944
J O E L ?I. HILDCURASD
REFEREXCES (1) SBRAJIS, I., . ~ K DSOLLSER, IC.: J. Gen. Physiol. 26,369 (1943). 0 . E . A., A~CBAIN, J. W.,AND Itoss, S.:J. Phys. Chem. 47, 528 (19-23). (2) BOLDUAN, (3) C.4RR, c. w.,JOHSSOS, 'w. I?., AXD KOLTHOFF, I. &I.: J . Phys. Colloid Chem. 51, 636 (1947). (4) FINEXAN, M. K., A N D MCBAIN,J. W.: J. Phys. Colloid Chem. 52, 881 (1948). (5) LAIAG, M. E.: J . Phys. Chem. 28, 673 (1924). (6) MCBAIS, &I. E . L., DYE,W. B., - 4 s ~JOHNSOS,S. A . J. 4 m . Chem. Soc. 61, 3210 (1939). ( 7 ) M c B a r ~AI. , E . L., A N D PERRY, L. IT.: J . Am. Chem SOC. 62, 989 (1940). (8) hIcBa~x,J. W.:J. Am. Chem. Soc. 50, 1636 (1928). AND BETZ,AI. D.: J . .4m.Chem. SOC. 57, 1905 (1935). (9) MCBAIS,J. W., (10) AICBAIN,J. W., A N D BCTZ,M. D.: J. Am. Cheni. SOC.57, 1909 (1935). (11) M c B ~ I s ,J. W., AXD BETZ,AI. D.: J. .4m. Chem. Soc. 57, 1913 (1935). 0. E. A . : J. Phys. Cheni. 47, 94 (1943). (12) AICBAIN,J. W.A N D BOLDUAN, (13) MCBAIS,J. W., A N D Dawsos, C. R.: J. Am. Chem. Soc. 56, 52 (1934). (14) MCBAIN,J. W., AND GREEN,SISTERAGNESAss: J. Am. Chem. SOC.68, 1731 (1946). (15) XCBAIN,J. W.ASD JESKINS, K.J . . J . Chem. Soc. 121,2325 (1922). I?. . J. Chem. SOC.115, 1279 (1919). (16) MCBAIN,J. W.,LAISG,31.E A N D TIILCY, (17) MCBAIN,J. W.,.4ND LIU,T. H : ,J. . ~ I I I . Chem. SOC.63, 59 (1931). (18) XCBAIS,J. W.,A N D O ' S ~ L L I V AC. Y ,11..J . Am. Chem. Soc. 57, 2631 (1935). (19) RICBAIN,J. W., ASD SALVON, C. S.:J. Ani. Cheni. Soc. 42, 426 (1920). (20) ~ I C B A I N J. ,W., A N D WILLIAMS, R. C.: J. -4m.Chem. Soc. 55, 2250 (1933). (21) MCBAIS,J. W.,AND Woo, T. : J. Am. Chem. Soc. 60, 223 (1938). (22) MICHAELIS, L.: J. Gen. Physiol. 8, 33 (1926). (23) SOLLNER, K.: J. Phys. Chem. 49, 47 (1945). (24) SOLLNER, K., ABRAMS, I., AND CARR,c. w.:J . Gen. Physiol. 24, 467 (1921). (25) SOLLSER,K., AND GREGOR, H. P.: J. Phys. Chem. 50, 53 (1916).
SETEX L I Q U D PHASES IS EQULIBRIUM JOEL H. HILDEBRAND
Department of Chemistry, University of California, Berkeley, California Received J a n u a r y 3, 1949
Some years ago I gave an address (2) at Irhich I prujected a photograph of a system of five liquid phases in stable equilibrium-mercurZ., phosphorus, x-stter, aniline, and hesane-the record at that time, so far as I am an-are. Subsequent!y ( 3 ) a sixth phase, liquid gnllium, \vas added. The recent development of the chemistry of fluorocarbons and the application t o them of solubility theory now makes it possible t o add a sewnth phase. -1. photograph of the resulting system is here reproduced in figure 1, TI here the phase3 are labeled. It may be of interest t o reviejv briefly the several factors responsible for the coexistence of so many liquid phases. The strong hydrogen bonding explains the water pha-e. &hilineis soincn-hat soluble in water by virtue of the hydrogenbonding amino group, hut only t o :i limited extent hecause of the clifficnlty of
r .
clragging in tlic non-polai. plirnyl gi’oiip. 1hese r61es are reversed in giving it, only limitetl soliihility in heptane. To understand the soliihility i,elationi of the nun-polar liquids, we niay proveed from the genexi1 soIii1)ility eqiution for the Lbregular”solutions (6) (neglecting the i3atlier uncrrtain eft’ert of cwn.;itlPra\ily tliflcrent molal volumes) In n2
=
In .r2
+~
~ -( 6 f?l’ ~
Hcptane
(1 1
9-46
J O I L I I . HILDEiII