Scalable Fabrication of Metal Halide Perovskite ... - ACS Publications

Aug 2, 2019 - mechanical parts are not a requisite, and safe.1 In addition, it has the .... value per cell in the module, with the aim to make it more...
0 downloads 0 Views 5MB Size
Subscriber access provided by EKU Libraries

Review

Upscalable Fabrication of Metal Halide Perovskite Solar Cells and Modules Longbin Qiu, Sisi He, Luis K Ono, Shengzhong (Frank) Liu, and Yabing Qi ACS Energy Lett., Just Accepted Manuscript • DOI: 10.1021/acsenergylett.9b01396 • Publication Date (Web): 02 Aug 2019 Downloaded from pubs.acs.org on August 3, 2019

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

1

Upscalable Fabrication of Metal Halide Perovskite

2

Solar Cells and Modules

3

Longbin Qiu 1,†, Sisi He 1,†, Luis K. Ono 1,†, Shengzhong Liu 2,3,*, Yabing Qi 1,*

4

1

5

Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa

6

904-0495, Japan.

7

2

8

Chinese Academy of Sciences, 457 Zhongshan Road, 116023 Dalian, China.

9

3

Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and

Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics,

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key

10

Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy

11

Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an

12

710119, China.

13 14

AUTHOR INFORMATION

15

Corresponding Author

16

* E-mail: [email protected] (Y.B.Q.); [email protected] (S. L.).

17

†These authors contributed equally to this work.

1 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

18

Page 2 of 68

ABSTRACT

19

Perovskite photovoltaic (PV) technology towards commercialization relies on high power

20

conversion efficiency (PCE), long lifetime, and low-toxicity in addition to development of

21

upscalable fabrication protocols, optimization of large area solar module structures, and a positive

22

cost-benefit assessment. Although small area metal halide perovskite solar cells (PSCs) show PCE

23

up to 24.2%, the efficiency gap between small and large area PSC devices is still large. Worldwide

24

research efforts have been directed towards developing upscalable fabrication strategies for

25

perovskite solar modules. In this perspective, we share our view regarding the current-stage

26

challenges for the fabrication of perovskite solar modules with areas above 200 cm2 and

27

summarize recent progress in minimizing efficiency gap, and highlight what strategies warrant

28

further investigation for moving perovskite PV technology towards industrial scale. These

29

strategies include learning from other commercialized thin film PV technologies, analyzing the

30

current status on perovskite solar modules employing solution- and vapor-based upscalable

31

fabrication techniques and optimizing large area module designs. Considering cost analysis and

32

operational stability profiles, carbon electrode-based devices are particularly promising.

33

TOC GRAPHICS

34

2 ACS Paragon Plus Environment

Page 3 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

35

Solar energy is recognized as one of the most promising renewable energy sources because of

36

its cleanness, abundance, easiness to operate, quietness in the sense that moving mechanical parts

37

are not a requisite, and being safe.1 In addition, it has the advantage of capability to cover a wide

38

range of power generation capacity ranging from milliwatt (mW) to multi-gigawatt (GW). For

39

example, large scale PV power stations (or solar farms) can be designed to power cities and

40

industries,2 while at the same time stand-alone systems can be employed in terrestrial isolated rural

41

zones and space programs to power satellites. PVs with compact and light-weight characteristics

42

can also be designed for operating small electronics that require low-power (e.g., portable

43

electronics, smart-phone battery charging, internet of things, and so on). Therefore, the size and

44

configuration of a PV system can be designed to satisfy the energy demand for a specific

45

application.3 In March of 2019, the National Renewable Energy Laboratory (NREL) released the

46

“Champion Photovoltaic Module Efficiency Chart”.4 This new chart is devoted specifically to the

47

development of solar modules, which differs from the champion laboratory-scale (small sizes)

48

research-cell efficiency chart.5 The chart of power conversion efficiencies (PCEs) of solar modules

49

allows researchers and industry to gain insight into the progress and trends of different PV

50

technologies in the context of upscalable fabrication. The modules are categorized into four

51

clusters delineated by the total module area size, which includes both the active area and the dead

52

areas needed for module interconnections.6-7 For a solar module to be included in either of NREL

53

solar module efficiency chart4 or (solar cell efficiency tables provided by Prof. Martin Green and

54

coworkers),8 (i) the active area efficiency is not a consideration and (ii) the relevant designated or

55

aperture area for submodule need be in the smallest range of 200-800 cm2. As listed below, in the

56

NREL chart, the sizes are divided into 4 categories, while only 2 categories exist in the solar cell

57

efficiency table provided by Prof. Martin Green et. al.

3 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 4 of 68

58 59

Solar module efficiency chart classification (NREL):4,9

60



Large module: >14,000 cm2

61



Standard module: 6,500–14,000 cm2

62



Small module: 800–6,500 cm2

63



Mini or sub-module: 200–800 cm2

64 65

Solar cell efficiency tables (Prof. Martin Green and coworkers)8

66



module: over 800 cm2

67



sub-module: 200–800 cm2

68 69

This chart summarizes a variety of state-of-the-art PV materials and technologies, which were

70

developed in the last few decades with the aim to achieve the highest performance for harvesting

71

solar energy at the lowest production cost.4, 8 Among these various types of PV technologies (e.g.,

72

Si, CIGS, CdTe, etc.),10-11 metal halide perovskites (denoted as “perovskites” throughout the article)

73

have recently gained considerable attention, and are considered as a strong candidate for the next

74

generation of solar cells and modules because of their excellent photovoltaic properties, raw

75

material abundance, low-cost and low-temperature fabrication, compatibility with flexible

76

substrates, etc. On the basis of our analysis represented in Figure 1 and Table 1, there are only a

77

few works that reported perovskite solar modules with areas larger than 200 cm2. Although

78

feasibility for the realization of perovskite solar modules with areas larger than 10 cm2 and PCE

79

above 10% has been demonstrated, these solar module area sizes are still far from the expected

80

200 cm2. Therefore, several issues need be overcome and we share a few strategies based on our

81

own experience as well as some knowledge learned from other research groups in the field. For

4 ACS Paragon Plus Environment

Page 5 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

82

example, these strategies include (i) borrowing the processes from other commercialized thin film

83

PV technologies, (ii) analyzing the key issues in the fabrication process of solution- and vapor-

84

based upscalable techniques with emphasis on the chemical vapor deposition technology, and (iii)

85

the past experience on optimizing the module patterning design.

86 87

Currently, Toshiba Corporation holds the world record for the largest CH3NH3PbI3 (MAPbI3)

88

perovskite film-based PV sub-module with 24.15 cm ´ 29.10 cm (703 cm2 designated illumination

89

area; definitions of the measurement areas can be found from references7-8) with a certified PCE

90

of 11.7%, open circuit voltage (Voc) of 1.073 V, short circuit current density (Jsc) of 14.36

91

mA/cm2, and fill factor (FF) of 75.8% (here all the Voc and Jsc are given or calculated according

92

to the value of per cell in the module. The aim is to make it more convenient to compare with other

93

works about module as different modules have different number of cells in series connection).12

94

To further enlarge the area from 703 cm2 to 802 cm2, a perovskite solar module with certified PCE

95

of 11.6% has been achieved (Figure 1).8 This large-area sub-module and module were fabricated

96

by a 2-step process employing the meniscus printing technology with the PbI2 and CH3NH3I

97

precursor solutions applied sequentially. It has been mentioned that the goal of the company is to

98

fabricate PV modules with sizes of 900 cm2 that would be possible to achieve a levelized cost of

99

electricity of ~0.06 USD (7 JPY) per kWh by 2030.12 In this perspective, we analyze the current

100

progress of solution- and vapor-based upscalable techniques that allowed fabrication of solar

101

modules with a total area larger than 10 cm2. On the basis of our analysis (Table 1 and Figure 1),

102

we provide our views on the major challenges needed to be overcome to successfully minimize

103

the efficiency gap (i.e., the difference in the performance between small cells and larger module

104

scales).13-14 The first challenge is related to preparation of high quality (i.e., uniform coverage and

5 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 68

105

chemical composition, high-crystallinity, and low surface roughness over the large area) and

106

reproducible films of perovskites as well as compatibility with adjacent functional layers forming

107

the whole perovskite solar module. The second challenge is related to the needs to optimize solar

108

module design for attaining high performance. It is important to minimize the effects of the sheet

109

resistance to facilitate charge collection by the electrodes. The third challenge concerns the

110

fabrication-cost issues during development of upscaling. Carbon electrode-based devices have the

111

potential to lower the fabrication cost and enhance the solar module operational stability. In the

112

outlook, we propose further research directions that have been developed in small lab-scale solar

113

cells and discuss the potential and how these strategies could be transferred in the development of

114

solar modules.

115

6 ACS Paragon Plus Environment

Page 7 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

116

Figure 1. Summary plots of the solar module parameters (a) PCE, (b) Jsc, (c) Voc, and (d) FF that

117

show current progress employing different upscalable techniques of solution-based (spin-coating,

118

doctor-blading, slot-die, meniscus, screen printing) and vapor-based methods (HCVD, CVD, and

119

CH3NH2-gas treatment). In these plots, we included published works reporting perovskite solar

120

modules that employ series-interconnections and with a total area larger than 10 cm2 (see Table

121

1). PCE, Voc, and Jsc values are normalized according to the active area and the number of

122

interconnected cells. Jsc in (b) is calculated to be the current density passing of each cell multiplied

123

by the number of interconnected cells. Voc in (c) is calculated to be the total open circuit voltage

124

of the solar module divided by the number of interconnected cells. The horizontal dashed-line

125

corresponds to the highest certified small cell efficiency that have been published.15 The

126

highlighted zone above 200 cm2 corresponds to the minimum size that is needed to be considered

127

as mini- or sub-module in the NREL “Champion Module Efficiencies” chart.4

128

The progress of solution-based upscalable techniques. The first perovskite solar module

129

employed the spin-coating technique leading to a PCE of 5.1% with an active area of 16.8 cm2

130

(the total substrate size = 25 cm2).16-18 During the past few years, remarkable progress towards

131

upscaling of perovskite solar modules can be clearly seen based on a survey of selected papers

132

employing solution techniques to fabricate solar modules with a total area larger than 10 cm2

133

(Table 1). To evaluate the progress and whether perovskite solar modules show promises for

134

attaining higher efficiencies when made larger, we have generated summary graphs that show not

135

only the PCE, but also all the solar cell parameters (Jsc, Voc, FF) plotted as a function of solar

136

module active area (Figure 1). From these graphs, it can be inferred that great efforts for upscaling

137

of perovskite solar modules have been done employing spin-coating (17 out of 40 studies surveyed

138

in this review) as it is most common and readily available in the laboratories working with lab-

7 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 8 of 68

139

scale small area perovskite solar cell (PSC) devices.16, 19-26 As a reference to illustrate the efficiency

140

gap,13-14 we also plot the published values of the certified small area PSC performance (PCE =

141

23.32%, Jsc = 25.2 mA/cm2, Voc = 1.18 V, FF = 78.4%, active area = 0.0739 cm2) reported by

142

You and coworkers.15 and indicated these values as horizontal dashed-lines in Figure 1a-d. Spin-

143

coating has been demonstrated to generate PCEs as high as ~13% with a reported active area size

144

of 50.6 cm2 (on a total substrate area of 100 cm2).19 Spin-coating is a low-cost and easy-to-operate

145

technique, but it is challenging to use this technique to deposit uniform films of perovskites in a

146

reproducible manner when the sizes are larger than 100 cm2. Hence, several solution-based

147

methods (Figure 2) that are more compatible with upscalable fabrication have been developed,

148

such as blade-coating,27-31 slot-die coating,32-36 meniscus assisted solution printing,37 screen-

149

printing,38-39 spray-coating,34, 40-41 soft-cover deposition,41-42 pressure processing method,43 and

150

inkjet printing.44-46 Although the number of publications is still small, it is possible to observe

151

some trends from these reports. Among all these upscalable solution-based methods listed above,

152

and screen printing (4 out of 40 studies)38-39, 47-48, blade-coating (3 out of 40 studies surveyed in

153

this work),27-28, 31 and slot-die coating (3 out of 40 studies)33, 36, 49 have attracted more attention.

154

On the other hand, meniscus printing (2 out of 40 studies)12, 50 and spray-coating (1 out of 40

155

studies)41 are also promising. On the basis of Figure 1, the feasibility has been demonstrated for

156

the realization of perovskite solar modules with areas larger than 10 cm2 and PCE above 10%.7, 48,

157

51-52

158

pin-hole free perovskite films with large grains, high-crystallinity, and uniform stoichiometry

159

across large areas. The understanding and control of the physico-chemical dynamics during film

160

growth, which are strongly dependent on the different coating processes and solution precursor,

161

are requisites for attaining high quality perovskite films.

Currently one of the most challenging issues is the need to reproducibly deposit smooth and

8 ACS Paragon Plus Environment

Page 9 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

162 163

The coating processes employing spin-coating has been well-characterized. For a solution

164

coating process that employs upscalable technique (for instance blade coating), one may consider

165

that similar nucleation and crystal growth dynamical processes take place in the blade coating

166

compared to that of spin-coating. However, a key aspect in the perovskite one-step coating process

167

is the need to rapidly remove the solvent during drying of the film. The anti-solvent

168

dripping/washing process,27-28 which promotes the rapid removal of solvent during film drying, is

169

feasible for spin-coating but challenging for other solution-based upscalable methods. The solution

170

chemistry need be modified and optimized according to the specific upscalable coating process.27-

171

28

172

instruments. In spin-coating, the substrate is rotated at a high speed in order to efficiently spread

173

the extra solution out from the film by the aid of centrifugal force. In contrast, all other upscalable

174

techniques are based on non-rotating coating techniques.27-28 Therefore, development of precursor

175

solutions is a key factor when employing non-rotating coating techniques because the physical

176

properties of the solvent-drying processes influence significantly the final film quality.28, 53 Several

177

strategies of precursor ink formulation modification have been proposed in one-step method such

178

as (i) surfactant-controlled (for example, L-α-phosphatidylcholine) ink drying process with doctor

179

blading;27 (ii) blade coating with MACl additive to optimize crystal growth;28 (iii) air blow or

180

vacuum flash-assisted solution process.33,

181

processes such as inter-diffusion process and sequential coating of two precursor inks with

182

upscalable techniques were reported.54-55 Currently, the largest certified solar module held by

183

Toshiba Corporation employed a two-step coating process.12 Another promising direction is the

184

development of new chemical processes. For instance, Han and coworkers43 developed the amine

Another aspect relates to the differences in the technical aspects of spin-coating and upscaling

49

Alternatively, two-step perovskite film formation

9 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 68

185

complex precursors of CH3NH3I ⋅ mCH3NH2 and PbI2 ⋅ nCH3NH2 for fabrication of MAPbI3

186

perovskite films. The ink formulation was optimized to be used in their pressure processing method.

187

In this technique, the uniform spreading of the liquid precursor on the substrate is performed by

188

applying a pneumatically driven pressure with a polyimide coated flat squeezing board. CH3NH2

189

gas evaporates leading to a dense and full coverage MAPbI3 perovskite film. Furthermore, a

190

certified PCE of 12.1% has been reported based on a MAPbI3 perovskite solar module with an

191

aperture area of 36.1 cm2. At the current stage the aforementioned processes employed mainly

192

MAPbI3 perovskite, and further efforts are needed to develop suitable precursor solutions and

193

chemistry processes for upscalable fabrication of PSCs based on mixed-cation and halide

194

perovskites with better stability and / or photoelectronic properties. More detailed descriptions

195

about these upscalable methods can be found from several review articles.6-7, 51-52, 56-69 In the next

196

section, we discuss vapor-based methods that have shown some initial success as an attracting

197

alternative to fabricate perovskite solar modules.

10 ACS Paragon Plus Environment

Page 11 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

198 199

Figure 2. Schematic drawing showing the important route from developing protocols employing

200

upscalable (a) solution and (b) vacuum based coating techniques to perovskite solar module design

201

and commercialization. State-of-the-art perovskite solar modules can be fabricated by solution

202

coating processes or vapor deposition processes. There are two common solar module architectures,

203

i.e., (c) series connection and (d) parallel connection. (e) For commercialization, the cost and

11 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 12 of 68

204

installation need be taken into consideration. This pie chart summarizes the cost distribution for a

205

typical perovskite solar module. (f) The perovskite solar farm image reprinted with permission

206

from ref. 13. Copyright 2018 American Association for the Advancement of Science (AAAS).

207

The progress of vapor-based upscalable techniques. Vapor-based methods have also been

208

demonstrated as a promising route for the fabrication of perovskite PV modules. In the field of

209

thin-film PV technology, the highest efficiencies in Cu(In,Ga)Se2 (CIGS) PV devices are

210

fabricated by physical vapor deposition (PVD) (vacuum co-evaporation or sequential inline

211

deposition), and the constituent-component vapors are condensed onto the substrates with Mo as

212

back contact.70-71 Similarly, highly efficient CdTe-based PV devices are fabricated by the so-called

213

vapor transportation deposition (VTD) and close-spaced sublimation (CSS) techniques, both of

214

which can be regarded as PVD.72-77 The design prerequisite for PVD-based equipment is to

215

minimize the influence of extrinsic impurities that may be incorporated from uncontrolled ambient

216

during film deposition. Chemical vapor deposition (CVD) is another mature vapor-based method

217

that has been playing a pivotal role in Si-based PV industry.78 In fact, former United Solar Ovonic

218

LLC used to fabricate triple-junction thin film silicon cells using roll-to-roll PECVD technology,

219

with each run producing 15 kilometer-long solar cells.79-80

220 221

In a broad context, a CVD process refers to the formation of a thin solid film on a substrate via

222

a chemical reaction of vapor-phase precursors and therefore it differs from PVD. CVD has been

223

widely employed in PV sector and industrial settings, e.g., Mitsubishi Heavy Industries, Ltd

224

demonstrated operating megawatt capacity solar farm based on single junction hydrogenated

225

amorphous Si (a-Si:H) solar modules grown by plasma enhanced CVD installed in Germany.81-82

226

Another area where PECVD has been extensively employed is the deposition of an a-Si:H

12 ACS Paragon Plus Environment

Page 13 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

227

passivation layer in c-Si solar cells. The a-Si:H layer is a key to passivating Si dangling bonds. In

228

2017, the Kaneka R&D group applied (i) the passivating-contact solar cell technology and (ii)

229

interdigitated back contact technology, which helped set the world’s Si single junction solar cell

230

efficiency record of 26.6% with a designated area of 180.4 cm2.83-84 CVD has also be used in

231

depositing transparent conductive oxide (TCO) such as SnO2, F-doped SnO2 (FTO), and ZnO85-86

232

as well as antireflection (AR) coatings87-88 such as SiN, SiO2, and TiO2. Vapor-based methods

233

have the advantage of low-cost and high-throughput, which have been already widely adopted in

234

the coating and semiconductor industry.89 Hence fabrication of solar modules based on all vapor

235

methods (i.e., solvent-free processes) could be also envisaged for the perovskite PV technology.57,

236

90-93

237 238

There have been some demonstrations to employ vapor-based methods in PSCs. In addition to

239

uniform film formation across large areas, there are also other unique advantages for vapor-based

240

processes compared with solution coating processes such as easy formation of perovskite

241

heterojunction structures94 and conformal coating in textured-structured surfaces.95 These vapor-

242

based processes for perovskite can be summarized as co-evaporation of organic and inorganic

243

precursors (PVD),96-97 alternating precursor deposition,98 direct contact deposition,99 hybrid CVD

244

(HCVD),100-101 reactive polyiodide melts process,102 vapor assisted solution process (VASP),103

245

CSS104 and recently reported sputtering deposition105. Since Qi and coworkers101 developed the

246

HCVD technique and demonstrated efficient PSCs, a variety of CVD techniques were

247

consecutively invented showing outstanding achievements in perovskite PV technology.91

248

Although there are more and more research works on vapor-based processes for PSCs, the number

249

of works focusing on vapor-based methods is still small compared to that of the works focusing

13 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 14 of 68

250

on solution-based methods. Furthermore, only a very few works have been published in applying

251

vapor-based methods in perovskite solar modules with larger areas. Among various vapor-based

252

methods (Table 1), HCVD is particularly promising in upscaling perovskite solar modules. HCVD

253

is a thin-film deposition method that combines PVD and CVD. A multi-zone furnace with flexible

254

control of growth parameters (carrier gas, pressure, and temperature) is used in the HCVD process.

255

Typically, perovskite film growth by HCVD process is a two-step process (Figure 2). This has the

256

advantage that the individual steps can be optimized individually. In the first step, optimization

257

and coating of inorganic precursors (e.g., PbI2, PbCl2, CsI, etc.) are coated by vacuum evaporation

258

or upscalable solution techniques. Subsequently, the inorganic precursor coated films are

259

transferred into a tube furnace equipped with temperature controller and pressure gauge used to

260

optimize the organic halide vapor (e.g., MAI, FAI, MABr, FABr, etc.). The organic halide vapor

261

deposits on the PbI2/PbCl2 films followed by the inter-diffusion into the films leading to the

262

conversion of uniform perovskite layers. Perovskite growth by HCVD was first demonstrated in

263

2014.101, 106-107, and the first perovskite solar module by HCVD was demonstrated in 2016.100 At

264

present most of the vapor-based perovskite solar modules are fabricated by HCVD. In the context

265

of PSC research, CVD has the particular advantages such as (i): CVD is a mature and well-

266

established technology in the semiconductor and coating industries. CVD is not only compatible

267

with industrial application for large scale commercial processes, but also has the ability of batch

268

process and high throughput continuous processes as proven by manufacturers in their kilometer-

269

long roll-to-roll deposition.79-80 In addition, the vacuum processes are easy for patterning,

270

compatibility with a wide range of materials, reasonable capital investment, and cost-effectiveness

271

of processing; (ii) vapor deposition eliminates the usage of harmful organic solvents55, 108-112 and

272

reduces the wastes of perovskite precursor solutions. Hence, CVD represents a low environmental

14 ACS Paragon Plus Environment

Page 15 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

273

impact processing method. In addition, it avoids the complications of solvent related dynamics

274

such as solubility of the bottom layer when covered by the precursor solution of the top film,

275

intercalation of solvent molecules into the solid material, wettability issues leading to non-uniform

276

coating; (iii) weak dependence on substrate size meaning that the perovskite films can be coated

277

uniformly on substrates with almost arbitrary large sizes and with varying aspect ratios, limited

278

only by the CVD apparatus size; (iv) such a coating process can be directly applied in two-terminal

279

tandem solar cells with a perovskite layer as a top cell and silicon, CIGS or CdTe as the bottom

280

cell. In addition, the vapor nature of CVD allows the deposition of a type of perovskite on top of

281

another perovskite (for example, forming a p-n homojunction structure). Perovskite solar modules

282

with active areas over 10 cm2 fabricated by vapor-based methods have also been included in Table

283

1. As we can see, all the works used HCVD except one study by Qi and coworkers.113 Recently, a

284

remarkable large area solar modules with mixed Cs/FA cation deposited by HCVD have been

285

demonstrated with efficiencies approaching 10% with a designated area of 91.8 cm2, which were

286

fabricated on 10 cm ´ 10 cm substrates.114 Most importantly, the performance decay with upscaling

287

of active area is similar to other commercialized thin film solar modules (1.3%/decade compared

288

with 0.8%/decade; Figure 1).114

289 290

Although HCVD is the dominant method for fabricating most of the reported perovskite solar

291

modules using vapor-based methods, there are other new trends we can learn from the recent

292

progress in the field. The strategies of mixing two or more cations and / or mixing halides have

293

been demonstrated to be beneficial in tuning optoelectronic properties of perovskite materials as

294

well as enhancing their stability.115 Similar to solution coating processes, the perovskite

295

composition can be tuned by changing the precursor sources. For example, Bolink and coworkers

15 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 68

296

reported fabrication of triple-cation mixed-halide small-area PSCs (active area = 0.09 cm2) by

297

vacuum deposition116 and co-evaporation to incorporate Cs in the first step were previously

298

reported.95, 114, 117 Another strategy is to combine solution and vapor processes and it shows unique

299

advantages over solution-only processes.118-119 Recently many high performance PSCs have been

300

reported by the two-step inter-diffusion method of solution-processed precursor stacking layers.15,

301

54

302

mixed organic halide salt solution requires uniform coating of the solution and removal of solvent

303

in the whole area in a short time.119 This is easy to control for lab-scale small device fabrication

304

processes but difficult for industrial large scale fabrication. Furthermore, in vapor-based processes,

305

the slower reaction and uniform coating of the halide salts are beneficial for the growth of uniform

306

perovskite films. By optimizing the first step of metal halide solution composition, not only the

307

composition of the as-formed perovskite film, but also the structural properties could be readily

308

modified. Another example to combine solution and vapor methods is the study by Qi and

309

coworkers, in which a solid-gas reaction between the MACl modified HPbI3 (pre-deposited by

310

spin-coating) and CH3NH2 gas leads to formation of high-quality over 1.1 µm thick MAPbI3 films

311

resulting in perovskite solar modules with a PCE of 15.3% on an active area size of 12 cm2.113

312

Similar to CVD process, CH3NH2 gas treatment is also a two-step process with the first step aiming

313

the optimized coating of HPbI3. Subsequent exposure of the HPbI3 coated substrates to CH3NH2

314

gas environment leads to the immediate formation of perovskite-melt. After the removal of

315

CH3NH2 gas, high quality perovskite films are obtained. CH3NH2 gas treatment is suitable for the

316

fabrication of high-quality thick perovskite films up to 1 µm.113 The encouraging device

317

performance and long-term operational stability profile represent to a promising direction of

However, for mixed cation/halide perovskite, the fast reaction in the second step after dropping

16 ACS Paragon Plus Environment

Page 17 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

318

employing thick absorber films to realize solar modules with high efficiencies, reproducibility,

319

and stability.

320 321

Table 1. Selected works reporting on perovskite solar modules that employs series-

322

interconnections and with total areas larger than 10 cm2. The PCE and Jsc values are provided

323

normalized by the active area unless otherwise stated: apaperture area, dadesignated area (active

324

area + dead area for interconnections).

325

b

CE

Certified efficiency. aNormalized by active area.

Stabilized PCE.

Solar module architecture ITO/PEDOT:PSS/MAPbI3/PCBM/LiF/Al FTO/c-TiO2/mp-TiO2/MAPbI3-xClx/spiroMeOTAD/Au FTO/c-TiO2/mp-TiO2/MAPbI3-xClx/P3HT/Au ITO/PEDOT:PSS/MAPbI3/PCBM/Au FTO/c-TiO2/nano rod-TiO2/CH3NH3PbI3xClx/spiro-MeOTAD/Au ITO/c-TiO2/mp-TiO2/CH3NH3PbI3-xClx/spiroMeOTAD/Au FTO/c-TiO2/mp-TiO2/MAPbI3/spiroMeOTAD/Au ITO/c-TiO2/MAPbI3-xClx/spiro-MeOTAD/Au ITO/PEDOT:PSS/CH3NH3PbI3-xyBrxCly/PCBM/Ca/Al

Perovskite fabrication method

Active area (cm2)

Spin-coating

60

Spin-coating

16.8

Total area Number of Individual (cm2) (lateral cells cell width PCEa dimensions interconne ´ length (%) cted (cm´cm)) (mm) 10 8.7 100 (10´10) 6´10 25 (5´5)

5

7´48

Jsca (mA/c m2)

Voc (V)

FF (%)

Ref.

1.9

8.1

57

16

5.1

2.0

4.3

60.3

2.2 2

4.5 10.1

52.6 63.7

26

18

Spin-coating

40

100 (10´10)

10

---

5.1 12.9

Spin-coating

10.8

32.5 (5.7´5.7)

4

---

10.5

5.3

3.37

56

120

Spin-coating

7.9

31.4 (5.6´5.6)

4

---

3.1

5.2

3.4

71

121

Spin-coating

10.1

32.5 (5.7´5.7)

4

7´36

13

4.7

4.2

66.5

17

Spin-coating

3.64

9 (3´3)

4

4.57´20

13.6

19.1

0.9/cell

75

122

Spin-coating

25.2

100 (10´10)

9

4´70

14.3

2.1

9.1

74.4

22

25 (5´5)

8

---

12

2.6

8

58.2

20

25 (5´5)

5

5´45

15.4

4.3

4.7

77

123

FTO/NiOx/MAPbI3-xClx/PCBM:PEI/Ag

Spin-coating

ITO/PEDOT:PSS/MAPbI3/PC71BM/Ca/Al FTO/c-TiO2/mpTiO2/Graphene/MAPbI3/Spiro-MeOTAD/Au ITO/PEDOT:PSS/MAPbI3xClx/PC61BM/TIPD/Al FTO/SnO2/KxCs0.05(FA0.85MA0.15)0.92Pb(I0.85B r0.15)3/spiro-MeOTAD/Au PET/ITO/SnO2/K0.03Cs0.05(FA0.85MA0.15)0.92Pb (I0.85Br0.15)3/spiro-MeOTAD/Au FTO/SnO2/MAPbI3/spiro-MeOTAD/Au FTO/SnO2/ [CsPbI3]0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95/ spiro-MeTOAD/Au FTO/c-TiO2/mp-TiO2 /(FAPbI3)0.95(MAPbBr3)0.05/WBH/P3HT/Au

Spin-coating

15 (GFF ~ 0.6) 11.25

Spin-coating

50.6

100 (10´10)

8

8´79

12.6

2.3

8.6

64.6

19

Spin-coating

12

25 (5´5)

3

30´40

11.2

6.5

2.7

63.8

124

Spin-coating

20

36 (6´6)

6

6´55

15.6

3.5

6.8

65

125

25 (5´5)

6

---

12.4

3.07

6.5

62

126

25 (5´5)

6

7.1´48

12.03

3.38

5.8

61.3

127

6.5´6.5

11

---

15.3

1.98

11.2

0.69

100da Spin-coating 24.94da

--49 (7´7)

20 8

-----

14.03 17.1da

1.02 2.72da

20.2 8.78

0.68 71.7

24.94da

49 (7´7)

8

---

17.1da

2.72da

8.66

72.6

16.1ap

30 (5´6)

6

---

15.2

3.28

6.7

69

130

100

176 (16´11)

9

---

4.3

7.5

9.6

53.8

31

PET/ITO/SnO2/Cs0.05(FA0.85MA0.15)0.95Pb(I0.85 Br0.15)3/spiro-MeOTAD/Au FTO/c-TiO2/mp-TiO2/MAPbI3/P3HT/Au

Spin-coating Spin-coating Spin-coating

Bar-coating Spin-coating / Slot-die coating (SnO2) Doctor blading

10

ap

22.4

da

25da

128 129

17 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

FTO/c-TiO2/MAPbI3/spiro-MeOTAD/Ag

Doctor blading

ITO/PTAA/MAPbI3/C60/BCP/Cu

Doctor blading

PET/ITO/ZnO/MAPbI3/P3HT/Ag FTO/ZnO/MAPbI3/Carbon ITO/c-TiO2/MAPbI3-xClx/SpiroMeOTAD/Au

MAPbI3 (Toshiba Corporate R&D Center)

Slot-die coating Slot-die coating Slot-die coating

Meniscus printing

11.1

24.2 (6.35´3.81)

33ap 57.2ap

Meniscus coating

FTO/c-TiO2/mp-ZrO2/MA(5AVA)PbI3/Carbon FTO/c-TiO2/(mp-TiO2/mpZrO2/mp-C)/(5AVA)x(MA)1-xPbI3 FTO/c-TiO2/(mp-TiO2/mpZrO2/mp-C)/(5AVA)x(MA)1-xPbI3

Screen printing Screen printing Screen printing

FTO/c-TiO2/(mp-TiO2/mpZrO2/mp-C)/(5AVA)x(MA)1-xPbI3

Screen printing

Spray coating Pressure FTO/c-TiO2/mp-TiO2/MAPbI3/spiroprocessing MeOTAD/Au method FTO/SnO2/(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3/sp Solvent-bath iro-MeOTAD/Au process FTO/c-TiO2/MAPbI3-xClx/PTAA/Au

Microquanta Semiconductor Co., Ltd.

---

Solaronix SA FTO/SnO2/C60/Cs0.1FA0.9PbI3/spiroMeOTAD/Au FTO/SnO2/CsxFA1-xPbI3-yBry/spiroMeOTAD/Au FTO/TiO2/Cs0.07FA0.93PbI3/spiroMeOTAD/Au FTO/TiO2/FAPb(I0.85Br0.15)3/spiroMeOTAD/Au FTO/TiO2/FAPbI3/spiro-MeOTAD/Au

Printing

FTO/c-TiO2/mp-TiO2/MAPbI3−xClx/spiroMeOTAD/Au

CH3NH2-gas treatment

HCVD

4

6´46.2

17

6.5´30

16

6.5´55

90 (6´15)

14.1 (13.3b) 15 (15.3b) 15 (14.6b)

~20.8

4.4

~61.5

19.5

~18.2

72.1

20.3

~17.1

68.9

28

27

40

100 (10´10)

5

---

0.93

1.35

2.75

25

36

17.6

25 (5´5)

8

---

10.6

3.25

6.14

53

49

25

---

11.1

17.3

21.2

67.9

23

4.75´130

11.8

19

20.8

70.6

44

---

11.7CE

14.36

1.073/ cellCE

75.8 68.0

151.9 142

168.8 (12.5´13.5) 149.5 (11.5´13)

703da (24.15 ´29.1)

---

802da ITO/Cu-oxide/MAPbI2.7Br0.3/PCBM/BCP/Ag

Page 18 of 68

33

---

22

---

11.6CE

15.83

1.081/ cellCE

4, 8, 12

25 (26.7ap ) 31 70

---

4

---

15

~4.4

~4.5

75

50

50 (5´10) 100 (10´10)

4 10

7.8´99.4 7´100

10.5 10.7

19.6 17.7

3.72 9.6

57.5 62.9

39

49

100 (10´10)

10

5.3´93

10.4

2

9.3

56

48

46.7

100 (10´10)

8

7´85

11.2

2.2

7.1

70.4

47

198 (435.6ap)

623.7 (21´29.7) A4-size

22

5´180

3.2

0.5

18.2

38.9

38

40

100 (10´10)

10

~4´100

15.5

2.1

10.5

70.2

41

36.1ap

64 (8´8)

10

---

15.7 (12.1CE)

2 (2CE)

53.6ap

100 (10´10)

12

---

13.9

1.7

17.277

---

7

---

500

24

---

100 (10´10)

14

da

--82.6 (91.8da)

17.25

CE

20.66

10.5 75.7 (8.36CE) (71.5CE) 13.4

CE

12 --10.37 1.42 6.7´98 (9.34 da) (1.28da)

1.07

CE

62 78.1

43 131

CE

8

---

---

132

13.55

59.6

114

CVD

41.25

64 (8´8)

---

---

12.24

2.25

9.18

52.8

117

HCVD

12

25 (5´5)

6

4.1´49

14.6

3.67

5.84

0.681

119

HCVD

12

25 (5´5)

6

4.1´49

14.7

3.55

6.29

0.66

118

HCVD

12 15.4

25 (5´5) 25 (5´5)

6 6

4.1´49 5.2´49

9.0 5.8

2.97 2.53

5.64 4.62

0.54 0.49

100

12

25 (5´5)

6

4.1´49

15.3

3.66

6.65

63

113

326

Abbreviations: ITO = indium tin oxide; FTO = fluorine doped tin oxide; c-TiO2 = compact TiO2;

327

mp = mesoporous TiO2; spiro-MeOTAD = 2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-

328

9,9’-spirobifluorene; PCBM = [6,6]-phenyl-C60,61 butyric acid methyl ester; PTAA = Poly[bis(4-

329

phenyl)(2,4,6-trimethylphenyl)amine];

330

ethylenedioxythiophene):poly(styrenesulfonate);

PEDOT:PSS P3HT

=

=

poly(3,4-

Poly(3-hexylthiophene-2,5-diyl)

18 ACS Paragon Plus Environment

Page 19 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

331

regioregular; PC71BM = [6,6]-Phenyl C71 butyric acid methyl ester; BCP = bathocuproine; 5-

332

AVA = 5-aminovaleric acid.

333

In order to obtain larger area and high quality perovskite films, Liu, Li and coworkers developed

334

a technology of alternating vacuum deposition (AVP) in 2015,98 as shown in Figure 3a. The

335

perovskite film was deposited using a layer-by-layer method. The PbCl2 was first evaporated onto

336

the substrate in a vacuum system, and then the CH3NH3I was thermally sublimed onto the PbCl2

337

film. They then repeated the process until sufficient coating thickness is generated. Finally, the

338

perovskite film was obtained after the sample was annealed at 120 ℃ for 2 hours. The merit of the

339

AVP technology is that the more volatile organic component does not interfere with the high

340

temperature evaporation of the inorganic moiety and therefore both of them can be well-controlled

341

separately. The PCE of large area (1 cm2) perovskite solar cells reached 13.84%, one of the highest

342

values at that time for the large area perovskite devices.98 Another process is to fabricate the

343

perovskite solar cells using direct contact deposition,99, 133 as shown in Figure 3b. This approach

344

combines the advantages of the short reaction time, facile fabrication, exceptional uniformity, good

345

reproducibility, high device performance and up-scalability, leading to uniform deposition over

346

large area.

19 ACS Paragon Plus Environment

ACS Energy Letters

Current Density (mA/cm2)

a Alternated deposition

b FTO/c-TiO2 FTO/c-TiO2 PbI2

15 min

CH3NH3PbI3

CH3NH3I powder

CH3NH3I powder

Heating (150 oC)

Heating (150 oC)

Current Density (mA/cm2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 68

20 16

1 cm2

12

PCE: 13.84%

8 4 0

0.0

0.2

0.4 0.6 Voltage (V)

0.8

1.0

20 15 10 5

! = 12.6% Area: 1 cm2

0 0.0

347

0.2

0.4 0.6 Voltage (V)

0.8

1.0

348

Figure 3. Illustrate the fabrication of perovskite films and the performance for large area

349

perovskite devices by (a) Alternating vacuum deposition (Reproduced by permission of The Royal

350

Society of Chemistry)98 and (b) Direct contact deposition (reprinted with permission from ref. 133.

351

Copyright 2015 Elsevier).

352

Solar module architecture considerations. Another issue that need to be considered during the

353

fabrication of perovskite solar modules is the relatively inherent high resistance of transparent

354

conducting electrode, e.g., fluorine-doped tin oxide (FTO) and indium-doped tin oxide (ITO).134

355

To solve this issue, the solar cell/module architecture design is of vital importance. There are

356

basically two architectures for thin film solar module fabrication, i.e., series connection and

357

parallel connection (Figure 2), both of which are designed to lower the impact of TCO resistance

358

and to meet the voltage and current requirements for desired applications.67, 135 A single-junction

359

solar cell is often inadequate on the basis of reported maximum power point (MPP) voltage and

360

current (VMPP, IMPP), which scales with the band gap and crystal quality of PV material;136 for

20 ACS Paragon Plus Environment

Page 21 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

361

example, VMPP of a typical single-crystalline silicon solar cell is 0.66 V, while GaAs is around

362

1.02 V, and GaInP has the highest VMPP of 1.36 V; polycrystalline films such as CIGS and MAPbI3

363

perovskite generate VMPP of 0.63 V and 0.9 V, respectively, corresponding to the champion

364

laboratory cells and submodules.8

365 366

When the individual cells are connected to form series or parallel architecture as shown in Figure

367

2, the inter-connection area usually does not generate photocurrent and hence it is called dead area.

368

The ratio of the active area to the total substrate area is defined as the geometric fill factor (GFF)

369

of the solar module. To make better use of the light, the dead area should be kept as small as

370

possible. However, there are other requirements when designing the inter-connection structures in

371

both series and parallel architectures. It is not possible to simply increase the size of the electrode

372

area because it leads to the increased series resistance when collecting photo-generated charge

373

carriers. As a consequence, this higher series resistance leads to energy losses in solar cells

374

visualized by a lower FF in the photocurrent density-voltage (J-V) curves.134 The shape of the

375

electrodes also affects the energy output even keeping the electrode area the same.137-138 Often

376

each individual solar cell is in the shape of square, rectangular and strip. As the aspect ratio

377

decreases (i.e., reducing electrode width), the average series resistance is lower and solar cells

378

show higher FF and PCE.138 On the basis of above considerations, a strip shaped electrode for each

379

individual cell can output higher energy with less energy loss for both series and parallel

380

architectures.

381 382

For series connection, the consideration is that the following inter-connection of each individual

383

cell can multiply the energy output (from voltage output) with little increase of resistance in the

21 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 22 of 68

384

inter-connection area (Figure 2). The inter-connection area is formed by three patterning lines

385

often designated as P1, P2 and P3.127 P1 and P3 are used to separate the bottom and top electrodes

386

of each individual cell, respectively. P2 is to form the inter-connection between the top electrode

387

of one cell and the bottom electrode of the next adjacent cell in the series connection architecture.

388

Note that the inter-connection area is a dead area that will also be included in the calculations of

389

total-area performance. GFF can be defined based on the cross-sectional view as the ratio between

390

the active area and the total area that includes the dead area used for interconnection.134 A balance

391

is needed between the maximal usage of the module area to absorb light and minimization of the

392

effect of series resistance.

393 394

For the series connection architecture, normally the dead area is limited by the patterning

395

technique, which is mainly based on laser or mechanical scribing processes. Without taking into

396

account the contact resistance of a fixed dead area width of 280 µm, Galagan and coworkers

397

calculated the relation between the module efficiency and the width of active area for each

398

individual cell on TCO substrates with different sheet resistance.134 It was shown that by

399

employing TCOs with lower sheet resistance, one could enlarge the width of each individual cell

400

active area and thereby enable a higher GFF to reach a higher efficiency. A stripe width in the

401

range of 3-7 mm is beneficial for attaining high PCEs on TCO substrates with 10 Ohm/square

402

sheet resistance. Realistically, to make sure that the inter-connection area does not lead to

403

additional increase in series resistance, the inter-connection area (P2) should be wide enough and

404

it depends on the contact resistance between the top electrode of one cell and the bottom electrode

405

of the next cell. For example, the compact (c)-TiO2 layer (one of the most used electron transport

406

layer (ETL)) deposited by spray pyrolysis deposition adheres tightly to the underlying FTO, which

22 ACS Paragon Plus Environment

Page 23 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

407

makes it difficult to remove.139 In comparison with FTO/c-TiO2/Au, FTO/Au has a lower contact

408

resistance. The contact resistance can be characterized by the transfer length measurement

409

technique.139 One way to reduce the contact resistance caused by c-TiO2 is to decrease the

410

thickness of c-TiO2. The decrease of c-TiO2 thickness in the inter-connection area will also

411

decrease the c-TiO2 thickness in the active area due to the uniform coating. In this case, the optimal

412

thickness of c-TiO2 for a small area cell and large area module can be substantially different as

413

reported by Li, Zhu and coworkers.140 To overcome this issue, Qi and coworkers used a high

414

mobility SnO2 thin film as electron transport layer to help lower the contact resistance in the

415

perovskite solar module fabrication.127

416 417

The parallel architecture forms low sheet resistance TCO by metal finger structure on TCO.141

418

This is an important way to make a large area single cell with large photocurrent output that can

419

match a silicon solar cell to form a two-terminal tandem structure.142 However, the area coated

420

with the metal finger electrode is also a dead area that light cannot pass through (Figure 2). A

421

larger dead area leads to a lower sheet resistance and thus a higher fill factor. However, the current

422

density is lower. In addition, the design and shape of the finger electrode affect the sheet resistance.

423

Ho-Baillie and coworkers. studied systematically the influences of different structures and designs

424

of the finger electrodes on the solar cell performance.135 A certified efficiency of 12.1% on a

425

designated area of 16 cm2 has been reported by incorporating a metal finger design.143

426 427

Upscalable HTLs and ETLs. The majority of large area device architectures that lead to high

428

performance

429

methoxyphenylamine)-9,9ʹ-spirobifluorene (spiro-MeOTAD) as HTL (Table 1). Only a few works

430

showed that solution-processed spiro-MeOTAD is also compatible with large area coating

solar

modules

employ

spin-coated

2,2ʹ,7,7ʹ-tetrakis(N,N-di-p-

23 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 24 of 68

431

techniques such as slot-die coating.33, 144 However, in addition to solvent toxicity,145 long-term

432

stability issues were previously reported57, 146-149 when employing spiro-MeOTAD as HTLs due to

433

for example film crystallization,150 the strong influence of air exposure on conductivity and

434

interfacial energy level variations,151-153 photo-oxidation of spiro-MeOTAD,154 morphological

435

deformation at high temperature (80 ˚C and above) leading to formation of large voids in the spiro-

436

MeOTAD film,155-156 diffusion of Au or other metal electrode materials into spiro-MeOTAD

437

layer,157-158 and iodization of top electrode due to high temperature.158 Alternatively, ~25 cm2 and

438

49 cm2 poly(3-hexyl-thiophene (P3HT) film by bar coating,129 100 cm2 P3HT film by doctor

439

blading,31 and 90 cm2 poly(bis(4-phenyl) (2,4,6-trimethylphenyl) amine) (PTAA) by doctor

440

balding27 are a few examples demonstrating other promising HTLs in solar module applications.

441

Furthermore, employment of vapor-based techniques in large area HTL coating is a suitable way

442

for the fabrication of perovskite solar modules avoiding the complication of toxic solvents and

443

enabling uniform, smooth, and pinhole free HTL layers, which have been demonstrated only in

444

small area perovskite solar cells.57, 93, 116, 159-161

445 446

Large area ETL coatings are mainly based on metal oxides and fullerene and its derivates (Table

447

1), which are compatible with upscaling techniques of spraying coating,129 slot-die coating,130

448

thermal evaporation27 and sputtering.127, 162 Although spray coating of compact TiO2 ETL is widely

449

used, it requires high temperature pyrolysis and has a high resistance retarding charge transfer in

450

a solar module structure.17 Considering the fabrication costs and interconnection quality of solar

451

modules, some other low temperature processes have been developed, such as room temperature

452

sputtered TiO2162 which are also compatible for flexible perovskite solar modules.121 Among these

453

alternatives, SnO2 attracts particular attention for solar cell and module fabrication. For example,

24 ACS Paragon Plus Environment

Page 25 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

454

the commercially available SnO2 solution can be uniformly coated by slot-die coating and the

455

resulted flexible solar module exhibits promising efficiency.130 Furthermore, SnO2 can be sputter

456

deposited at room temperature without any thermal annealing.127 Due to high conductivity and low

457

film thickness, the coated SnO2 layer does not decrease the interconnection quality in a solar

458

module. A large solar module with 22.8 cm2 designated area and sputtered SnO2 shows an

459

efficiency over 12%.127 Recently a spin coated self-assembled SnO2 layer has been applied for

460

modules with an area of 100 cm2, which exhibits an efficiency up to 14%.128 Thermal evaporation

461

of C60 and BCP has been applied in inverted structured solar modules, which exhibit an efficiency

462

of 14.6% with an area of 57 cm2.27 The metal oxide ETL is also cheap. Considering the cost aspects

463

and stability, the commonly employed organic HTLs such as spiro-MeOTAD and PTAA are

464

expected to be replaced with some other low-cost inorganic materials (Table 2).

465 466

Carbon electrodes. Although it is only about one decade since PSC research was introduced,

467

there have been tremendous amount of efforts worldwide contributed to the rapid rise in PCEs.

468

Keeping at the current research pace, there may be a brighter future for the PSC technology to

469

compete for a portion in the annual market share of hundreds of billion-dollar worth of PV

470

technology. To make this goal achievable, low-cost, long term stability, simpler fabrication

471

protocols, and field testing profiles of perovskite solar modules will play a vital role. In PSCs,

472

organic materials such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS),

473

2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’-spirobifluorene

474

spiro-OMeTAD), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), and poly(3-hexyl-

475

thiophene (P3HT) are usually applied as hole transport layers (HTLs); gold and silver are used as

476

electrode materials in order to achieve high performances.43, 55, 96, 129, 163 However, organic HTLs

(spiro-MeOTAD

or

25 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 68

477

and Au metal as electrode constitute a major portion of the fabrication cost of perovskite solar

478

modules, i.e., about 64% of the total raw material cost as summarized in Table 2 and Figure 2. The

479

cost of HTLs corresponds to 49% of the total module cost, and Au metal as electrode represents

480

15% of the total module cost. Besides high cost, perovskite solar modules that employ organic

481

HTL/Au (or Ag) exhibited unstable performance because organic HTLs are susceptible to

482

migration of metal ions from metal electrode and halide ions from perovskite.152, 164-165 Therefore,

483

after the reports showing that perovskites could serve as not only light harvester materials but also

484

as effective hole conductor,166-167 the development of organic HTL-free PSCs became an active

485

research topic in facilitating upscaling as well as addressing stability issues.168-171 In particular,

486

carbon is the most suitable electrode material among the few explored hole selective electrodes in

487

organic HTL-free PSCs (such as gold and nickel).166, 172 Carbon electrode has the advantages of

488

being earth abundant, cheap, chemically inert, instinct hydrophobic, highly conductive and flexible,

489

and also exhibiting a high device stability when employed in PSCs. At present the most stable

490

PSCs are fabricated using carbon as electrode without HTL, demonstrating almost zero loss in

491

performance when operated for more than 10,000 hours at 55 oC.47

492 493

In the context of lab-scale small area devices, the performance of carbon-based PSCs (C-PSCs)

494

is still significantly lower than the conventional PSCs based on metal electrode and organic HTL.

495

Interestingly, when upscaling is considered, there is a smaller efficiency gap between carbon based

496

solar modules and metal electrode/HTL based modules as summarized in Table 1 and Figure 1.

497

To date, the PCE of small area HTL-free C-PSCs has increased from 6.64% to 16.37% in seven

498

years.167, 170 One reason that relates to the lower performance of HTL-free C-PSCs is the limited

499

hole selectivity of carbon materials. The certified highest PCE of carbon-based PSCs is 17.8%.173

26 ACS Paragon Plus Environment

Page 27 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

500

However, this C-PSC employed P3HT/graphene composite as HTL to enhanced the performance.

501

Researchers have conducted studies to replace expensive spiro-MeOTAD HTL with low-cost

502

inorganic p-type semiconductors, such as copper(I) thiocyanate (CuSCN)174-176, CuI177, NiO178, or

503

low-cost small molecule p-type semiconductors copper phthalocyanine (CuPc)179. The resultant

504

devices showed higher stability compared with the devices using organic HTL.180 Replaced with

505

CuPc HTL, the C-PSCs achieved 17.78% PCE.181 Another factor causing the lower performance

506

of C-PSCs is the poor interface morphology between carbon electrode and perovskite. As carbon

507

electrodes are generally constituted by graphite182-184, carbon black169, 185, carbon nanotubes,170, 186-

508

188

509

interface. Based on the interface structure, there are two main structures for C-PSCs, including a

510

bi-interface

511

TiO2/perovskite/carbon) and a triple interface structure (such as FTO/c-TiO2/(mp-TiO2/mp-

512

ZrO2/mp-carbon)/perovskite). Interface engineering plays a crucial role in the improvement of the

513

C-PSCs performance.189 For bi-interfacial structure PSCs, a dense perovskite film is needed, and

514

it is necessary to enhance the interfacial contact between carbon and perovskite. For triple

515

interfacial structure PSCs, it is necessary to optimize perovskite precursors and mesoporous-

516

structure for easy infiltration of perovskite solution.

their morphologies are usually rough, which affects the contact at the perovskite/carbon

structure

(such

as

FTO/c-TiO2/with

or

without

mesoporous

(mp)-

517 518

The large gap between C-PSCs and conventional PSCs may not be limited only by the inherent

519

property of C-PSCs but also as a consequence of lack of optimization. For example, for

520

conventional PSCs, gold or silver are widely employed as electrode and their properties such as

521

Femi level, conductivity, and reflection have been systematically studied. It is important to

522

gradually accumulate knowledge based on device working principles and device optimization.

27 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 68

523

However, most of the reports employed commercial carbon paste purchased directly from

524

commercial market. As a consequence, it is difficult to know a priori the specific chemical

525

composition because such information is often non-disclosable. The companies supplying high-

526

quality carbon pastes include Guangzhou Seaside Technology Co., Ltd,190-191 Shanghai MaterWin

527

New Materials Co., Ltd,192-194 Shenzhen DongDaLai Co., Ltd, China40, 181, 195-196. These carbon

528

pastes are often mixed with various components and in different ratios, which very likely are the

529

key reasons responsible for their vastly different physico-chemical properties. For example,

530

different carbon paste products likely show work function variations, which can lead to energy

531

level alignment difference with the perovskite layer and therefore resulting in different overall

532

device performance. Secondly, the commonly used carbon paste is constituted of carbon black,

533

graphite, and still lacks effective hole selectivity especially for HTL-free C-PSCs. To solve this

534

problem effectively, it is vital to have in-house development of new carbon electrodes with

535

superior stability and electrical properties as well as with proper energy level alignments according

536

to the perovskite of choice.

537 538

Although C-PSCs is promising to achieve large-scale production for commercialization, few

539

reported works successfully fabricated the large-scale and efficient C-PSCs modules.38-39, 47-48

540

Among the carbon electrode deposition methods, including doctor-blade,191,

541

printing,169 drop-casting187 and screen printing method,199 the screen printing shows the best

542

possibility in making large modules. In the past three years, by using screen printing, large C-PSCs

543

modules are successfully fabricated with the upscalable size from the beginning 10´10 cm2 with

544

the active area of 47.6 cm2,47 to the A4 size substrate with the active area of 198 cm2.38 All these

196-198

inkjet

28 ACS Paragon Plus Environment

Page 29 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

545

C-PSCs are based on the architecture of a triple interface structure with the PCE ranging from 3%

546

to 11%.

547 548

Table 2. Cost of raw materials in fabricating a perovskite solar panel with a total area of 1 m2 and

549

a GFF of 90%. Usage200

Price (USD)

Sub-total Cost (USD)

Total cost per designated item (USD)

FTO glass

1.00 m2

228.20

228.20

229.06

Deionized water

33.00 ml

0.012/L201

< 0.01

Isopropanol1

33.00 ml

0.013/ml

0.43

33.00 ml

0.013/ml

0.43

TAA

19.20 ml

0.18/ml

3.46

Ethanol

33.00 ml

0.056/ml

1.85

Deionized water

33.00 ml

0.012/L

0.001

TiO2 ink

4.94 g

2.90/g

14.33

14.33

PbI2

1.38 g

0.20/g

0.28

1.34

CH3NH3I

0.14 g

2.70/g

0.38

Isopropanol2

14.30 ml

0.043/ml

0.62

DMF

3.00 ml

0.019/ml

0.06

Spiro-MeOTAD

0.85 g

478.10/g

406.38

Chlorobenzene

10.70 ml

0.027/ml

0.29

1.65 g

76.93/g

126.93

Raw material

Substrate patterning

1

Acetone

Blocking layer 5.31

Perovskite layer

HTL 406.67

Cathode Au

126.93

Encapsulation

29 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

UV Resin XNR5516Z

3.20 g

Three bond 3035B

3.20 g 200

Page 30 of 68

10.00/g

32.00

6.13/g

19.62

550

Usage data are collected from ref.

551

information with the exchange rate 1 JPY=0.0091 USD, besides the price of deionized water from

552

ref.

553

Chlorobenzene (99.0 %, 500 ml), Acetone (Guaranteed Reagent, 3 L), Isopropanol2 (super

554

dehydrated, 3 L), DMF (super dehydrated, 3 L) and ethanol (super dehydrated, 3L) from Wako

555

(https://labchem-wako.fujifilm.com); TAA (75 wt. % in isopropanol, 500 ml) from Sigma Aldrich

556

(http://sigmaaldrich.com); MAI (100 g) and TiO2 ink (1 kg) from Greatcell Solar Ltd

557

(http://www.greatcellsolar.com); Spiro-MeOTAD (1 g) from Merck.

201

. The price information is collected according to our lab

. Specifically, FTO from PV-tech Co., Ltd.; Isopropanol1 (Guaranteed Reagent, 3 L),

558

Summary and Outlook. This year marks one decade of PSC research. We have witnessed

559

outstanding achievements including fundamental science and technologically-related strategies

560

(Figure 4).52 A key question remains, i.e., what does perovskite PV technology need the most for

561

developing efficient and stable perovskite-based solar modules?202 In this perspective, we discuss

562

the progress of solution- and vapor-based methods that have been demonstrated with some initial

563

success in upscalable fabrication of perovskite solar modules with total areas larger than 10 cm2

564

(Figures 1 and 4).203 From Figure 1 we can obtain some insights, e.g., which solar parameter is the

565

major bottleneck for the overall solar module performance when compared with small PSCs. First,

566

there is a large gap in PCE when comparing the PCE values of small area cells and large area

567

modules. While the Voc and FF plots show the small gaps between small area cells and large area

568

modules, a major gap occurs in the Jsc plot. To quantify the Jsc gap between small area perovskite

569

solar cells and perovskite solar modules, we calculate the difference value in percentage between

570

the averaged Jsc value based on all the reported modules (𝐽#$

&'()*+

= 18.14 mA/cm2) and the

30 ACS Paragon Plus Environment

Page 31 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

,-.,+/0

= 25.2 mA/cm2) in Figure 1 (dashed line). The calculated JSC gap corresponds

571

highest Jsc (𝐽#$

572

to 1 − 𝐽#$

573

are substantially smaller compared to the Jsc gap (28%).

&'()*+

,-.,+/0

/ 𝐽#$

= 0.28 (or 28%). As a comparison, the Voc gap (19%) and FF gap (21%)

574 575

In a series interconnected module, Isc of the module is determined by the smallest Isc among

576

the cells; the overall Isc of the module will be dominated by the lowest Isc among the cells (Isc =

577

Jsc ´ area). Ideally, variations in Jsc are not expected to be observed if the coated layers within the

578

solar modules are uniform and the scribing patterns are well-delineated. Defective scribes (P1, P3)

579

may produce cells with undefined active areas due to slight shift or tilting of the patterning lines,

580

which compromises Jsc. In addition to P1, P2, and P3 patterning as discussed, electrical isolation

581

and encapsulation of a module requires the removal of the full structure of the front contact,

582

absorber layer, and back contact at the edges of a solar module (boarder isolation or edge isolation,

583

P4).204 If P4 is defective in some regions, it also affects the effective cell area.

584 585

The FF reduction is mostly caused by the increased Rs, which is mainly dominated by high sheet

586

resistance of TCO and the quality of interconnects. The strategies to reduce the TCO resistance

587

are summarized as follows: (i) by increasing the thickness of the TCO to reduce sheet resistance.

588

However, in this way the transmittance will be also be reduced and a balance should be

589

considered.138 (ii) The development of better TCO with nanomaterials that shows both low sheet

590

resistance and high transmittance.205 In parallel, improvements in the quality of interconnects by

591

engineering measures need be considered for enhancing FF, such as134 (iii) widening P2 to cover

592

the entire area between P1 and P3, but still maintaining the shorter width between the individual

593

cells, and (iv) optimizing interconnecting methods such as laser or mechanical scribing.

31 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 32 of 68

594 595

In a series connection, the total Voc is the sum of each individual cell. In Figure 1c, we can see

596

the evaluation of the average Voc for each individual cell as a function of module area. The reduced

597

Voc for each individual cell cause the gap between small area cell and large area module.

598

Considering each individual cell, a large area cell can be considered as many smaller area sub-

599

cells connected in parallel, Voc of the large area cell essentially takes the smallest value. Thus, the

600

reduction of Voc may be induced by reduced shunt resistance caused by several factors such as (i)

601

pinholes, (ii) particulates, (iii) interconnects (P1 and P3 are not clean/resistive enough; the P3

602

process damages the surrounding perovskite causing leakage), (iv) non-uniformity (if a particular

603

area in a particular layer is too thin); (v) lack of proper edge isolation patterning (P4).

604 605

Because PCE is proportional to the products of Jsc, Voc, and FF, all of these gap losses

606

contribute with an equal weight to the large gap in the solar module PCE (53%). The main losses

607

in the solar module efficiencies are related to the challenges in fabricating high quality perovskite

608

films and optimization of module design, which includes the balance between each of individual

609

active cells width and dead area width. Fortunately, the scribing related problems are mostly

610

engineering issues. Once it gets into large area production, these problems can be solved by

611

engineering measures.

32 ACS Paragon Plus Environment

Page 33 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

612 613

Figure 4. (a) Selected lab-scale perovskite-based solar cell efficiencies and (b) comparison with

614

large area perovskite solar modules grouped according to the coating methods.146, 148, 206 The

615

related reported data are 3.8%,207 6.5%,111 9.7%,208 14.14%,55 16.15%,109 17.91%,163 20.11%,209

616

21.1%,110 22.13%,210 22.67%,129 23.32%,15 23.7%5 and 24.2%.5 Developments of lab scale PSCs

617

can be roughly divided into three stages distinguished by the different zone colors: liquid

618

electrolyte (blue; stage 1), composition optimization (orange; stage 2), and interface engineering

619

(green; stage 3). Feasibility in applying the composition optimization strategies (Stage 2) for the

620

fabrication of large area perovskite solar modules employing upscalable methods is demonstrated

621

in Table 1. Currently the perovskite solar module research is at Stage 2. Selected best efficiencies

622

for perovskite solar modules employing different upscalable coating methods have been marked

623

with arrows. Toshiba Corporation holds the certified efficiency with the largest perovskite solar

624

module.12

625

A large number of strategies have been developed for enhancing the performance and long-term

626

operational stability in lab-scale small area PSCs. Considering the device architectures for each of

627

the corresponding PCEs displayed in Figure 4a, three stages of developments for lab-scale PSCs

33 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 34 of 68

628

can be inferred. Stage 1 corresponds to the initial device architecture of liquid electrolyte

629

employing MAPbI3 and MAPbBr3 as sensitizers leading to PCEs of 3.8%,207 6.5%,111 (blue zone).

630

Stage 2 is characterized by the replacement of liquid electrolyte to all solid state spiro-MeOTAD

631

HTL in conjunction with perovskite composition optimization/engineering (orange zone) leading

632

to PCEs of 9.7%,208 14.1%,55 16.15%,109 17.91%,163 20.11%,209 21.02%,211 21.1%,110 22.13%210.

633

The strategies developed in Stage 2 helped several labs worldwide to achieve PCEs more than

634

15%. Interface engineering characterizes Stage 3 (green zone) showing the efficacy to boost up

635

further the efficiencies of PSCs leading to certified PCE values of 22.67%,129 23.32%15. The details

636

of the device architectures for the last two points of 23.7% and 24.2% in Figure 3 are still not

637

available.

638 639

The analyses of strategies that led to the best lab-scale research-cell efficiencies provide

640

important insights and promising trend that enhanced performance and stability can be achieved

641

in large area perovskite solar modules. Next, we discuss selected strategies developed in the lab-

642

scale small-area PSC research that warrant further investigation and transferring to large-area

643

perovskite solar module research. The first strategy is the perovskite composition/engineering that

644

leads to enhanced chemical stability and light absorbance.206, 212-214 12 out 40 studies surveyed in

645

this work (Table 1) employed MAPbI3 as the absorber layer. Although a consensus has not been

646

reached for this topic, and there are different opinions, a number of works have reported that it is

647

unlikely for MAPbI3-based solar cells to reach sufficient long-term stability.148, 206, 215-233 Except

648

for the first certified efficiency record (PCE=14.1% in 2012) that used pure phase MAPbI3, the

649

works to achieve the subsequent efficiency records employed perovskite materials with mixed-

650

cations (CH3NH3+, NH2CH = NH2+, Cs+) and mixed-halides (I–, Br–, Cl–).206 In the work by Saliba,

34 ACS Paragon Plus Environment

Page 35 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

651

Gratzel and coworkers,115 perovskite devices with mixed-cations and anions (e.g., FTO/c-TiO2/Li-

652

doped

653

stability and maintained ~95% of their initial performance when tested at elevated temperature of

654

85 oC in N2 environment for 500 h and under full AM 1.5 Sun-equivalent white LED lamp

655

illumination and maximum power point tracking. Similarly, Holman, McGehee and coworkers234

656

reported that FA0.83Cs0.17Pb(I0.83Br0.17)3 based PSCs packed with top glass sheet employing

657

ethylene-vinyl acetate (EVA, an elastomeric polymer binder) and butyl rubber as edge sealant can

658

withstand a 1,000 h damp heat test at 85 oC and 85% relative humidity. These and other several

659

works demonstrate that the strategy of mixed-cations and anions is effective to improve long-term

660

thermal stability.114, 119, 163, 191, 206, 235-236 On the basis of Table 1, the feasibility of preparing mixed

661

cations and anions perovskites employing upscalable techniques was demonstrated.114 The

662

stability of perovskite solar modules is another important aspect when considering upscaling.

663

Storage and operational stability data for small-area perovskite solar cells have been summarized

664

in a recent review article.57 Although stability measurements should be a standard test for

665

perovskite solar modules, currently there are only a few published results reporting perovskite

666

solar modules with both high efficiency and high stability. Upon upscaling, the stability of

667

perovskite solar modules might decrease compared with small-area perovskite solar cells. The

668

lower stability for perovskite solar modules might be caused by the high output current and voltage,

669

or the interconnection quality, which need further investigation.237 Similar to small-area perovskite

670

solar cells, there is burn-in loss at the initial stage under operation, for both solution-based and

671

HCVD-based perovskite solar modules.114, 127 Perovskite solar modules based on carbon electrode

672

show promising stability under continuous light illumination, due to the hydrophobic properties of

673

the carbon electrode.47 Encapsulation has a vital impact on the device stability, e.g., it can help

mp-TiO2/Rb0.05((Cs0.05(MA0.17FA0.83)0.95)0.95Pb(I0.83Br0.17)3/PTAA/Au)

showed

high-

35 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 36 of 68

674

prevent the contact with moisture and oxygen and better withstand thermal stress.114, 238 More

675

information about encapsulation of solar modules can be found from the related review articles on

676

the encapsulation of small-area cells.239 Besides stability improvement, encapsulation can enhance

677

the mechanical strength of module and prevent the leakage of lead, which has been reported in a

678

recent study.240 Overall, encapsulation is expected to play an important role in the development of

679

large scale perovskite solar modules with high stability.241

680 681

The second strategy regards large-area deposition of ETL and HTL as well as their interfaces

682

with the perovskite layer. Large area uniform coating of these functional layers is important for

683

attaining high efficiencies. TiO2 in the form of compact and mesoporous layers has been the most

684

commonly employed low-cost metal oxide material as ETL, which has led to the majority of the

685

best certified efficiencies in solar cells and modules (Table 1).148-149 However, TiO2 is a well-

686

known photocatalytic material for H2O-splitting as well as for decomposing organic materials

687

under UV light.152, 242-243 It is desirable to minimize the negative impacts of TiO2, but still taking

688

advantage of its excellent ETL functionality. These strategies include TiO2 surface passivation for

689

reducing Ti3+ electronic trap states at the TiO2/perovskite interface,21, 243-246 use of thin insulating

690

polymer film between TiO2 and perovskite,162, 247 surface modification,248 UV filters or down-

691

conversion strategies,242, 249-251 and employing inverted device architecture.16, 20, 22, 26-27, 41, 123-124,

692

252

693

Nb2O5,260 graphene,19 PCBM,234,

694

alternatives for the TiO2 ETL and compatible with upscaling techniques. Outstanding solar cell

695

efficiencies are often achieved employing organic molecules of spiro-MeOTAD as HTL.146 As an

696

alternative, polymeric PTAA was also reported to yield high certified efficiencies.109, 146, 148, 163, 209

In addition, a number of materials such as SnO2,125-126, 131, 234, 253-258 solid-state ionic-liquid,259 244

and ZnO based ETL,36,

49, 261

have been proposed as

36 ACS Paragon Plus Environment

Page 37 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

697

These materials have also been commonly employed in fabricating perovskite solar modules

698

(Table 1).17-19, 28, 33, 41, 43, 121, 125-126, 131, 253 However, the prices of PTAA, spiro-MeOTAD, and Au

699

are ~2000 USD, ~500 USD, and ~80 USD per gram, respectively, which can pose cost issues when

700

upscaling.262 When one considers perovskite solar modules toward commercialization, levelized

701

cost of electricity (LCOE) and life-cycle assessment (LCA) are important parameters for

702

comparing different photovoltaic technologies.57, 200-201, 263 The raw material costs and whether

703

energy intensive operations are employed will play a major role in the evaluation of these

704

parameters (Table 2).

705 706

The third strategy is associated with defect healing in perovskites by interface engineering.

707

Defects in perovskites were previously shown to induce electronic traps within the perovskite band

708

gap, which limits efficiency, reproducibility, and lifetime. Analyzing the device structures

709

corresponding to the two points of 22.67%129, 264 and 23.32%15 in the NREL certified efficiencies

710

chart, the interface engineering and defect passivation strategies have allowed PSC to overcome

711

the barrier of 22% in efficiency (i.e., Stage 3 in Figure 4).4 In a recent work by Noh, Seo and

712

coworkers,129, 264 a material called n-hexyl trimethyl ammonium bromide (HTAB) was inserted

713

between P3HT and the perovskite layer. The interdigitation between P3HT and HTAB leads to

714

high hole-transport properties, which has the advantage over the commonly employed PTAA or

715

spiro-MeOTAD HTLs because hygroscopic dopants are not required for enhancing hole mobility

716

in this new HTL. In addition, P3HT is compatible with industrial-scale manufacturing processes.129,

717

264

718

iodide (PEAI) as a passivation material. PEAI was applied to the FA1-xMAxPbI3 (x ~ 0.08)

719

perovskite films by spin-coating. This strategy leads to the certified PCE of 23.3% in the NREL

In another work, You and coworkers15 employed organic halide salt of phenyl ethyl-ammonium

37 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 38 of 68

720

chart.4 PEAI coating on the perovskite layer was proposed to heal the defects by filling the iodine

721

vacancies on the surface and at the grain boundaries.15

722 723

As the fourth strategy, the HCVD method has shown the potential in the development of

724

perovskite solar modules (Table 1, Figures 1 and 4). To further improve the long-term stability of

725

HCVD grown perovskite solar modules, it is necessary to implement corresponding methods that

726

can be readily integrated with HCVD. For instance, formation of 2D/3D hybrid perovskites is a

727

promising method in enhancing long-term operational stability.47 One of the ways to form 2D/3D

728

perovskites is via a low-pressure vapor-assisted solution process to employ PEAI doped PbI2 as

729

the precursor in the first step.253 After conversion in MAI vapor environment, the 2D/3D hybrid

730

perovskite film was formed resulting in perovskite solar cell device performance up to 19% in

731

small area devices (active area = 0.2 cm2). Other than performance and stability, fabrication cost

732

is another key metric to be analyzed in vapor-based processes. Although a slow reaction is

733

beneficial for better film control, the long reaction time in HCVD process reduces throughput, and

734

increases the energy payback time. Normally it takes 2 to 3 hours for the vapor deposition process

735

to fully convert the PbI2/PbCl2 into perovskite in a HCVD process.114, 117 Better understanding of

736

the film formation mechanism will be helpful to pin-point the necessary modifications in vapor

737

deposition processes, and more research efforts are needed in this direction. Other state-of-the-art

738

vacuum deposition processes also show respectful performance in small area devices and have

739

been summarized in a recent review article.90

740 741

Besides the four aforementioned strategies, it is equally important for us to keep in mind that we

742

also need to develop characterization techniques that are compatible with large area perovskite

38 ACS Paragon Plus Environment

Page 39 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

743

solar modules, which may provide useful feedback to these recent advances. These

744

characterization techniques need allow us to evaluate film uniformity, chemical composition

745

distribution, and identify spatially present structural defects and dust/particulates that lead to

746

shunting pathways. For example, it has been reported that false-color monochrome

747

electroluminescence mapping images and light beam induced current (LBIC) can be used to

748

characterize perovskite film quality across large areas.22,

749

characterization of the entire modules and are also compatible with in-line characterization in a

750

production factory.

118

Both techniques allow rapid

751 752

AUTHOR INFORMATION

753

* E-mail: [email protected] (Y.B.Q.)

754

*E-mail: [email protected] (S.L.)

755 756

ORCID

757

Yabing Qi: 0000-0002-4876-8049

758 759

Notes

760

The authors declare no competing financial interest.

761 762

Dr. Longbin Qiu is a postdoctoral scholar in Prof. Yabing Qi’s research unit (Energy Materials

763

and Surface Sciences Unit) at Okinawa Institute of Science and Technology Graduate University

764

in Japan. His current research focuses on the interface engineering and chemical vapor deposition

765

for scalable perovskite solar modules.

766

39 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 40 of 68

767

Dr. Sisi He is a postdoctoral scholar in Prof. Yabing Qi’s research unit (Energy Materials and

768

Surface Sciences Unit) at Okinawa Institute of Science and Technology Graduate University in

769

Japan. Her research focuses on the use of carbon nanomaterials in energy and responsive devices

770

including perovskite solar cells.

771 772

Dr. Luis K. Ono is a staff scientist in Prof. Yabing Qi’s research unit (Energy Materials and Surface

773

Sciences Unit) at Okinawa Institute of Science and Technology Graduate University in Japan. His

774

current research focuses on the fundamental understanding and surface science aspects of

775

perovskite solar cells (https://groups.oist.jp/emssu).

776 777

Shengzhong Liu received his Ph.D. from Northwestern University (USA) in 1992. Following his

778

postdoctoral research at Argonne National Laboratory (Argonne, Illinois, USA), he worked for

779

various companies researching nanoscale materials, thin film solar cells, laser processing, and

780

diamond thin films. His invention of the semi-transparent photovoltaic module at BP Solar won

781

an R&D 100 award in 2002. He is now a professor at Shaanxi Normal University and Dalian

782

Institute of Chemical Physics, Chinese Academy of Sciences.

783 784

Yabing Qi is Professor and Unit Director of Energy Materials and Surface Sciences Unit at

785

Okinawa Institute of Science and Technology Graduate University in Japan. He received his B.S.,

786

M.Phil., and Ph.D. from Nanjing Univ., Hong Kong Univ. of Sci. and Tech., and UC Berkeley,

787

respectively. His research interests include perovskite solar cells, surface/interface sciences,

788

lithium

789

(https://groups.oist.jp/emssu).

ion

batteries,

organic

electronics,

energy

materials

and

devices

40 ACS Paragon Plus Environment

Page 41 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

790 791

ACKNOWLEDGMENT

792

This work was supported by funding from the Energy Materials and Surface Sciences Unit of the

793

Okinawa Institute of Science and Technology Graduate University, the OIST R&D Cluster

794

Research Program, the OIST Proof of Concept (POC) Program, and JSPS KAKENHI Grant

795

Number JP18K05266. S.L. acknowledges the funding support from the 111 Project (B14041).

796 797

REFERENCES

798

(1)

799 800

1977, 197, 445-447. (2)

801 802

(3) (4)

National Renewable Energy Laboratory (NREL). Champion Module Efficiency Chart. https://www.nrel.gov/pv/module-efficiency.html. (Accessed date: May 7th, 2019).

(5)

807 808

Singh, G. K., Solar Power Generation by PV (Photovoltaic) Technology: A Review. Energy 2013, 53, 1-13.

805 806

Kurtz, S.; Haegel, N.; Sinton, R.; Margolis, R., A New Era for Solar. Nat. Photonics 2017, 11, 3.

803 804

Hammond, A. L., Photovoltaics: The Semiconductor Revolution Comes to Solar. Science

National Renewable Energy Laboratory (NREL). Research Cell Efficiency Records. https://www.nrel.gov/pv/cell-efficiency.html. (Accessed date: May 7th, 2019).

(6)

Howard, I. A.; Abzieher, T.; Hossain, I. M.; Eggers, H.; Schackmar, F.; Ternes, S.;

809

Richards, B. S.; Lemmer, U.; Paetzold, U. W., Coated and Printed Perovskites for

810

Photovoltaic Applications. Adv. Mater. 2019, 31, 1806702.

811

(7)

Rong, Y.; Ming, Y.; Ji, W.; Li, D.; Mei, A.; Hu, Y.; Han, H., Toward Industrial-Scale

812

Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging

813

Techniques. J. Phys. Chem. Lett. 2018, 9, 2707-2713.

814

(8)

Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Yoshita, M.;

815

Ho-Baillie, A. W. Y., Solar Cell Efficiency Tables (Version 53). Prog. Photovolt. Res.

816

Appl. 2019, 27, 3-12.

41 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

817

(9)

Page 42 of 68

Kurtz, S.; Repins, I.; Metzger, W. K.; Verlinden, P. J.; Huang, S.; Bowden, S.; Tappan,

818

I.; Emery, K.; Kazmerski, L. L.; Levi, D., Historical Analysis of Champion Photovoltaic

819

Module Efficiencies. IEEE J. Photovolta. 2018, 8, 363-372.

820

(10)

821 822

1, 15015. (11)

823 824

Green, M. A., Commercial Progress and Challenges for Photovoltaics. Nat. Energy 2016, Photovoltaics Report (March 14, 2019). Fraunhofer Institute for Solar Energy Systems ISE, https://www.ise.fraunhofer.de/en.html, (Accessed date: May 14th, 2019).

(12)

NEDO and Toshiba Develops World's Largest Film-based Perovskite Photovoltaic

825

Module: 703 cm2 module achieves 11.7% power conversion efficiency. Toshiba

826

Corporate Research & Development Center,

827

https://www.toshiba.co.jp/rdc/rd/detail_e/e1806_03.html, (Accessed date: May 14th,

828

2019).

829

(13)

Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.;

830

Sargent, E. H.; Han, H., Challenges for Commercializing Perovskite Solar Cells. Science

831

2018, 361, eaat8235.

832

(14)

833 834

Bermudez, V.; Perez-Rodriguez, A., Understanding the Cell-to-Module Efficiency Gap in Cu(In,Ga)(S,Se)2 Photovoltaics Scale-Up. Nat. Energy 2018, 3, 466-475.

(15)

Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You,

835

J., Surface Passivation of Perovskite Film for Efficient Solar Cells. Nat. Photon. 2019,

836

DOI: 10.1038/s41566-019-0398-2.

837

(16)

Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I., Benefits

838

of Very Thin PCBM and LiF Layers for Solution-Processed p-i-n Perovskite Solar Cells.

839

Energy Environ. Sci. 2014, 7, 2642-2646.

840

(17)

Matteocci, F.; Cinà, L.; Di Giacomo, F.; Razza, S.; Palma, A. L.; Guidobaldi, A.;

841

D'Epifanio, A.; Licoccia, S.; Brown, T. M.; Reale, A., et al., High Efficiency

842

Photovoltaic Module Based on Mesoscopic Organometal Halide Perovskite. Prog.

843

Photovolt. Res. Appl. 2016, 24, 436-445.

844

(18)

Matteocci, F.; Razza, S.; Di Giacomo, F.; Casaluci, S.; Mincuzzi, G.; Brown, T. M.;

845

D'Epifanio, A.; Licoccia, S.; Di Carlo, A., Solid-State Solar Modules Based on

846

Mesoscopic Organometal Halide Perovskite: a Route Towards the up-Scaling Process.

847

Phys. Chem. Chem. Phys. 2014, 16, 3918-3923.

42 ACS Paragon Plus Environment

Page 43 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

848

ACS Energy Letters

(19)

Agresti, A.; Pescetelli, S.; Palma, A. L.; Del Rio Castillo, A. E.; Konios, D.; Kakavelakis,

849

G.; Razza, S.; Cinà, L.; Kymakis, E.; Bonaccorso, F., et al., Graphene Interface

850

Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50

851

cm2 Active Area. ACS Energy Letters 2017, 2, 279-287.

852

(20)

Liao, H.-C.; Guo, P.; Hsu, C.-P.; Lin, M.; Wang, B.; Zeng, L.; Huang, W.; Soe, C. M.

853

M.; Su, W.-F.; Bedzyk, M. J., et al., Enhanced Efficiency of Hot-Cast Large-Area Planar

854

Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Adv. Energy

855

Mater. 2017, 7, 1601660.

856

(21)

Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-

857

Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y., et al., Efficient and Stable Solution-

858

Processed Planar Perovskite Solar Cells via Contact Passivation. Science 2017, 355, 722-

859

726.

860

(22)

Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., One-Step Fabrication of a Mixed-Halide

861

Perovskite Film for a High-Efficiency Inverted Solar Cell and Module. J. Mater. Chem. A

862

2016, 4, 13525-13533.

863

(23)

Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L.,

864

Perovskite Solar Cells with 18.21% Efficiency and Area Over 1 cm2 Fabricated by

865

Heterojunction Engineering. Nat. Energy 2016, 1, 16148.

866

(24)

Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel,

867

M., A Vacuum Flash–Assisted Solution Process for High-Efficiency Large-Area

868

Perovskite Solar Cells. Science 2016, 353, 58-62.

869

(25)

Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.;

870

Grätzel, M., et al., Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic

871

Charge Extraction Layers. Science 2015, 350, 944-948.

872

(26)

Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-Less Inverted

873

CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion

874

Efficiency. Energ Environ Sci 2015, 8, 1602-1608.

875

(27)

Deng, Y. H.; Zheng, X. P.; Bai, Y.; Wang, Q.; Zhao, J. J.; Huang, J. S., Surfactant-

876

Controlled Ink Drying Enables High-Speed Deposition of Perovskite Films for Efficient

877

Photovoltaic Modules. Nat. Energy 2018, 3, 560-566.

43 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

878

(28)

Page 44 of 68

Yang, M.; Li, Z.; Reese, M. O.; Reid, O. G.; Kim, D. H.; Siol, S.; Klein, T. R.; Yan, Y.;

879

Berry, J. J.; van Hest, M. F. A. M., et al., Perovskite Ink with Wide Processing Window

880

for Scalable High-Efficiency Solar Cells. Nat. Energy 2017, 2, 17038.

881

(29)

Deng, Y.; Peng, E.; Shao, Y.; Xiao, Z.; Dong, Q.; Huang, J., Scalable Fabrication of

882

Efficient Organolead Trihalide Perovskite Solar Cells with Doctor-Bladed Active Layers.

883

Energy Environ. Sci. 2015, 8, 1544-1550.

884

(30)

Yang, Z.; Chueh, C.-C.; Zuo, F.; Kim, J. H.; Liang, P.-W.; Jen, A. K. Y., High-

885

Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under

886

the Ambient Condition. Adv. Energy Mater. 2015, 5, 1500328.

887

(31)

Razza, S.; Di Giacomo, F.; Matteocci, F.; Cinà, L.; Palma, A. L.; Casaluci, S.; Cameron,

888

P.; D'Epifanio, A.; Licoccia, S.; Reale, A., et al., Perovskite Solar Cells and Large Area

889

Modules (100 cm2) Based on an Air Flow-Assisted PbI2 Blade Coating Deposition

890

Process. J. Power Sources 2015, 277, 286-291.

891

(32)

Galagan, Y.; Di Giacomo, F.; Gorter, H.; Kirchner, G.; de Vries, I.; Andriessen, R.;

892

Groen, P., Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Adv.

893

Energy Mater. 2018, 8, 1801935.

894

(33)

Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B. J.; Verhees, W. J. H.;

895

Dorenkamper, M. S.; Veenstra, S. C.; Qiu, W.; Gehlhaar, R.; Merckx, T., et al., Up-

896

Scalable Sheet-to-Sheet Production of High Efficiency Perovskite Module and Solar

897

Cells on 6-in. Substrate Using Slot Die Coating. Sol. Energy Mater. Sol. Cells 2018, 181,

898

53-59.

899

(34)

Remeika, M.; Ono, L. K.; Maeda, M.; Hu, Z.; Qi, Y. B., High-Throughput Surface

900

Preparation for Flexible Slot Die Coated Perovskite Solar Cells. Org. Electron. 2017, 54,

901

72-79.

902

(35)

Vak, D.; Hwang, K.; Faulks, A.; Jung, Y.-S.; Clark, N.; Kim, D.-Y.; Wilson, G. J.;

903

Watkins, S. E., 3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for

904

Solution-Processed Solar Cells. Adv. Energy Mater. 2015, 5, 1401539.

905

(36)

Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D.

906

J.; Kim, D.-Y.; Vak, D., Toward Large Scale Roll-to-Roll Production of Fully Printed

907

Perovskite Solar Cells. Adv. Mater. 2015, 27, 1241-1247.

44 ACS Paragon Plus Environment

Page 45 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

908

ACS Energy Letters

(37)

He, M.; Li, B.; Cui, X.; Jiang, B.; He, Y.; Chen, Y.; O’Neil, D.; Szymanski, P.; Ei-Sayed,

909

M. A.; Huang, J., et al., Meniscus-Assisted Solution Printing of Large-Grained Perovskite

910

Films for High-Efficiency Solar Cells. Nat. Commun. 2017, 8, 16045.

911

(38)

De Rossi, F.; Baker, J. A.; Beynon, D.; Hooper, K. E. A.; Meroni, S. M. P.; Williams, D.;

912

Wei, Z.; Yasin, A.; Charbonneau, C.; Jewell, E. H., et al., All Printable Perovskite Solar

913

Modules with 198 cm2 Active Area and Over 6% Efficiency. Advanced Materials

914

Technologies 2018, 3, 1800156.

915

(39)

Priyadarshi, A.; Haur, L. J.; Murray, P.; Fu, D.; Kulkarni, S.; Xing, G.; Sum, T. C.;

916

Mathews, N.; Mhaisalkar, S. G., A Large Area (70 cm2) Monolithic Perovskite Solar

917

Module with a High Efficiency and Stability. Energy Environ. Sci. 2016, 9, 3687-3692.

918

(40)

Chou, L.-H.; Wang, X.-F.; Osaka, I.; Wu, C.-G.; Liu, C.-L., Scalable Ultrasonic Spray-

919

Processing Technique for Manufacturing Large-Area CH3NH3PbI3 Perovskite Solar

920

Cells. ACS Appl. Mater. Interfaces 2018, 10, 38042-38050.

921

(41)

Heo, J. H.; Lee, M. H.; Jang, M. H.; Im, S. H., Highly Efficient CH3NH3PbI3-xClx Mixed

922

Halide Perovskite Solar Cells Prepared by Re-Dissolution and Crystal Grain Growth via

923

Spray Coating. J. Mater. Chem. A 2016, 4, 17636-17642.

924

(42)

Ye, F.; Tang, W.; Xie, F.; Yin, M.; He, J.; Wang, Y.; Chen, H.; Qiang, Y.; Yang, X.;

925

Han, L., Low‐Temperature Soft‐Cover Deposition of Uniform Large‐Scale

926

Perovskite Films for High‐Performance Solar Cells. Adv. Mater. 2017, 29, 1701440.

927

(43)

Chen, H.; Ye, F.; Tang, W.; He, J.; Yin, M.; Wang, Y.; Xie, F.; Bi, E.; Yang, X.; Gratzel,

928

M., et al., A Solvent- and Vacuum-Free Route to Large-Area Perovskite Films for

929

Efficient Solar Modules. Nature 2017, 550, 92-95.

930

(44)

Huckaba, A. J.; Lee, Y.; Xia, R.; Paek, S.; Bassetto, V. C.; Oveisi, E.; Lesch, A.; Kinge,

931

S.; Dyson, P. J.; Girault, H., et al., Inkjet-Printed Mesoporous TiO2 and Perovskite Layers

932

for High Efficiency Perovskite Solar Cells. Energy Technol. 2019, 7, 317-324.

933

(45)

Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G.,

934

One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting. Solar RRL 2018,

935

2, 1700217.

936

(46)

Mathies, F.; Eggers, H.; Richards, B. S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.

937

W., Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Appl. Energy Mater. 2018,

938

1, 1834-1839.

45 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

939

(47)

Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau,

940

D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M., et al., One-Year Stable

941

Perovskite Solar Cells by 2D/3D Interface Engineering. Nat. Commun. 2017, 8, 15684.

942

(48)

Page 46 of 68

Hu, Y.; Si, S.; Mei, A.; Rong, Y.; Liu, H.; Li, X.; Han, H., Stable Large-Area

943

(10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency. Solar

944

RRL 2017, 1, 1600019.

945

(49)

946 947

Cai, L.; Liang, L.; Wu, J.; Ding, B.; Gao, L.; Fan, B., Large Area Perovskite Solar Cell Module. J. Semicond. 2017, 38, 014006.

(50)

Gotanda, T.; Oooka, H.; Mori, S.; Nakao, H.; Amano, A.; Todori, K.; Nakai, Y.;

948

Mizuguchi, K., Facile and Scalable Fabrication of Low-Hysteresis Perovskite Solar Cells

949

and Modules using a Three-Step Process for the Perovskite Layer. J. Power Sources

950

2019, 430, 145-149.

951

(51)

Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J., From Scalable Solution Fabrication of

952

Perovskite Films Towards Commercialization of Solar Cells. Energy Environ. Sci. 2019,

953

12, 518-549.

954

(52)

955 956

Jena, A. K.; Kulkarni, A.; Miyasaka, T., Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036-3103.

(53)

Jeong, D.-N.; Lee, D.-K.; Seo, S.; Lim, S. Y.; Zhang, Y.; Shin, H.; Cheong, H.; Park, N.-

957

G., Perovskite Cluster-Containing Solution for Scalable D-Bar Coating toward High-

958

Throughput Perovskite Solar Cells. ACS Energy Lett. 2019, 4, 1189-1195.

959

(54)

Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J.,

960

Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of

961

Solution-Processed Precursor Stacking Layers. Energy Environ. Sci. 2014, 7, 2619-2623.

962

(55)

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.;

963

Grätzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized

964

Solar Cells. Nature 2013, 499, 316-319.

965

(56)

966 967

Abate, A.; Correa-Baena, J.-P.; Saliba, M.; Su'ait, M. S.; Bella, F., Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chem. Eur. J. 2018, 24, 3083-3100.

(57)

Qiu, L.; Ono, L. K.; Qi, Y. B., Advances and Challenges to the Commercialization of

968

Organic–Inorganic Halide Perovskite Solar Cell Technology. Mater. Today Energy 2018,

969

7, 169-189.

46 ACS Paragon Plus Environment

Page 47 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

970

ACS Energy Letters

(58)

Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W.-H., Solution-Processable

971

Perovskite Solar Cells toward Commercialization: Progress and Challenges. Adv. Funct.

972

Mater. 2019, 29, 1807661.

973

(59)

Wang, F.; Cao, Y.; Chen, C.; Chen, Q.; Wu, X.; Li, X.; Qin, T.; Huang, W., Materials

974

toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies.

975

Adv. Funct. Mater. 2018, 28, 1803753.

976

(60)

977 978

Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M.; Berry, J. J.; van Hest, M. F. A. M.; Zhu, K., Scalable Fabrication of Perovskite Solar Cells. Nat. Rev. Mater. 2018, 3, 18017.

(61)

Razza, S.; Castro-Hermosa, S.; Carlo, A. D.; Brown, T. M., Research Update: Large-

979

Area Deposition, Coating, Printing, and Processing Techniques for the Upscaling of

980

Perovskite Solar Cell Technology. APL Mater. 2016, 4, 091508.

981

(62)

982 983

Films and Solar Modules. J. Materiomics 2017, 3, 231-244. (63)

984 985

(64) (65) (66)

Swartwout, R.; Hoerantner, M. T.; Bulović, V., Scalable Deposition Methods for LargeArea Production of Perovskite Thin Films. Energy Eviron. Mater 2019, 2, 119-143.

(67)

992 993

Remeika, M.; Qi, Y. B., Scalable Solution Coating of the Absorber for Perovskite Solar Cells. J. Energy Chem. 2018, 27, 1101-1110.

990 991

Meredith, P.; Armin, A., Scaling of Next Generation Solution Processed Organic and Perovskite Solar Cells. Nat. Commun. 2018, 9, 5261.

988 989

Xu, Q.; Yang, D.; Lv, J.; Sun, Y. Y.; Zhang, L., Perovskite Solar Absorbers: Materials by Design. Small Methods 2018, 2, 1700316.

986 987

Yang, Z.; Zhang, S.; Li, L.; Chen, W., Research Progress on Large-Area Perovskite Thin

Gao, L.; Chen, L.; Huang, S.; Li, X.; Yang, G., Series and Parallel Module Design for Large-Area Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 3851-3859.

(68)

Jung, Y.-S.; Hwang, K.; Heo, Y.-J.; Kim, J.-E.; Vak, D.; Kim, D.-Y., Progress in

994

Scalable Coating and Roll-to-Roll Compatible Printing Processes of Perovskite Solar

995

Cells toward Realization of Commercialization. Adv. Opt. Mater. 2018, 6, 1701182.

996

(69)

997 998 999

Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H., Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances 2018, 8, 10489-10508.

(70)

Ramanujam, J.; Singh, U. P., Copper Indium Gallium Selenide Based Solar Cells – a Review. Energy Environ. Sci. 2017, 10, 1306-1319.

47 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1000

(71)

Powalla, M.; Paetel, S.; Hariskos, D.; Wuerz, R.; Kessler, F.; Lechner, P.; Wischmann,

1001

W.; Friedlmeier, T. M., Advances in Cost-Efficient Thin-Film Photovoltaics Based on

1002

Cu(In,Ga)Se2. Engineering 2017, 3, 445-451.

1003

(72)

Page 48 of 68

Burst, J. M.; Duenow, J. N.; Albin, D. S.; Colegrove, E.; Reese, M. O.; Aguiar, J. A.;

1004

Jiang, C. S.; Patel, M. K.; Al-Jassim, M. M.; Kuciauskas, D., et al., CdTe Solar Cells with

1005

Open-Circuit Voltage Breaking the 1 V Barrier. Nat. Energy 2016, 1, 16015.

1006

(73)

Fiducia, T. A. M.; Mendis, B. G.; Li, K.; Grovenor, C. R. M.; Munshi, A. H.; Barth, K.;

1007

Sampath, W. S.; Wright, L. D.; Abbas, A.; Bowers, J. W., et al., Understanding the Role

1008

of Selenium in Defect Passivation for Highly Efficient Selenium-Alloyed Cadmium

1009

Telluride Solar Cells. Nat. Energy 2019, 4, 504-511.

1010

(74)

Krasikov, D., Selenium Lowers Bulk Recombination. Nat. Energy 2019, 4, 442-443.

1011

(75)

Amin, N.; Rahman, K. S., Chapter 18: Close-Spaced Sublimation (CSS): A Low-Cost,

1012

High-Yield Deposition System for Cadmium Telluride (CdTe) Thin Film Solar Cells. In

1013

Modern Technologies for Creating the Thin-film Systems and Coatings, Nikitenkov, N.,

1014

Ed. IntechOpen: London, UK, 2017.

1015

(76)

1016 1017

Meyers, P. V.; Albright, S. P., Technical and Economic Opportunities for CdTe PV at the Turn of the Millennium. Prog. Photovolt. Res. Appl. 2000, 8, 161-169.

(77)

Hamedani, Y.; Macha, P.; Bunning, T. J.; Naik, R. R.; Vasudev, M. C., Chapter 10:

1018

Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the

1019

Future. In Chemical Vapor Deposition - Recent Advances and Applications in Optical,

1020

Solar Cells and Solid State Devices, Neralla, S., Ed. IntechOpen: London, UK, 2016.

1021

(78)

Jones, A. C.; Hitchman, M. L., Chapter 1 Overview of Chemical Vapour Deposition. In

1022

Chemical Vapour Deposition: Precursors, Processes and Applications, Jones, A. C.;

1023

Hitchman, M. L., Eds. The Royal Society of Chemistry: 2009; pp 1-36.

1024

(79)

Banerjee, A.; Su, T.; Beglau, D.; Pietka, G.; Liu, F. S.; Almutawalli, S.; Yang, J.; Guha,

1025

S., High-Efficiency, Multijunction nc-Si:H-Based Solar Cells at High Deposition Rate.

1026

IEEE J. Photovolta. 2012, 2, 99-103.

1027

(80)

Banerjee, A.; Liu, F.; Beglau, D.; Su, T.; Pietka, G.; Yan, B.; Yue, G.; Yang, J.; Guha, S.

1028

In 12.0% Efficiency on large area, encapsulated, multijunction nc-Si:H based solar cells,

1029

2011 37th IEEE Photovoltaic Specialists Conference, 19-24 June 2011; 2011; pp 003589-

1030

003589.

48 ACS Paragon Plus Environment

Page 49 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1031

ACS Energy Letters

(81)

1032 1033

Ramanujam, J.; Verma, A., Photovoltaic Properties of a-Si:H Films Grown by Plasma Enhanced Chemical Vapor Deposition: A Review. Mater. Express 2012, 2, 177-196.

(82)

Meillaud, F.; Boccard, M.; Bugnon, G.; Despeisse, M.; Hänni, S.; Haug, F. J.; Persoz, J.;

1034

Schüttauf, J. W.; Stuckelberger, M.; Ballif, C., Recent Advances and Remaining

1035

Challenges in Thin-Film Silicon Photovoltaic Technology. Mater. Today 2015, 18, 378-

1036

384.

1037

(83)

Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.;

1038

Adachi, D.; Kanematsu, M.; Uzu, H., et al., Silicon Heterojunction Solar Cell with

1039

Interdigitated Back Contacts for a Photoconversion Efficiency over 26%. Nat. Energy

1040

2017, 2, 17032.

1041

(84)

1042 1043

Ribeyron, P. J., Crystalline Silicon Solar Cells - Better Than Ever. Nat. Energy 2017, 2, 17067.

(85)

Illiberi, A.; Poodt, P.; Bolt, P.-J.; Roozeboom, F., Recent Advances in Atmospheric

1044

Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide. Chem. Vap. Depos.

1045

2014, 20, 234-242.

1046

(86)

Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Meysing, D. M.; Wolden,

1047

C. A.; Li, J.; Beach, J. D.; Gessert, T. A.; Metzger, W. K., et al., High-Efficiency,

1048

Flexible CdTe Solar Cells on Ultra-Thin Glass Substrates. Appl. Phys. Lett. 2015, 106,

1049

133501.

1050

(87)

Zhang, H.; Toudert, J., Optical Management for Efficiency Enhancement in Hybrid

1051

Organic-Inorganic Lead Halide Perovskite Solar Cells. Sci. Technol. Adv. Mater. 2018,

1052

19, 411-424.

1053

(88)

1054 1055

critical, In-Depth Review. Energy Environ. Sci. 2011, 4, 3779-3804. (89)

1056 1057

Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-Reflective Coatings: A Konagai, M., Present Status and Future Prospects of Silicon Thin-Film Solar Cells. Jpn. J. Appl. Phys. 2011, 50, 030001.

(90)

Ávila, J.; Momblona, C.; Boix, P. P.; Sessolo, M.; Bolink, H. J., Vapor-Deposited

1058

Perovskites: The Route to High-Performance Solar Cell Production? Joule 2017, 1, 431-

1059

442.

1060 1061

(91)

Luo, P.; Zhou, S.; Xia, W.; Cheng, J.; Xu, C.; Lu, Y., Chemical Vapor Deposition of Perovskites for Photovoltaic Application. Adv. Mater. Interfaces 2017, 4, 1600970.

49 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1062

(92)

Page 50 of 68

Wang, S.; Li, X.; Wu, J.; Wen, W.; Qi, Y. B., Fabrication of Efficient Metal Halide

1063

Perovskite Solar Cells by Vacuum Thermal Evaporation: A Progress Review. Curr. Opin.

1064

Electrochem. 2018, 11, 130-140.

1065

(93)

1066 1067

Ono, L. K.; Leyden, M. R.; Wang, S.; Qi, Y. B., Organometal Halide Perovskite Thin Films and Solar Cells by Vapor Deposition. J. Mater. Chem. A 2016, 4, 6693-6713.

(94)

Cui, P.; Wei, D.; Ji, J.; Huang, H.; Jia, E.; Dou, S.; Wang, T.; Wang, W.; Li, M., Planar

1068

p–n Homojunction Perovskite Solar Cells with Efficiency Exceeding 21.3%. Nat. Energy

1069

2019, 4, 150-159.

1070

(95)

Sahli, F.; Werner, J.; Kamino, B. A.; Bräuninger, M.; Monnard, R.; Paviet-Salomon, B.;

1071

Barraud, L.; Ding, L.; Diaz Leon, J. J.; Sacchetto, D., et al., Fully textured monolithic

1072

perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature

1073

Materials 2018, 17, 820-826.

1074

(96)

1075 1076

Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, 501, 395.

(97)

Ono, L. K.; Wang, S.; Kato, Y.; Raga, S. R.; Qi, Y. B., Fabrication of Semi-Transparent

1077

Perovskite Films with Centimeter-Scale Superior Uniformity by the Hybrid Deposition

1078

Method. Energy Environ. Sci. 2014, 7, 3989-3993.

1079

(98)

Yang, D.; Yang, Z.; Qin, W.; Zhang, Y.; Liu, S.; Li, C., Alternating precursor layer

1080

deposition for highly stable perovskite films towards efficient solar cells using vacuum

1081

deposition. J. Mater. Chem. A 2015, 3, 9401-9405.

1082

(99)

Zhu, X.; Yang, D.; Yang, R.; Yang, B.; Yang, Z.; Ren, X.; Zhang, J.; Niu, J.; Feng, J.;

1083

Liu, S., Superior stability for perovskite solar cells with 20% efficiency using vacuum co-

1084

evaporation. Nanoscale 2017, 9, 12316-12323.

1085

(100) Leyden, M. R.; Jiang, Y.; Qi, Y. B., Chemical Vapor Deposition Grown Formamidinium

1086

Perovskite Solar Modules with High Steady State Power and Thermal Stability. J. Mater.

1087

Chem. A 2016, 4, 13125-13132.

1088

(101) Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S. H.; Qi, Y. B., High

1089

Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition. J. Mater.

1090

Chem. A 2014, 2, 18742-18745.

50 ACS Paragon Plus Environment

Page 51 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

1091

(102) Turkevych, I.; Kazaoui, S.; Belich, N. A.; Grishko, A. Y.; Fateev, S. A.; Petrov, A. A.;

1092

Urano, T.; Aramaki, S.; Kosar, S.; Kondo, M., et al., Strategic Advantages of Reactive

1093

Polyiodide Melts for Scalable Perovskite Photovoltaics. Nat. Nanotech. 2019, 14, 57-63.

1094

(103) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang,

1095

Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J.

1096

Am. Chem. Soc. 2014, 136, 622-625.

1097

(104) Guo, Q.; Li, C.; Qiao, W.; Ma, S.; Wang, F.; Zhang, B.; Hu, L.; Dai, S.; Tan, Z. a., The

1098

Growth of a CH3NH3PbI3 Thin Film Using Simplified Close Space Sublimation for

1099

Efficient and Large Dimensional Perovskite Solar Cells. Energy Environ. Sci. 2016, 9,

1100

1486-1494.

1101

(105) Bonomi, S.; Marongiu, D.; Sestu, N.; Saba, M.; Patrini, M.; Bongiovanni, G.; Malavasi,

1102

L., Novel Physical Vapor Deposition Approach to Hybrid Perovskites: Growth of

1103

MAPbI3 Thin Films by RF-Magnetron Sputtering. Sci. Rep. 2018, 8, 15388.

1104

(106) Ha, S. T.; Liu, X.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q., Synthesis of

1105

Organic–Inorganic Lead Halide Perovskite Nanoplatelets: Towards High-Performance

1106

Perovskite Solar Cells and Optoelectronic Devices. Adv. Opt. Mater. 2014, 2, 838–844.

1107

(107) Lewis, D. J.; O'Brien, P., Ambient Pressure Aerosol-Assisted Chemical Vapour

1108

Deposition of (CH3NH3)PbBr3, an Inorganic-Organic Perovskite Important in

1109

Photovoltaics. Chem. Commun. 2014, 50, 6319-6321.

1110

(108) Öz, S.; Burschka, J.; Jung, E.; Bhattacharjee, R.; Fischer, T.; Mettenbörger, A.; Wang,

1111

H.; Mathur, S., Protic ionic liquid assisted solution processing of lead halide perovskites

1112

with water, alcohols and acetonitrile. Nano Energy 2018, 51, 632-638.

1113

(109) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent

1114

Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells.

1115

Nat. Mater. 2014, 13, 897-903.

1116

(110) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.

1117

K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A., et al., Cesium-Containing

1118

Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High

1119

Efficiency. Energy Environ. Sci. 2016, 9, 1989-1997.

1120 1121

(111) Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088-4093.

51 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1122

Page 52 of 68

(112) Noel, N. K.; Habisreutinger, S. N.; Wenger, B.; Klug, M. T.; Hörantner, M. T.; Johnston,

1123

M. B.; Nicholas, R. J.; Moore, D. T.; Snaith, H. J., A low viscosity, low boiling point,

1124

clean solvent system for the rapid crystallisation of highly specular perovskite films.

1125

Energy Environ. Sci. 2017, 10, 145-152.

1126

(113) Liu, Z.; Qiu, L.; Juarez-Perez, E. J.; Hawash, Z.; Kim, T.; Jiang, Y.; Wu, Z.; Raga, S. R.;

1127

Ono, L. K.; Liu, S., et al., Gas-Solid Reaction Based over One-Micrometer Thick Stable

1128

Perovskite Films for Efficient Solar Cells and Modules. Nat. Commun. 2018, 9, 3880.

1129

(114) Qiu, L.; He, S.; Jiang, Y.; Son, D.-Y.; Ono, L. K.; Liu, Z.; Kim, T.; Bouloumis, T.;

1130

Kazaoui, S.; Qi, Y. B., Hybrid Chemical Vapor Deposition Enables Scalable and Stable

1131

Cs-FA Mixed Cation Perovskite Solar Modules With a Designated Area of 91.8 cm2

1132

Approaching 10% Efficiency. J. Mater. Chem. A 2019, 7, 6920-6929.

1133

(115) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J. Y.; Ummadisingu, A.; Zakeeruddin, S. M.;

1134

Correa-Baena, J. P.; Tress, W. R.; Abate, A.; Hagfeldt, A., et al., Incorporation of

1135

Rubidium Cations Into Perovskite Solar Cells Improves Photovoltaic Performance.

1136

Science 2016, 354, 206-209.

1137

(116) Gil-Escrig, L.; Momblona, C.; La-Placa, M.-G.; Boix, P. P.; Sessolo, M.; Bolink, H. J.,

1138

Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells. Adv. Energy

1139

Mater. 2018, 8, 1703506.

1140

(117) Luo, L.; Zhang, Y.; Chai, N.; Deng, X.; Zhong, J.; Huang, F.; Peng, Y.; Ku, Z.; Cheng,

1141

Y.-B., Large-Area Perovskite Solar Cells with CsxFA1−xPbI3−yBry Thin Films Deposited

1142

by a Vapor–Solid Reaction Method. J. Mater. Chem. A 2018, 6, 21143-21148.

1143

(118) Jiang, Y.; Remeika, M.; Hu, Z.; Juarez-Perez, E. J.; Qiu, L.; Liu, Z.; Kim, T.; Ono, L. K.;

1144

Son, D.-Y.; Hawash, Z., et al., Negligible-Pb-Waste and Upscalable Perovskite

1145

Deposition Technology for High-Operational-Stability Perovskite Solar Modules. Adv.

1146

Energy Mater. 2019, 9, 1803047.

1147

(119) Jiang, Y.; Leyden, M. R.; Qiu, L.; Wang, S.; Ono, L. K.; Wu, Z.; Juarez-Perez, E. J.; Qi,

1148

Y. B., Combination of Hybrid CVD and Cation Exchange for Upscaling Cs-Substituted

1149

Mixed Cation Perovskite Solar Cells with High Efficiency and Stability. Adv. Funct.

1150

Mater. 2018, 28, 1703835.

1151 1152

(120) Fakharuddin, A.; Di Giacomo, F.; Palma, A. L.; Matteocci, F.; Ahmed, I.; Razza, S.; D’Epifanio, A.; Licoccia, S.; Ismail, J.; Di Carlo, A., et al., Vertical TiO2 Nanorods as a

52 ACS Paragon Plus Environment

Page 53 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

1153

Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano 2015, 9,

1154

8420-8429.

1155

(121) Di Giacomo, F.; Zardetto, V.; D'Epifanio, A.; Pescetelli, S.; Matteocci, F.; Razza, S.; Di

1156

Carlo, A.; Licoccia, S.; Kessels, W. M. M.; Creatore, M., et al., Flexible Perovskite

1157

Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact

1158

Layers and UV-Irradiated TiO2 Scaffolds on Plastic Substrates. Adv. Energy Mater. 2015,

1159

5, 1401808.

1160

(122) Qiu, W.; Merckx, T.; Jaysankar, M.; Masse de la Huerta, C.; Rakocevic, L.; Zhang, W.;

1161

Paetzold, U. W.; Gehlhaar, R.; Froyen, L.; Poortmans, J., et al., Pinhole-Free Perovskite

1162

Films for Efficient Solar Modules. Energy Environ. Sci. 2016, 9, 484-489.

1163

(123) Chiang, C.-H.; Nazeeruddin, M. K.; Gratzel, M.; Wu, C.-G., The Synergistic Effect Of

1164

H2O and DMF towards Stable and 20% Efficiency Inverted Perovskite Solar Cells.

1165

Energy Environ. Sci. 2017, 10, 808-817.

1166

(124) Fu, G.; Hou, L.; Wang, Y.; Liu, X.; Wang, J.; Li, H.; Cui, Y.; Liu, D.; Li, X.; Yang, S.,

1167

Efficiency Enhancement in Planar CH3NH3PbI3−xClx Perovskite Solar Cells by

1168

Processing with Bidentate Halogenated Additives. Sol. Energy Mater. Sol. Cells 2017,

1169

165, 36-44.

1170

(125) Bu, T.; Liu, X.; Zhou, Y.; Yi, J.; Huang, X.; Luo, L.; Xiao, J.; Ku, Z.; Peng, Y.; Huang,

1171

F., et al., Novel Quadruple-Cation Absorber for Universal Hysteresis Elimination for

1172

High Efficiency and Stable Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 2509-

1173

2515.

1174

(126) Bu, T.; Shi, S.; Li, J.; Liu, Y.; Shi, J.; Chen, L.; Liu, X.; Qiu, J.; Ku, Z.; Peng, Y., et al.,

1175

Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite

1176

Solar Cells and Modules. ACS Appl. Mater. Interfaces 2018, 10, 14922-14929.

1177

(127) Qiu, L.; Liu, Z.; Ono, L. K.; Jiang, Y.; Son, D.-Y.; Hawash, Z.; He, S.; Qi, Y. B.,

1178

Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules

1179

Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct.

1180

Mater. 2019, 29, 1806779.

1181

(128) Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung,

1182

H. S., Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by

1183

Self-Assembly of SnO2 Nanocolloids. ACS Energy Lett. 2019, 1845-1851.

53 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1184

(129) Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T.-Y.; Noh, J. H.;

1185

Seo, J., Efficient, Stable and Scalable Perovskite Solar Cells using Poly(3-

1186

HexylThiophene). Nature 2019, 567, 511-515.

1187

(130) Bu, T.; Li, J.; Zheng, F.; Chen, W.; Wen, X.; Ku, Z.; Peng, Y.; Zhong, J.; Cheng, Y.-B.;

1188

Huang, F., Universal Passivation Strategy to Slot-Die Printed SnO2 for Hysteresis-Free

1189

Efficient Flexible Perovskite Solar Module. Nat. Commun. 2018, 9, 4609.

1190

Page 54 of 68

(131) Tian, S.; Li, J.; Li, S.; Bu, T.; Mo, Y.; Wang, S.; Li, W.; Huang, F., A Facile Green

1191

Solvent Engineering for Up-Scaling Perovskite Solar Cell Modules. Solar Energy 2019,

1192

183, 386-391.

1193 1194 1195

(132) Solaronix, Solaronix achieves major breakthrough toward perovskite solar cell industrialization. PV Magazine International 2016, 7, 13. (133) Yang, Z.; Cai, B.; Zhou, B.; Yao, T.; Yu, W.; Liu, S.; Zhang, W.-H.; Li, C., An up-

1196

scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar

1197

cells. Nano Energy 2015, 15, 670-678.

1198

(134) Galagan, Y.; Coenen, E. W. C.; Verhees, W. J. H.; Andriessen, R., Towards the Scaling

1199

up of Perovskite Solar Cells and Modules. J. Mater. Chem. A 2016, 4, 5700-5705.

1200

(135) Wilkinson, B.; Chang, N. L.; Green, M. A.; Ho-Baillie, A. W. Y., Scaling Limits to Large

1201 1202 1203 1204

Area Perovskite Solar Cell Efficiency. Prog. Photovolt. Res. Appl. 2018, 26, 659-674. (136) Nayak, P. K.; Mahesh, S.; Snaith, H. J.; Cahen, D., Photovoltaic Solar Cell Technologies: Analysing the State of the Art. Nat. Rev. Mater. 2019, 4, 269-285. (137) Zhang, M.; Wilkinson, B.; Liao, Y.; Zheng, J.; Lau, C. F. J.; Kim, J.; Bing, J.; Green, M.

1205

A.; Huang, S.; Ho-Baillie, A. W.-Y., Electrode Design to Overcome Substrate

1206

Transparency Limitations for Highly Efficient 1 cm2 Mesoscopic Perovskite Solar Cells.

1207

Joule 2018, 2, 2694-2705.

1208

(138) Stolterfoht, M.; Wolff, C. M.; Márquez, J. A.; Zhang, S.; Hages, C. J.; Rothhardt, D.;

1209

Albrecht, S.; Burn, P. L.; Meredith, P.; Unold, T., et al., Visualization and Suppression of

1210

Interfacial Recombination for High-Efficiency Large-Area PIN Perovskite Solar Cells.

1211

Nat. Energy 2018, 3, 847-854.

1212

(139) Palma, A. L.; Matteocci, F.; Agresti, A.; Pescetelli, S.; Calabrò, E.; Vesce, L.;

1213

Christiansen, S.; Schmidt, M.; Carlo, A. D., Laser-Patterning Engineering for Perovskite

1214

Solar Modules With 95% Aperture Ratio. IEEE J. Photovolta. 2017, 7, 1674-1680.

54 ACS Paragon Plus Environment

Page 55 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1215

ACS Energy Letters

(140) Yang, M.; Kim, D. H.; Klein, T. R.; Li, Z.; Reese, M. O.; Tremolet de Villers, B. J.;

1216

Berry, J. J.; van Hest, M. F. A. M.; Zhu, K., Highly Efficient Perovskite Solar Modules

1217

by Scalable Fabrication and Interconnection Optimization. ACS Energy Lett. 2018, 3,

1218

322-328.

1219 1220

(141) Hambsch, M.; Lin, Q.; Armin, A.; Burn, P. L.; Meredith, P., Efficient, Monolithic Large Area Organohalide Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 13830-13836.

1221

(142) Zheng, J.; Mehrvarz, H.; Ma, F.-J.; Lau, C. F. J.; Green, M. A.; Huang, S.; Ho-Baillie, A.

1222

W. Y., 21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell

1223

on 16 cm2. ACS Energy Lett. 2018, 3, 2299-2300.

1224

(143) Kim, J.; Yun, J. S.; Cho, Y.; Lee, D. S.; Wilkinson, B.; Soufiani, A. M.; Deng, X.; Zheng,

1225

J.; Shi, A.; Lim, S., et al., Overcoming the Challenges of Large-Area High-Efficiency

1226

Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 1978-1984.

1227

(144) Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C. R.; Cheng, Y.-B.,

1228

Amorphous Hole-Transporting Layer in Slot-Die Coated Perovskite Solar Cells. Nano

1229

Energy 2017, 31, 210-217.

1230

(145) Isabelli, F.; Di Giacomo, F.; Gorter, H.; Brunetti, F.; Groen, P.; Andriessen, R.; Galagan,

1231

Y., Solvent Systems for Industrial-Scale Processing of Spiro-OMeTAD Hole Transport

1232

Layer in Perovskite Solar Sells. ACS Appl. Energy Mater. 2018, 1, 6056-6063.

1233

(146) Hawash, Z.; Ono, L. K.; Qi, Y. B., Recent Advances in Spiro-MeOTAD Hole Transport

1234

Material and Its Applications in Organic-inorganic Halide Perovskite Solar Cells. Adv.

1235

Mater. Interfaces 2018, 5, 1700623.

1236

(147) Ono, L. K.; Hawash, Z.; Juarez-Perez, E. J.; Qiu, L.; Jiang, Y.; Qi, Y. B., The Influence

1237

of Secondary Solvents on The Morphology of a Spiro-MeOTAD Hole Transport Layer

1238

for Lead Halide Perovskite Solar Cells. J. Phys. D. Appl. Phys. 2018, 51, 294001.

1239

(148) Ono, L. K.; Qi, Y. B., Research Progress on Organic–Inorganic Halide Perovskite

1240 1241 1242 1243

Materials and Solar Cells. J. Phys. D. Appl. Phys. 2018, 51, 093001. (149) Ono, L. K.; Qi, Y. B.; Liu, S. F., Progress toward Stable Lead Halide Perovskite Solar Cells. Joule 2018, 2, 1961-1990. (150) Zhao, X.; Kim, H.-S.; Seo, J.-Y.; Park, N.-G., Effect of Selective Contacts on the

1244

Thermal Stability of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 7148-

1245

7153.

55 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1246

(151) Cappel, U. B.; Daeneke, T.; Bach, U., Oxygen-Induced Doping of Spiro-MeOTAD in

1247

Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano

1248

Letters 2012, 12, 4925-4931.

1249

(152) Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.;

1250

Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J., Organometal Halide Perovskite Solar Cells:

1251

Degradation and Stability. Energy Environ. Sci. 2016, 9, 323-356.

1252

(153) Hawash, Z.; Ono, L. K.; Qi, Y. B., Moisture and Oxygen Enhance Conductivity of

1253

LiTFSI-Doped Spiro-MeOTAD Hole Transport Layer in Perovskite Solar Cells. Adv.

1254

Mater. Interfaces 2016, 3, 1600117.

1255

Page 56 of 68

(154) Sanchez, R. S.; Mas-Marza, E., Light-Induced Effects on Spiro-OMeTAD Films and

1256

Hybrid Lead Halide Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 158, 189-

1257

194.

1258

(155) Jena, A. K.; Numata, Y.; Ikegami, M.; Miyasaka, T., Role of spiro-OMeTAD in

1259

performance deterioration of perovskite solar cells at high temperature and reuse of the

1260

perovskite films to avoid Pb-waste. J. Mater. Chem. A 2018, 6, 2219-2230.

1261

(156) Jena, A. K.; Ikegami, M.; Miyasaka, T., Severe Morphological Deformation of Spiro-

1262

OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature. ACS Energy Lett. 2017, 2,

1263

1760-1761.

1264

(157) Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M. K.; Abate, A.; Saliba, M.;

1265

Tress, W.; Hagfeldt, A.; Grätzel, M., Not All That Glitters Is Gold: Metal-Migration-

1266

Induced Degradation in Perovskite Solar Cells. ACS Nano 2016, 10, 6306-6314.

1267

(158) Lei, L.; Zhang, S.; Yang, S.; Li, X.; Yu, Y.; Wei, Q.; Ni, Z.; Li, M., Influence of hole

1268

transport material/metal contact interface on perovskite solar cells. Nanotechnology 2018,

1269

29, 255201.

1270

(159) Ávila, J.; Momblona, C.; Boix, P. P.; Sessolo, M.; Bolink, H. J., Vapor-Deposited

1271

Perovskites: The Route to High-Performance Solar Cell Production? Joule 2017, 1, 431-

1272

442.

1273

(160) Momblona, C.; Gil-Escrig, L.; Bandiello, E.; Hutter, E. M.; Sessolo, M.; Lederer, K.;

1274

Blochwitz-Nimoth, J.; Bolink, H. J., Efficient Vacuum Deposited p-i-n and n-i-p

1275

Perovskite Solar Cells Employing Doped Charge Transport Layers. Energy Environ. Sci.

1276

2016, 9, 3456-3463.

56 ACS Paragon Plus Environment

Page 57 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1277

ACS Energy Letters

(161) Jung, M. C.; Raga, S. R.; Ono, L. K.; Qi, Y. B., Substantial Improvement of Perovskite

1278

Solar Cells Stability by Pinhole-Free Hole Transport Layer with Doping Engineering. Sci

1279

Rep 2015, 5, 9863.

1280

(162) Qiu, L.; Ono, L. K.; Jiang, Y.; Leyden, M. R.; Raga, S. R.; Wang, S.; Qi, Y. B.,

1281

Engineering Interface Structure to Improve Efficiency and Stability of Organometal

1282

Halide Perovskite Solar Cells. J. Phys. Chem. B 2018, 122, 511–520.

1283

(163) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I.,

1284

Compositional Engineering of Perovskite Materials for High-Performance Solar Cells.

1285

Nature 2015, 517, 476-480.

1286

(164) Chen, H.; Yang, S., Carbon-Based Perovskite Solar Cells without Hole Transport

1287

Materials: The Front Runner to the Market? Adv. Mater. 2017, 29, 1603994.

1288

(165) Kato, Y.; Ono, L. K.; Lee, M. V.; Wang, S. H.; Raga, S. R.; Qi, Y. B., Silver Iodide

1289

Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top

1290

Electrodes. Adv. Mater. Interfaces 2015, 2, 1500195.

1291

(166) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.;

1292

Grätzel, M., Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells. J. Am. Chem.

1293

Soc. 2012, 134, 17396-17399.

1294

(167) Ku, Z.; Rong, Y.; Xu, M.; Liu, T.; Han, H., Full Printable Processed Mesoscopic

1295

CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode. Sci. Rep.

1296

2013, 3, 3132.

1297

(168) Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y., et

1298

al., A Hole-Conductor–Free, Fully Printable Mesoscopic Perovskite Solar Cell with High

1299

Stability. Science 2014, 345, 295-298.

1300

(169) Wei, Z.; Chen, H.; Yan, K.; Yang, S., Inkjet Printing and Instant Chemical

1301

Transformation of a CH3NH3PbI3/Nanocarbon Electrode and Interface for Planar

1302

Perovskite Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 13239-13243.

1303

(170) Yang, Y.; Liu, Z.; Ng, W. K.; Zhang, L.; Zhang, H.; Meng, X.; Bai, Y.; Xiao, S.; Zhang,

1304

T.; Hu, C., et al., An Ultrathin Ferroelectric Perovskite Oxide Layer for High-

1305

Performance Hole Transport Material Free Carbon Based Halide Perovskite Solar Cells.

1306

Adv. Funct. Mater. 2019, 29, 1806506.

57 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1307

Page 58 of 68

(171) Duan, J.; Hu, T.; Zhao, Y.; He, B.; Tang, Q., Carbon-Electrode-Tailored All-Inorganic

1308

Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy. Angew. Chem. Int. Ed.

1309

2018, 57, 5746-5749.

1310

(172) Ku, Z.; Xia, X.; Shen, H.; Tiep, N. H.; Fan, H. J., A Mesoporous Nickel Counter

1311

Electrode for Printable and Reusable Perovskite Solar Cells. Nanoscale 2015, 7, 13363-

1312

13368.

1313

(173) Chu, Q.-Q.; Ding, B.; Peng, J.; Shen, H.; Li, X.; Liu, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J.;

1314

White, T. P., et al., Highly Stable Carbon-Based Perovskite Solar Cell with a Record

1315

Efficiency of Over 18% via Hole Transport Engineering. Journal of Materials Science &

1316

Technology 2019, 35, 987-993.

1317

(174) Baranwal, A. K.; Kanda, H.; Shibayama, N.; Ito, S., Fabrication of Fully Non-Vacuum

1318

Processed Perovskite Solar Cells Using an Inorganic CuSCN Hole-Transporting Material

1319

and Carbon-Back Contact. Sustain. Energy Fuels 2018, 2, 2778-2787.

1320

(175) Arora, N.; Dar, M. I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S. M.;

1321

Grätzel, M., Perovskite Solar Cells with CuSCN Hole Extraction Layers Yield Stabilized

1322

Efficiencies Greater than 20%. Science 2017, 358, 768-771.

1323

(176) Mashhoun, S.; Hou, Y.; Chen, H.; Tajabadi, F.; Taghavinia, N.; Egelhaaf, H.-J.; Brabec,

1324

C. J., Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable

1325

and Printable Carbon Based Electrode-Interface Architecture. Adv. Energy Mater. 2018,

1326

8, 1802085.

1327

(177) Christians, J. A.; Fung, R. C. M.; Kamat, P. V., An Inorganic Hole Conductor for

1328

Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper

1329

Iodide. J. Am. Chem. Soc. 2014, 136, 758-764.

1330

(178) Peiris, T. A. N.; Baranwal, A. K.; Kanda, H.; Fukumoto, S.; Kanaya, S.; Cojocaru, L.;

1331

Bessho, T.; Miyasaka, T.; Segawa, H.; Ito, S., Enhancement of The Hole Conducting

1332

Effect of NiO by a N2 Blow Drying Method in Printable Perovskite Solar Cells with

1333

Low-Temperature Carbon as the Counter Electrode. Nanoscale 2017, 9, 5475-5482.

1334

(179) Liu, X.; Tan, X.; Liu, Z.; Ye, H.; Sun, B.; Shi, T.; Tang, Z.; Liao, G., Boosting the

1335

Efficiency of Carbon-Based Planar CsPbBr3 Perovskite Solar Cells by a Modified

1336

Multistep Spin-Coating Technique and Interface Engineering. Nano Energy 2019, 56,

1337

184-195.

58 ACS Paragon Plus Environment

Page 59 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1338

ACS Energy Letters

(180) You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.; Chang, W.-H.; Hong, Z.; Chen, H.;

1339

Zhou, H.; Chen, Q., et al., Improved Air Stability of Perovskite Solar Cells via Solution-

1340

Processed Metal Oxide Transport Layers. Nat. Nanotech. 2015, 11, 75.

1341

(181) Ye, H.; Liu, Z.; Liu, X.; Sun, B.; Tan, X.; Tu, Y.; Shi, T.; Tang, Z.; Liao, G., 17.78%

1342

Efficient Low-Temperature Carbon-Based Planar Perovskite Solar Cells Using Zn-Doped

1343

SnO2 Electron Transport Layer. Appl. Sur. Sci. 2019, 478, 417-425.

1344

(182) Chu, Q.-Q.; Ding, B.; Qiu, Q.; Liu, Y.; Li, C.-X.; Li, C.-J.; Yang, G.-J.; Fang, B., Cost

1345

Effective Perovskite Solar Cells with a High Efficiency and Open-Circuit Voltage Based

1346

on a Perovskite-Friendly Carbon Electrode. J. Mater. Chem. A 2018, 6, 8271-8279.

1347

(183) Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X.; Wang, Z.; Wang, J.; Xu,

1348

J., et al., High-Performance Graphene-Based Hole Conductor-Free Perovskite Solar

1349

Cells: Schottky Junction Enhanced Hole Extraction and Electron Blocking. Small 2015,

1350

11, 2269-2274.

1351

(184) Yan, J.; Lin, S.; Qiu, X.; Chen, H.; Li, K.; Yuan, Y.; Long, M.; Yang, B.; Gao, Y.; Zhou,

1352

C., Accelerated Hole-Extraction in Carbon-Electrode Based Planar Perovskite Solar Cells

1353

by Moisture-Assisted Post-Annealing. Appl. Phys. Lett. 2019, 114, 103503.

1354

(185) Jiang, P.; Jones, T. W.; Duffy, N. W.; Anderson, K. F.; Bennett, R.; Grigore, M.; Marvig,

1355

P.; Xiong, Y.; Liu, T.; Sheng, Y., et al., Fully Printable Perovskite Solar Cells with

1356

Highly-Conductive, Low-Temperature, Perovskite-Compatible Carbon Electrode.

1357

Carbon 2018, 129, 830-836.

1358

(186) Aitola, K.; Domanski, K.; Correa-Baena, J.-P.; Sveinbjörnsson, K.; Saliba, M.; Abate, A.;

1359

Grätzel, M.; Kauppinen, E.; Johansson, E. M. J.; Tress, W., et al., High Temperature-

1360

Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact. Adv.

1361

Mater. 2017, 29, 1606398.

1362

(187) Wei, Z.; Chen, H.; Yan, K.; Zheng, X.; Yang, S., Hysteresis-Free Multi-Walled Carbon

1363

Nanotube-Based Perovskite Solar Cells with a High Fill Factor. J. Mater. Chem. A 2015,

1364

3, 24226-24231.

1365

(188) Cheng, N.; Liu, P.; Qi, F.; Xiao, Y.; Yu, W.; Yu, Z.; Liu, W.; Guo, S.-S.; Zhao, X.-Z.,

1366

Multi-Walled Carbon Nanotubes Act as Charge Transport Channel to Boost the

1367

Efficiency of Hole Transport Material Free Perovskite Solar Cells. J. Power Sources

1368

2016, 332, 24-29.

59 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1369

Page 60 of 68

(189) Zhang, H.; Xiao, J.; Shi, J.; Su, H.; Luo, Y.; Li, D.; Wu, H.; Cheng, Y.-B.; Meng, Q.,

1370

Self-Adhesive Macroporous Carbon Electrodes for Efficient and Stable Perovskite Solar

1371

Cells. Adv. Funct. Mater. 2018, 28, 1802985.

1372

(190) Meng, X.; Zhou, J.; Hou, J.; Tao, X.; Cheung, S. H.; So, S. K.; Yang, S., Versatility of

1373

Carbon Enables All Carbon Based Perovskite Solar Cells to Achieve High Efficiency and

1374

High Stability. Adv. Mater. 2018, 30, 1706975.

1375

(191) Wu, Z.; Liu, Z.; Hu, Z.; Hawash, Z.; Qiu, L.; Jiang, Y.; Ono, L. K.; Qi, Y. B., Highly

1376

Efficient and Stable Perovskite Solar Cells via Modification of Energy Levels at the

1377

Perovskite/Carbon Electrode Interface. Adv. Mater. 2019, 31, e1804284.

1378

(192) Zhu, W.; Zhang, Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao,

1379

Y., Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon-Based All-

1380

Inorganic Planar CsPbIBr2 Perovskite Solar Cells to Over 9%. Adv. Energy Mater. 2018,

1381

8, 1802080.

1382

(193) Teng, P.; Han, X.; Li, J.; Xu, Y.; Kang, L.; Wang, Y.; Yang, Y.; Yu, T., Elegant Face-

1383

Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based

1384

All-Inorganic Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 9541-

1385

9546.

1386

(194) Zhang, Q.; Zhu, W.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao,

1387

Y., Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr2

1388

Solar Cells with High Photovoltages. ACS Appl. Mater. Interfaces 2019, 11, 2997-3005.

1389

(195) Jiang, X.; Yu, Z.; Lai, J.; Zhang, Y.; Hu, M.; Lei, N.; Wang, D.; Yang, X.; Sun, L.,

1390

Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper

1391

Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance

1392

and Stability. ChemSusChem 2017, 10, 1838-1845.

1393

(196) Zhang, F.; Yang, X.; Wang, H.; Cheng, M.; Zhao, J.; Sun, L., Structure Engineering of

1394

Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed

1395

Commercial Carbon Paste As Cathode. ACS Appl. Mater. Interfaces 2014, 6, 16140-

1396

16146.

1397 1398

(197) Zhou, H.; Shi, Y.; Dong, Q.; Zhang, H.; Xing, Y.; Wang, K.; Du, Y.; Ma, T., HoleConductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells

60 ACS Paragon Plus Environment

Page 61 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

1399

Based on a Low-Temperature Carbon Electrode. J. Phys. Chem. Lett. 2014, 5, 3241-

1400

3246.

1401

(198) Zhou, H.; Shi, Y.; Wang, K.; Dong, Q.; Bai, X.; Xing, Y.; Du, Y.; Ma, T., Low-

1402

Temperature Processed and Carbon-Based ZnO/CH3NH3PbI3/C Planar Heterojunction

1403

Perovskite Solar Cells. J. Phys. Chem. C 2015, 119, 4600-4605.

1404

(199) Yang, Y.; Xiao, J.; Wei, H.; Zhu, L.; Li, D.; Luo, Y.; Wu, H.; Meng, Q., An All-Carbon

1405

Counter Electrode for Highly Efficient Hole-Conductor-Free Organo-Metal Perovskite

1406

Solar Cells. RSC Advances 2014, 4, 52825-52830.

1407

(200) Gong, J.; Darling, S. B.; You, F., Perovskite Photovoltaics: Life-Cycle Assessment of

1408

Energy and Environmental Impacts. Energy Environ. Sci. 2015, 8, 1953-1968.

1409

(201) Chang, N. L.; Yi Ho-Baillie, A. W.; Basore, P. A.; Young, T. L.; Evans, R.; Egan, R. J.,

1410

A Manufacturing Cost Estimation Method with Uncertainty Analysis and Its Application

1411

to Perovskite on Glass Photovoltaic Modules. Prog. Photovolt. Res. Appl. 2017, 25, 390-

1412

405.

1413

(202) Berry, J.; Buonassisi, T.; Egger, D. A.; Hodes, G.; Kronik, L.; Loo, Y.-L.; Lubomirsky,

1414

I.; Marder, S. R.; Mastai, Y.; Miller, J. S., et al., Hybrid Organic–Inorganic Perovskites

1415

(HOIPs): Opportunities and Challenges. Adv. Mater. 2015, 27, 5102-5112.

1416

(203) Editorial, A Decade of Perovskite Photovoltaics. Nat. Energy 2019, 4, 1.

1417

(204) Booth, H., Laser Processing in Industrial Solar Module Manufacturing. J Laser Micro

1418

Nanoen 2010, 5, 183-191.

1419

(205) Hofmann, A. I.; Cloutet, E.; Hadziioannou, G., Materials for Transparent Electrodes:

1420

From Metal Oxides to Organic Alternatives. Advanced Electronic Materials 2018, 4,

1421

1700412.

1422

(206) Ono, L. K.; Juárez-Pérez, E. J.; Qi, Y. B., Progress on Novel Perovskite Materials and

1423

Solar Cells with Mixed Cations and Halide Anions. ACS Appl. Mater. Interfaces 2017, 9,

1424

30197-30246.

1425

(207) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as

1426

Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-

1427

6051.

1428 1429

(208) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E., et al., Lead Iodide Perovskite Sensitized

61 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 62 of 68

1430

All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding

1431

9%. Sci. Rep. 2012, 2, 591.

1432

(209) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-

1433

Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular

1434

Exchange. Science 2015, 348, 1234-1237.

1435

(210) Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.;

1436

Seo, J.; Kim, E. K.; Noh, J. H., et al., Iodide Management in Formamidinium-Lead-

1437

Halide–Based Perovskite Layers for Efficient Solar Cells. Science 2017, 356, 1376-1379.

1438

(211) Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, Shaik M.; Li, X.;

1439

Hagfeldt, A.; Grätzel, M., Polymer-Templated Nucleation and Crystal Growth of

1440

Perovskite Films for Solar Cells with Efficiency Greater than 21%. Nat. Energy 2016, 1,

1441

16142.

1442

(212) Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Gratzel, C.; Zakeeruddin, S.

1443

M.; Rothlisberger, U.; Gratzel, M., Entropic Stabilization of Mixed A-Cation ABX3

1444

Metal Halide Perovskites for High Performance Perovskite Solar Cells. Energy Environ.

1445

Sci. 2016, 9, 656-662.

1446 1447 1448

(213) Yin, W.-J.; Yan, Y.; Wei, S.-H., Anomalous Alloy Properties in Mixed Halide Perovskites. J. Phys. Chem. Lett. 2014, 5, 3625-3631. (214) Zheng, X.; Wu, C.; Jha, S. K.; Li, Z.; Zhu, K.; Priya, S., Improved Phase Stability of

1449

Formamidinium Lead Triiodide Perovskite by Strain Relaxation. ACS Energy Lett. 2016,

1450

1, 1014-1020.

1451

(215) Juarez-Perez, E. J.; Ono, L. K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. B.,

1452

Photodecomposition and Thermal Decomposition in Methylammonium Halide Lead

1453

Perovskites and Inferred Design Principles to Increase Photovoltaic Device Stability. J.

1454

Mater. Chem. A 2018, 6, 9604-9612.

1455

(216) García-Fernández, A.; Juarez-Perez, E. J.; Castro-García, S.; Sánchez-Andújar, M.; Ono,

1456

L. K.; Jiang, Y.; Qi, Y. B., Benchmarking Chemical Stability of Arbitrarily Mixed 3D

1457

Hybrid Halide Perovskites for Solar Cell Applications. Small Methods 2018, 2, 1800242.

1458

(217) Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V., Making

1459

and Breaking of Lead Halide Perovskites. Acc. Chem. Res. 2016, 49, 330-338.

62 ACS Paragon Plus Environment

Page 63 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1460

ACS Energy Letters

(218) Turren-Cruz, S.-H.; Hagfeldt, A.; Saliba, M., Methylammonium-Free, High-

1461

Performance, and Stable Perovskite Solar Cells on a Planar Architecture. Science 2018,

1462

362, 449-453.

1463

(219) Song, Z.; Wang, C.; Phillips, A. B.; Grice, C. R.; Zhao, D.; Yu, Y.; Chen, C.; Li, C.; Yin,

1464

X.; Ellingson, R. J., et al., Probing the Origins of Photodegradation in Organic–Inorganic

1465

Metal Halide Perovskites with Time-Resolved Mass Spectrometry. Sustain. Energy Fuels

1466

2018, 2, 2460-2467.

1467

(220) Latini, A.; Gigli, G.; Ciccioli, A., A study on the Nature of the Thermal Decomposition

1468

of Methylammonium Lead Iodide Perovskite, CH3NH3PbI3: an Attempt to Rationalise

1469

Contradictory Experimental Results. Sustain. Energy Fuels 2017, 1, 1351-1357.

1470

(221) Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B., Thermal Degradation

1471

of CH3NH3PbI3 Perovskite into NH3 and CH3I Gases Observed by Coupled

1472

Thermogravimetry-Mass Spectrometry Analysis. Energy Environ. Sci. 2016, 9, 3406-

1473

3410.

1474 1475 1476

(222) Fakharuddin, A.; Schmidt-Mende, L.; Garcia-Belmonte, G.; Jose, R.; Mora-Sero, I., Interfaces in Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700623. (223) Habisreutinger, S. N.; McMeekin, D. P.; Snaith, H. J.; Nicholas, R. J., Research Update:

1477

Strategies for Improving The Stability of Perovskite Solar Cells. APL Mater. 2016, 4,

1478

091503.

1479

(224) Xu, F.; Zhang, T.; Li, G.; Zhao, Y., Mixed Cation Hybrid Lead Halide Perovskites with

1480

Enhanced Performance and Stability. J. Mater. Chem. A 2017, 5, 11450-11461.

1481

(225) Wang, S.; Jiang, Y.; Juarez-Perez, Emilio J.; Ono, L. K.; Qi, Y. B., Accelerated

1482

Degradation of Methylammonium Lead Iodide Perovskites Induced by Exposure to

1483

Iodine Vapour. Nat. Energy 2016, 2, 16195.

1484 1485 1486

(226) Wilks, R. G.; Bär, M., Perovskite Solar Cells: Danger from Within. Nat. Energy 2017, 2, 16204. (227) Ono, L. K.; Raga, S. R.; Remeika, M.; Winchester, A. J.; Gabe, A.; Qi, Y. B., Pinhole-

1487

Free Hole Transport Layers Significantly Improve the Stability of MAPbI3-Based

1488

Perovskite Solar Cells Under Operating Conditions. J. Mater. Chem. A 2015, 3, 15451-

1489

15456.

63 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1490 1491 1492

(228) Wang, M.; Yim, W.-L.; Liao, P.; Shen, Y., Temperature Dependent Characteristics of Perovskite Solar Cells. Chem. Select 2017, 2, 4469-4477. (229) Ono, L. K.; Raga, S. R.; Wang, S.; Kato, Y.; Qi, Y. B., Temperature-Dependent

1493

Hysteresis Effects in Perovskite-Based Solar Cells. J. Mater. Chem. A 2015, 3, 9074-

1494

9080.

1495 1496 1497

(230) Zhang, H.; Qiao, X.; Shen, Y.; Wang, M., Effect of Temperature on the Efficiency of Organometallic Perovskite Solar Cells. J. Energy Chem. 2015, 24, 729. (231) Zhang, H.; Qiao, X.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Gratzel, M.; Wang, M.,

1498

Photovoltaic Behaviour of Lead Methylammonium Triiodide Perovskite Solar Cells

1499

Down to 80 K. J. Mater. Chem. A 2015, 3, 11762-11767.

1500

Page 64 of 68

(232) Milot, R. L.; Eperon, G. E.; Snaith, H. J.; Johnston, M. B.; Herz, L. M., Temperature-

1501

Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films. Adv. Funct.

1502

Mater. 2015, 25, 6218-6227.

1503 1504 1505

(233) Solanki, A.; Yadav, P.; Turren-Cruz, S.-H.; Lim, S. S.; Saliba, M.; Sum, T. C., Cation influence on carrier dynamics in perovskite solar cells. Nano Energy 2019, 58, 604-611. (234) Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.;

1506

McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T., et al., 23.6%-Efficient

1507

Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nat. Energy

1508

2017, 2, 17009.

1509

(235) Wu, Z.; Raga, S. R.; Juarez-Perez, E. J.; Yao, X.; Jiang, Y.; Ono, L. K.; Ning, Z.; Tian,

1510

H.; Qi, Y. B., Improved Efficiency and Stability of Perovskite Solar Cells Induced by

1511

C=O Functionalized Hydrophobic Ammonium-Based Additives. Adv. Mater. 2017, 29,

1512

1703670.

1513

(236) Zhou, Y.; Zhou, Z.; Chen, M.; Zong, Y.; Huang, J.; Pang, S.; Padture, N. P., Doping and

1514

Alloying for Improved Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 17623-17635.

1515

(237) Christians, J. A.; Zhang, F.; Bramante, R. C.; Reese, M. O.; Schloemer, T. H.; Sellinger,

1516

A.; van Hest, M. F. A. M.; Zhu, K.; Berry, J. J.; Luther, J. M., Stability at Scale:

1517

Challenges of Module Interconnects for Perovskite Photovoltaics. ACS Energy Lett.

1518

2018, 3, 2502-2503.

64 ACS Paragon Plus Environment

Page 65 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1519

ACS Energy Letters

(238) Cheacharoen, R.; Boyd, C. C.; Burkhard, G. F.; Leijtens, T.; Raiford, J. A.; Bush, K. A.;

1520

Bent, S. F.; McGehee, M. D., Encapsulating perovskite solar cells to withstand damp heat

1521

and thermal cycling. Sustain. Energy Fuels 2018, 2, 2398-2406.

1522 1523

(239) Uddin, A.; Upama, M. B.; Yi, H.; Duan, L., Encapsulation of Organic and Perovskite Solar Cells: A Review. Coatings 2019, 9, 65.

1524

(240) Jiang, Y.; Qiu, L.; Juarez-Perez, E. J.; Ono, L. K.; Hu, Z.; Liu, Z.; Wu, Z.; Meng, L.;

1525

Wang, Q.; Qi, Y. B., Reduction of lead leakage from damaged lead halide perovskite

1526

solar modules using self-healing polymer-based encapsulation. Nat. Energy 2019, 4, 585-

1527

593.

1528

(241) Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D., Understanding Degradation

1529

Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews

1530

2019, 119, 3418-3451.

1531

(242) Niu, G. D.; Li, W. Z.; Meng, F. Q.; Wang, L. D.; Dong, H. P.; Qiu, Y., Study on the

1532

Stability of CH3NH3PbI3 Films and The Effect of Post-Modification by Aluminum Oxide

1533

in All-Solid-State Hybrid Solar Cells. J. Mater. Chem. A 2014, 2, 705-710.

1534 1535

(243) Zhao, P.; Kim, B. J.; Jung, H. S., Passivation in Perovskite Solar Cells: A Review. Mater. Today Energy 2018, 7, 267-286.

1536

(244) Ip, A. H.; Quan, L. N.; Adachi, M. M.; McDowell, J. J.; Xu, J.; Kim, D. H.; Sargent, E.

1537

H., A Two-Step Route to Planar Perovskite Cells Exhibiting Reduced Hysteresis. Appl.

1538

Phys. Lett. 2015, 106, 143902.

1539

(245) Yang, D.; Zhou, X.; Yang, R.; Yang, Z.; Yu, W.; Wang, X.; Li, C.; Liu, S.; Chang, R. P.

1540

H., Surface optimization to eliminate hysteresis for record efficiency planar perovskite

1541

solar cells. Energy Environ. Sci. 2016, 9, 3071-3078.

1542

(246) Jiang, J.; Jin, Z.; Lei, J.; Wang, Q.; Zhang, X.; Zhang, J.; Gao, F.; Liu, S., ITIC surface

1543

modification to achieve synergistic electron transport layer enhancement for planar-type

1544

perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 2017, 5, 9514-

1545

9522.

1546

(247) Wang, Q.; Dong, Q.; Li, T.; Gruverman, A.; Huang, J., Thin Insulating Tunneling

1547

Contacts for Efficient and Water-Resistant Perovskite Solar Cells. Adv. Mater. 2016, 28,

1548

6734-6739.

65 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1549

(248) Wang, K.; Zhao, W.; Liu, J.; Niu, J.; Liu, Y.; Ren, X.; Feng, J.; Liu, Z.; Sun, J.; Wang,

1550

D., et al., CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for

1551

High-Performance Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2017, 9,

1552

33989-33996.

1553

Page 66 of 68

(249) Chander, N.; Khan, A. F.; Chandrasekhar, P. S.; Thouti, E.; Swami, S. K.; Dutta, V.;

1554

Komarala, V. K., Reduced Ultraviolet Light Induced Degradation and Enhanced Light

1555

Harvesting Using YVO4:Eu3+ Down-Shifting Nano-Phosphor Layer in Organometal

1556

Halide Perovskite Solar Cells. Appl. Phys. Lett. 2014, 105, 033904.

1557

(250) Bella, F.; Griffini, G.; Correa-Baena, J.-P.; Saracco, G.; Grätzel, M.; Hagfeldt, A.; Turri,

1558

S.; Gerbaldi, C., Improving Efficiency and Stability of Perovskite Solar Cells with

1559

Photocurable Fluoropolymers. Science 2016, 354, 203-206.

1560

(251) Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S. F., Energy-Down-Shift

1561

CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar

1562

Cells. ACS Energy Lett. 2017, 2, 1479-1486.

1563

(252) Yang, D.; Zhang, X.; Wang, K.; Wu, C.; Yang, R.; Hou, Y.; Jiang, Y.; Liu, S.; Priya, S.,

1564

Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-

1565

Optimized PCBM Electron-Transport Layers. Nano Letters 2019, 19, 3313-3320.

1566

(253) Li, M.-H.; Yeh, H.-H.; Chiang, Y.-H.; Jeng, U.-S.; Su, C.-J.; Shiu, H.-W.; Hsu, Y.-J.;

1567

Kosugi, N.; Ohigashi, T.; Chen, Y.-A., et al., Highly Efficient 2D/3D Hybrid Perovskite

1568

Solar Cells via Low-Pressure Vapor-Assisted Solution Process. Adv. Mater. 2018, 30,

1569

1801401.

1570

(254) Wang, Z.; McMeekin, D. P.; Sakai, N.; van Reenen, S.; Wojciechowski, K.; Patel, J. B.;

1571

Johnston, M. B.; Snaith, H. J., Efficient and Air-Stable Mixed-Cation Lead Mixed-Halide

1572

Perovskite Solar Cells with n-Doped Organic Electron Extraction Layers. Adv. Mater.

1573

2017, 29, 1604186.

1574

(255) Wang, Z.; Lin, Q.; Chmiel, F. P.; Sakai, N.; Herz, L. M.; Snaith, H. J., Efficient Ambient-

1575

Air-Stable Solar Cells with 2D–3D Heterostructured Butylammonium-Caesium-

1576

Formamidinium Lead Halide Perovskites. Nat. Energy 2017, 2, 17135.

1577 1578

(256) Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M., Tailored Interfaces of

66 ACS Paragon Plus Environment

Page 67 of 68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Energy Letters

1579

Unencapsulated Perovskite Solar Cells for >1,000 Hour Operational Stability. Nat.

1580

Energy 2018, 3, 68-74.

1581

(257) Ren, X.; Yang, D.; Yang, Z.; Feng, J.; Zhu, X.; Niu, J.; Liu, Y.; Zhao, W.; Liu, S. F.,

1582

Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite

1583

Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 2421-2429.

1584

(258) Yang, D.; Yang, R.; Wang, K.; Wu, C.; Zhu, X.; Feng, J.; Ren, X.; Fang, G.; Priya, S.;

1585

Liu, S., High efficiency planar-type perovskite solar cells with negligible hysteresis using

1586

EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.

1587

(259) Yang, D.; Yang, R.; Ren, X.; Zhu, X.; Yang, Z.; Li, C.; Liu, S., Hysteresis-Suppressed

1588

High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for

1589

Effective Electron Transport. Adv. Mater. 2016, 28, 5206-5213.

1590

(260) Feng, J.; Yang, Z.; Yang, D.; Ren, X.; Zhu, X.; Jin, Z.; Zi, W.; Wei, Q.; Liu, S., E-beam

1591

evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite

1592

solar cells. Nano Energy 2017, 36, 1-8.

1593

(261) Zhao, W.; Wang, K.; Li, H.; Yang, Z.; Liu, Z.; Sun, J.; Wang, D.; Liu, S., Stoichiometry

1594

control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport

1595

layers for efficient planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2018, 178,

1596

200-207.

1597

(262) Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.;

1598

Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H., et al., A Molecularly Engineered

1599

Hole-Transporting Material for Efficient Perovskite Solar Cells. Nat. Energy 2016, 1,

1600

15017.

1601 1602 1603

(263) Cai, M.; Wu, Y.; Chen, H.; Yang, X.; Qiang, Y.; Han, L., Cost-Performance Analysis of Perovskite Solar Modules. Adv. Sci. 2016, 3, 1600269. (264) Han, L., Improved Charge Carrying for Solar Cells. Nature 2019, 567, 465-467.

67 ACS Paragon Plus Environment

ACS Energy Letters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1604

Page 68 of 68

A list of selected quotes from the manuscript:

1605 1606

Page 5, Lines 99-101: In this perspective, we analyze the current progress of solution- and

1607

vapor-based upscalable techniques that allowed fabrication of solar modules with a total area

1608

larger than 10 cm2

1609

Page 13, Lines 235-236: Fabrication of solar modules based on all vapor methods (i.e., solvent-

1610

free processes) could be also envisaged for the perovskite PV technology

1611

Page 26, Lines 477-479: Organic HTLs and Au metal as electrode constitute a major portion of

1612

the fabrication cost of perovskite solar modules, i.e., about 64% of the total raw material cost

1613

Page 33, Lines 640-642: The analyses of strategies that led to the best lab-scale research-cell

1614

efficiencies provide important insights and promising trend that enhanced performance and

1615

stability can be achieved in large area perovskite solar modules

68 ACS Paragon Plus Environment