (453) Kurtz, A. Appl. Opt. 1989, 28 (24), 5206-5208. (454) Bukreev, V. S.; Volkev, S. Y.; Ilyukhin, A. A.; Pashlnin, P. P.; Prokhorov, A. M.; Savel’ev, A. D.; Sergeev, S. N.; Smlrnov, V. V. Shchlchkim. Kvantovaya Elektron. (Moscow) 1990, 17 (lo), 1381-1382; Chem. Abstr. 1991, 774, 32725b. (455) Borremann, T.; Kornas, V.; Schultz-Van der Gathan, V.; Doebele, H. Appl. f h p . B 1900, B57 (5), 307-313.

RAMAN SPECTROSCOPY (456) Tretaut, B. Report 1989, ONERA-RS-5317131-PY; Order No. PB90122383. Avail. NTIS. From Gov. Rep. Announce. Index ( U . S . ) 1990, 90 (3), Abstr. No. 005, 569. (457) AttaCTretout, B.; Schmidt, S. C.; Crete, E.; Dumas, P.; Taran, J. P. J. Quent. Spectrosc. R8d/at. Transfer 1990, 43 (5). 351-364. (458) Beck, R. D.; Hlneman, M. F.; Nlbler, J. W. J . Chem. M y s . 1990, 92 (i2), 3068-3078. (459) Chen, T. 2.; Goss, L. P.; Trump, D. D.; Schmoil. J. W. J . Propul. Power 1990. 6 ( 2 i 106-114. (460) Woyde. M.; Siricker, W. Appl. Phys. B 1990, B50 (6).519-525. (461) Baedeker, L. R.; Dobbs, G. M. Chem. M y s . Rocesses Combust. 1990. 11111-1 1114. (462) Maklno, A.; Araki, N.; Nkto, Y. Nippon Kikai Gskkai Ponbunshu, B-Len 1991, 57(533), 333-338; Chem. Abstr. 1991. 775, 12145~. (463) Taran, J. P. Chem. Br. 1989, 2 5 ( 6 ) , 598-600. (464) Snelling, D. R.; Smallwood, 0. J.; Parameswaran, T. Appl. Opt. 1989, 28 (15), 3233-3241. (465) Gonul, M.; Watanabe, Y.; Eguchi, K., Kurosawa, Y.; Kanai, Y. Report, 1988, NAL-TR-999; Order No. N89-26058. Avail. NTIS. From Gov. Rep. Announce. Index ( U S . ) 1989, 89 (23) Abstr. No. 961, 970; Chem. Abstr. 1990, 773,28020h. (466) Rosasco, G. J. Report 1989, ARO-23356.5CH: Order No. A D A212411. Avail. NTIS. From Oov. Rep. Announce. Index(U.S.) 1090, 90 (2), Abstr. No. 002, 693. (467) Hata, N. Denshi @/utsu Sogo Kenkyusho Kenkyu Hokoku 1989, (901). 1-82; Chem. Abstr. 1990, 772, 227957~.

(468) Roman, W. C.; Colket, M. 8.; Hay, S. 0.; Eckbreth, A. C. Roc.-€lectrochem. Soc. 1989, 89-12 (Proc. Int. Symp. Diamond DiamonbLlke Fllms, Ist, 1989), 330-341. (489) Singh, J. P.; Yuch, F. Y. Appl. Opt. 1091, 30(15), 1967-1975. (470) Kukk, P.; Frelburg, A. M. Fiz. Tverd. Te/a (Leningrad) 1989, 37 (g), 174-180 Chem. Abstr. 1990, 772, 13554q. (471) Lueckerath, R.; Koss, H. J.; Tommsach, P.; Richter, W.; Bulk, P. Meter. Res. Soc. Symp. Roc. 1989, 737 (Chem. Perspect. Microelectron. Mater.); 91-96. (472) Lange, B.; Noda. M.; Marowsky, 0.Appl. Phys. B 1989. E49 (l), 33-38. (473) Walsh, A. M.; Lorlng, R. F. Chem. Phys. Lett. 1989, 760 (3), 294-304. (474) Golombok, M.; Pye, D. B. J. fhys. D : Appl. Phys. 1990, 23 (8), 1103- 1108. (475) Golombok, M.; Pye, D. 8. J . Phys. D : Appl. Phys. 1989, 22 (6), 851-853. (476) Petrushevlch, Y. V.; Starostln, A. N. Kuontovaya Electron (Moscow) 1991, 76(2), 282-265; Chem. Abstr. 1991, 774, 237223k. (477) Serpenguzel, A.; Chang, R. K.; Archer, W. P. Repr.-Am. Chem. Soc., Dlv. Pet. Chem. Wgl, 36(1). 130-136. (478) Acker. W . P.; Sepenguzel, A.; Chang, R. K.; Hill, S. C. Appl. phys. 8. 1990, B57 (1). 9-16. (479) Golombok. M.; Pye. D. B. Opt. Lett. 1990. 75(15), 872-874. (480) Boganl, F.; Canaresl, L. Nuovo Clmento SOC. Ita/. Fls. D 1989, 77D (lo), 1451-1465.

ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992

513R