20 Solute Permeation Through Hydrogel Membranes Hydrophilic vs. Hydrophobic Solutes
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
S. W. KIM, J. R. CARDINAL, S. WISNIEWSKI, and G. M. ZENTNER Department of Pharmaceutics, University of Utah, Salt Lake City, UT 84112
P o l y ( 2 - h y d r o x y e t h y l m e t h a c r y l a t e ) (p-HEMA) i s a h y d r o p h i l i c m e t h a c r y l a t e p o l y m e r w h i c h was f i r s t p r e p a r e d b y W i c h t e r l e and L i m OJ. T h i s p o l y m e r , a n d many o t h e r s y n t h e t i c h y d r o g e l s , has been e x t e n s i v e l y examined f o r p o t e n t i a l b i o m e d i c a l a p p l i c a t i o n s (2J. A l t h o u g h many s t u d i e s have f o c u s e d on t h e p h y s i c o c h e m i c a l n a t u r e o f t h e s e h y d r o g e l s , many q u e s t i o n s r e m a i n u n a n s w e r e d . Among t h e s e a r e t h e n a t u r e , o r g a n i z a t i o n , and r o l e o f w a t e r i n d e t e r m i n i n g s u c h p r o p e r t i e s a s i n t e r f a c i a l a n d t r a n s p o r t phenom ena. Problems which deal w i t h t h e presence o f water and t h e s t r u c t u r e o f water a t t h e m o l e c u l a r l e v e l a r e o f t e n complex. F o r h y d r o g e l s , i t h a s been p r o p o s e d ( 3 ) t h a t w a t e r c a n be t r e a t e d i n terms o f a t h r e e s t a t e m o d e l . These i n c l u d e : bound, i n t e r f a c i a l , and " b u l k - l i k e " w a t e r . Bound w a t e r i s s t r o n g l y a s s o c i a t e d w i t h the polymer, probably as water h y d r a t i n g t h e h y d r o p h i l i c groups of t h e polymer. I n t e r f a c i a l water i s probably associated with h y d r o p h o b i c i n t e r a c t i o n s between t h e p o l y m e r s e g m e n t s . Finally, " b u l k - l i k e " water i s t h a t w i t h p r o p e r t i e s which a r e s i m i l a r t o t h a t o f b u l k w a t e r i n aqueous s o l u t i o n . S e v e r a l s t u d i e s have been d e s i g n e d i n an e f f o r t t o v e r i f y t h i s m o d e l . The t o t a l g e l w a t e r c o n t e n t was e s t i m a t e d s e m i q u a n t i t a t i v e ^ u s i n g NMR (4,_5). Simi l a r a p p r o a c h e s were made t o i n v e s t i g a t e t h e s t a t e o f " w a t e r i n p HEMA g e l s u s i n g t h e t e c h n i q u e s o f d i l a t o m e t r y , s p e c i f i c c o n d u c t i v i t y and d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y ( 6 ) . R e c e n t l y , we have examined s o l u t e p e r m e a t i o n t h r o u g h h y d r o g e l membranes i n a n e f f o r t t o d e v e l o p m o d e l s w h i c h d e s c r i b e i n d e t a i l t h e t r a n s p o r t phenomena w i t h p a r t i c u l a r e m p h a s i s on t h e r o l e o f water i n t h i s process. These s t u d i e s have u t i l i z e d p HEMA a n d i t s c o p o l y m e r s , and b o t h h y d r o p h o b i c a n d h y d r o p h i l i c solutes (7*8,9). I t was d e t e r m i n e d t h a t p-HEMA a n d i t s c o p o l y mers a r e p e r m e a b l e t o b o t h h y d r o p h o b i c a n d h y d r o p h i l i c s o l u t e s . The f a c t o r s w h i c h i n f l u e n c e t h e p e r m e a b i l i t i e s i n c l u d e t h e n a t u r e and p e r c e n t o f c r o s s l i n k e r s a n d t h e w a t e r c o n t e n t o f t h e h y d r o gel . In t h i s m a n u s c r i p t , t h e p e r m e a b i l i t i e s o f w a t e r s o l u b l e n o n -
Ameriean Chemical
In Water in Polymers; Rowland, S.; Washington, D. C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
WATER IN P O L Y M E R S
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
348
e l e c t r o l y t e s and h y d r o p h o b i c s o l u t e s i n p-HEMA and c r o s s l i n k e d pHEMA a r e examined f r o m a m e c h a n i s t i c p o i n t o f v i e w . For hydro p h i l i c s o l u t e s , i t was f o u n d t h a t p e r m e a t i o n p r o b a b l y o c c u r s v i a the " b u l k - l i k e " water regions of the hydrogels. For hydrophobic s o l u t e s , analyses of permeation data i n d i c a t e t h a t solutes d i f f u s e p r e d o m i n a n t l y v i a a " p o r e " t y p e mechanism i n p-HEMA and v i a a " p a r t i t i o n " mechanism i n p-HEMA h i g h l y c r o s s l i n k e d w i t h e t h y l ene g l y c o l d i m e t h a c r y l a t e (EGDMA). The a n a l y s e s o f p e r m e a t i o n d a t a was based on t h e a s s u m p t i o n t h a t t h e p o r o u s f l u x o f a s o l u t e i s a s s o c i a t e d w i t h the " b u l k - l i k e " water r e g i o n s o f the hydrogels and t h e p a r t i t i o n f l u x w i t h t h e p o l y m e r m a t r i x , " i n t e r f a c i a l " and "bound" water regions o f the hydrogels. M a t e r i a l s and Methods Materials. HEMA was a h i g h l y p u r i f i e d sample ( g i f t o f Hydron L a b o r a t o r i e s , New B r u n s w i c k , N . J . ) c o n t a i n i n g t h e f o l l o w i n g l e v e l s of i m p u r i t i e s : m e t h a c r y l i c a c i d 0.06%, e t h y l e n e g l y c o l dimetha c r y l a t e 0 . 0 2 4 % , and d i e t h y l e n e g l y c o l m e t h a c r y l a t e 0 . 2 4 % . EGDMA (Monomer P o l y m e r L a b o r a t o r i e s , P h i l a d e l p h i a , PA) was p u r i f i e d by b a s e e x t r a c t i o n and d i s t i l l a t i o n . The i n i t i a t o r , a z o b i s ( m e t h y l i s o b u t y r a t e ) was p r e p a r e d by t h e method o f M o r t i m e r ( 1 0 ) . PolyHEMA f i l m s and f i l m s c o n t a i n i n g 1 mole % EGDMA were s y n t h e s i z e d i n the presence of t h e i r e q u i l i b r i u m water contents. F i l m s w i t h 5.25 m o l e % EGDMA were s y n t h e s i z e d i n 40% ( v / v ) e t h a n o l as t h e s o l v e n t . A l l f i l m s were e q u i l i b r a t e d i n w a t e r (changed r e p e a t e d l y ) f o r t h r e e t o f o u r weeks p r i o r t o u s e . A l l s o l u t e s were u s e d as r e c e i v e d . A l l s t e r o i d s p r o d u c e d a s i n g l e s p o t f r o m TLC. R a d i o l a b e l e d s t e r o i d s had t h e same Rf v a l u e s as t h e u n l a b e l e d m a t e r i a l s w i t h >95% o f t h e d e t e c t a b l e a c t i v i t y a s s o c i a t e d w i t h the primary spot. Methods. The d i f f u s i o n e x p e r i m e n t s were p e r f o r m e d a t room t e m p e r a t u r e (23°C) u t i l i z i n g a g l a s s d i f f u s i o n c e l l c o n s i s t i n g o f two c o m p a r t m e n t s e a c h w i t h a volume o f 175 m l . Each chamber was s t i r r e d a t a c o n s t a n t r a t e t o reduce boundary l a y e r e f f e c t s . So l u t e c o n c e n t r a t i o n s were m o n i t o r e d by H o r * C t r a c e r s , r e f r a c t i v e i n d e x , o r U.V. s p e c t r o s c o p y . P a r t i t i o n c o e f f i c i e n t s , defined as t h e r a t i o o f t h e c o n c e n t r a t i o n s i n t h e membrane and i n t h e b u l k aqueous phase were d e t e r m i n e d by s o l u t i o n d e p l e t i o n t e c h n i q u e . The t h i c k n e s s o f w a t e r s w o l l e n membranes were measured u s i n g a l i g h t w a v e m i c r o m e t e r (Van Kueren C o . , W a t e r t o w n , MA). P e r m e a t i o n c o e f f i c i e n t s f o r h y d r o p h i l i c s o l u t e s were o b t a i n e d t h r o u g h t h e use o f t h e f o l l o w i n g e q u a t i o n {]}): 3
lnO-2
C /C ) = t
0
-0/ν
α
k
+ 1/V ) 2
AUt
Eq. 1
where C t = c o n c e n t r a t i o n a t t i m e t ; Co = i n i t i a l c o n c e n t r a t i o n ; = V = compartment volume (175 m l ) ; A = membrane a r e a ( 1 4 . 9 c m ) ; U = p e r m e a b i l i t y ( c m / s e c ) ; and t = t i m e ( s e c o n d s ) . D i f f u s i o n 2
2
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
K I M ET A L .
Hydro gel
Membranes
349
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
c o e f f i c i e n t s a r e g i v e n by Dm = Ud/Ko where d = wet membrane t h i c k n e s s and Ko i s t h e p a r t i t i o n c o e f f i c i e n t . Under t h e c o n d i t i o n s o f t h e e x p e r i m e n t s used i n o u r l a b o r a t o r i e s , E q . 1 i s n o t v a l i d f o r h y d r o p h o b i c s o l u t e s due t o h i g h p a r t i t i o n i n g o f t h e s e s p e c i e s i n t o t h e membrane. In a p r e v i o u s p u b l i c a t i o n ( 8 ) , i t was shown t h a t t h e f o l l o w i n g e q u a t i o n i s v a l i d f o r the hydrophobic s o l u t e s : l
n , n
(CiV (CiV -
(2V + Kp/Vm) C t ) _ 2 UA ( t - t ) (2V + KD/Vm) Co) " " V 0
Eq. 2
where C i = i n i t i a l c o n c e n t r a t i o n i n compartment I; Co = c o n c e n t r a t i o n i n compartment II a t t h e o n s e t o f s t e a d y s t a t e ( t o ) , C t = c o n c e n t r a t i o n i n compartment II a t any t i m e t w h i c h i s g r e a t e r t h a n t o ; V = membrane v o l u m e , and V = compartment volume (175 ml). In t h e l i m i t t h a t Kp i s s m a l l , E q . 2 r e d u c e s t o E q . 1. m
Results
and
Discussion
1) Hydrophilic Solutes. The mechanisms o f p e r m e a t i o n o f h y d r o p h i l i c s o l u t e s i n h y d r o g e l f i l m s has been c o n s i d e r e d p r e v i o u s l y by Yasuda e t a l . ( 1 2 J . These a u t h o r s u t i l i z e d t h e " f r e e v o l u m e " model f o r s o l u t e p e r m e a t i o n i n h y d r o g e l f i l m s i n w h i c h i t was assumed t h a t : i ) t h e e f f e c t i v e f r e e volume f o r s o l u t e d i f f u s i o n c o r r e s p o n d s t o t h e f r e e volume o f t h e aqueous p h a s e ; i i ) t h e s o l u t e d i f f u s e s t h r o u g h " f l u c t u a t i n g p o r e s " by s u c c e s s i v e jumps through " h o l e s " which are l a r g e r than the s o l u t e ; i i i ) the s o l u t e p e r m e a t e s o n l y t h r o u g h aqueous r e g i o n s and s o l u t e - p o l y m e r i n t e r a c t i o n s a r e m i n i m a l . Based on t h i s m o d e l , t h e d i f f u s i o n c o e f f i c i e n t , Dm, i n t h e h y d r a t e d membrane i s g i v e n b y :
Do
Vf
IH
/
t
q
'
0
where B q i s p r o p o r t i o n a l t o s o l u t e c r o s s s e c t i o n a l a r e a ( n r ) , D i s the d i f f u s i o n c o e f f i c i e n t f o r the s o l u t e i n water, Vf i s the f r e e v o l u m e , and H i s t h e volume f r a c t i o n o f w a t e r i n t h e h y d r a t e d membrane. From E q . 3 i t i s a p p a r e n t t h a t Dm s h o u l d be d e p e n d e n t upon b o t h t h e c r o s s s e c t i o n a l r a d i u s o f t h e d i f f u s i n g s o l u t e s and t h e membrane h y d r a t i o n . V a l u e s o f Dm f o r t h e h y d r o p h i l i c s o l u t e s i n p-HEMA and p-HEMA c r o s s l i n k e d w i t h 1 m o l e % EGDMA a r e shown i n T a b l e s I and I I . It i s e v i d e n t t h a t t h e Dm v a l u e s i n t h e c r o s s l i n k e d membrane a r e s m a l l e r t h a n i n p-HEMA. P l o t s o f t h e s e v a l u e s a c c o r d i n g t o E q . 3 a r e shown i n F i g . 1. A s e m i e m p e r i c a l e q u a t i o n d e v e l o p e d by W i l k e and Chang (13) was u t i l i z e d t o c a l c u l a t e Do. The m o l a r volume o f t h e s o l u t e was e s t i m a t e d f r o m a t o m i c c o n t r i b u t i o n s a c c o r d i n g t o LeBas ( 1 4 J . The m o l e c u l a r r a d i i , r , g i v e n i n T a b l e I were c a l c u l a t e d a s s u m i n g t h a t t h e s o l u t e s were s p h e r i c a l ( 1 5 ) . 2
2
0
0
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
WATER IN P O L Y M E R S
350
TABLE
I
Transport Parameters of H y d r o p h i l i c Solutes
D x 10 (cm /sec)
D
Dm χ Ι Ο " (cn^/sec)
5. 57 0. 23 0. 22 0. 20 0. 23 1. 27 0. 14 0. 53
1.95 4.96 3.28 17.4 26.0 97.0 1.81 149.
5
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
0
Solute
(&)
Na M e t h o t r e x a t e Sucrose Lactose Inositol Glucose Thiourea Raffinose Urea
27.7 27.4 18.1 18.1 8.8 35.7 8.1
2
0.38 0.41 0.41 0.64 0.64 1.30 0.31 1.39
TABLE
i n p-HEMA
K
Dm χ 1 0 (cnf/sec) 8
Solute Na M e t h o t r e x a t e Sucrose Lactose Inositol Glucose Thiourea Raffinose Urea
D
5.84 0.25 0.21 0.18 0.24 1.14 0.12 0.48
I n Pja Do -5. -4. -4. -3. -3. -2. -5. -2.
27 41 75 61 47 59 14 23
II
Transport Parameters of H y d r o p h i l i c Solutes p-HEMA w i t h 1 M o l e % EGDMA
K
8
1.09 3.53 2.45 13.1 15.6 88.0 1.31 128
in
"ft -5.85 -4.75 -5.12 -3.89 -3.71 -2.70 -5.47 -2.39
From t h e p l o t s shown i n F i g . 1, i t i s e v i d e n t t h a t Eq. 3 i s v a l i d f o r t h e h y d r o p h i l i c s o l u t e s examined i n t h e p r e s e n t s t u d y . The d e p e n d e n c e o f Dm on c r o s s s e c t i o n a l r a d i u s i s e v i d e n t f r o m t h e l i n e a r i t y of the p l o t s . The w a t e r c o n t e n t s o f p-HEMA and p-HEMA c r o s s l i n k e d w i t h 1 m o l e % EGDMA a r e 42% (w) and 37% (w) r e s p e c t ively. T h i s e f f e c t o f membrane h y d r a t i o n i s c o n t a i n e d i n t h e s l o p e o f t h e p l o t s g i v e n i n F i g . 1. I t i s a p p a r e n t t h a t as t h e membrane h y d r a t i o n i s i n c r e a s e d , Dm i s l e s s s e n s i t i v e t o c h a n g e s i n the s i z e o f the permeating s o l u t e . From t h e s e r e s u l t s , i t may be c o n c l u d e d t h a t h y d r o p h i l i c s o l u t e s p e r m e a t e p-HEMA and p-HEMA c r o s s l i n k e d w i t h 1 mole % EGDMA p r i m a r i l y v i a the water f i l l e d channels or "pores" w i t h i n the h y d r o g e l f i l m s . T h i s c o n c l u s i o n d o e s n o t a p p e a r t o be v a l i d ,
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
KIM ET A L .
Hydrogel
Membranes
35
Figure 1. Dependence of diffusion coefficients of hydrophilic solutes on molecular size in (—) p-HEMA and (---) p-HEMA crosslinked with 1 mol % EGDMA: (1) urea; (2) thiourea; (3) glucose; (4) inositol; (5) sucrose; (6) lactose; (7) raffinose.
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
352
WATER IN POLYMERS
h o w e v e r , f o r p-HEMA c o n t a i n i n g h i g h e r c o n c e n t r a t i o n s o f t h e c r o s s l i n k e r EGDMA. F o r e x a m p l e , i n f i l m s c o n t a i n i n g 2.5 m o l e % EGDMA d e v i a t i o n s f r o m l i n e a r i t y i n p l o t s o f t h e t y p e shown i n F i g . 1 were n o t e d . F o r f i l m s p r e p a r e d f r o m 5 m o l e % EGDMA, no d e t e c t a b l e d i f f u s i o n was f o u n d a f t e r two weeks f o r t h e s o l u t e s r a f f i n o s e and inositol. From t h e d a t a shown i n T a b l e s I and I I , and t h a t g i v e n i n a t h e s i s by Sung ( 5 ) , i t i s p o s s i b l e t o f u r t h e r d e f i n e t h e model f o r h y d r o p h i l i c s o l u t e p e r m e a t i o n i n h y d r o g e l f i l m s v i a an a n a l y s i s o f t h e KD v a l u e s . The p a r t i t i o n c o e f f i c i e n t s f o r w a t e r i n p-HEMA and p-HEMA c r o s s l i n k e d w i t h 1 m o l e % EGDMA a r e 0.52 and 0.51 r e s p e c t i v e l y . However, f r o m S u n g ' s d a t a ( 5 ) , i t i s p o s s i b l e t o d e f i n e p a r t i t i o n c o e f f i c i e n t s f o r water i n t o the various subclasses of water i n the h y d r o g e l membranes. F o r p-HEMA, t h e s e v a l u e s o f KD a r e : bulk w a t e r 0 . 3 0 , b u l k + i n t e r m e d i a t e w a t e r 0 . 4 1 , and b u l k + i n t e r m e d i a t e + bound w a t e r 0 . 5 2 . F o r p-HEMA w i t h 1 m o l e % EGDMA, t h e v a l u e s a r e : b u l k w a t e r 0 . 2 1 , b u l k + i n t e r m e d i a t e w a t e r 0 . 3 6 , and b u l k + i n t e r m e d i a t e + bound w a t e r 0 . 5 0 . A comparison o f these v a l u e s w i t h t h e e x p e r i m e n t a l v a l u e s f o u n d i n T a b l e s I and II i n d i c a t e s t h a t the sugars p a r t i t i o n p r i m a r i l y i n t o bulk water of b o t h membranes a n d , t h e r e f o r e , t h a t t h e d i f f u s i o n o f t h e s e s o l u t e s o c c u r s p r i m a r i l y i n t h e b u l k w a t e r o f t h e membranes. This r e s u l t i s c o n s i s t e n t w i t h the observed very low p e r m e a b i l i t y o f i n o s i t o l and r a f f i n o s e i n p-HEMA w i t h 5 mole % EGDMA. These membranes have l i t t l e o r no b u l k w a t e r ( 5 ) . T h i o u r e a and Na m e t h o t r e x a t e show l a r g e d e v i a t i o n s f o r Kp f r o m v a l u e s e x p e c t e d based on p a r t i t i o n s o l e l y i n t o t h e w a t e r f r a c t i o n o f t h e membrane. T h i s phenomena may be due t o s p e c i f i c i n t e r a c t i o n s of the s o l u t e s w i t h the macromolecular chains. The i n c r e a s e i n p o l a r i z a b i l i t y i n g o i n g f r o m u r e a t o t h i o u r e a and t h e p r e s e n c e o f p o l a r i z a b l e a r o m a t i c g r o u p s i n Na m e t h o t r e x a t e i n d i c a t e s t h a t t h i s i n t e r a c t i o n may be d i s p e r s i v e i n n a t u r e . From t h e s e r e s u l t s , i t may be i n f e r r e d a l s o t h a t some p o r t i o n o f t h e t o t a l t r a n s p o r t o f t h e s e s o l u t e s may o c c u r i n r e g i o n s o t h e r t h a n t h e b u l k w a t e r r e g i o n s o f t h e h y d r o g e l membranes. It is i n t e r e s t i n g t o n o t e t h a t t h e t o t a l volume f r a c t i o n o f H 0 i n p-HEMA and p-HEMA w i t h 1 mole % EGDMA may be a v a i l a b l e f o r t h e t r a n s p o r t of urea. 2
2) Hydrophobic S o l u t e s . The v a l u e s o f D , Kp, Dm and In Djp/D f o r s e v e r a l h y d r o p h o b i c s o l u t e s i n p-HEMA and p-HEMA c r o s s l i n k e d w i t h 5.25 mole % EGDMA a r e g i v e n i n T a b l e s I I I and IV. 0
0
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
κίΜ
ET AL.
Hydrogel
Membranes
TABLE
III
Transport Parameters o f Hydrophobic Solutes
D x 10 (cm /sec)
D
Dm x 1 0 (cm /sec)
48 70 129 83 177 27
18.8 13.5 7.04 10.6 5.48 8.86
9
6
0
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
Solute
2
6.04 5.83 5.59 5.56 6.41 5.55
Testosterone Norethindrone Progesterone 17-Hydroxy progesterone Estradiol Cortisol
TABLE
i n p-HEMA
K
In
2
Dm Do
-5.78 -6.06 -6.68 -6.27 -7.07 -6.44
IV
Transport Parameters o f Hydrophobic S o l u t e s i n p-HEMA C r o s s l i n k e d w i t h 5.25 M o l e % EGDMA
Dm x 1 0 (cn^/sec) 9
D
l
n
l
n
Dm Do"
Solute
K
Testosterone Norethindrone Progesterone 17-Hydroxy progesterone Estradiol Cortisol
89 131 232 132
2.70 1.16 1.12 1.53
-7.71 -7.91 -8.52 -8.20
235 20
1.21 1.78
-8.57 -8.04
By c o m p a r i s o n o f Dm v a l u e s g i v e n i n T a b l e s I I I and IV w i t h t h o s e f o u n d i n T a b l e s I and I I , i t may be n o t e d t h a t Dm v a l u e s f o r h y d r o p h o b i c s o l u t e s a r e a p p r o x i m a t e l y two o r d e r s o f m a g n i t u d e l e s s than f o r the h y d r o p h i l i c s o l u t e s . C o n v e r s e l y , Kp v a l u e s a r e a b o u t two o r d e r s o f m a g n i t u d e g r e a t e r f o r t h e h y d r o p h o b i c s o l u t e s i n d i c a t i n g t h a t v e r y s t r o n g i n t e r a c t i o n s o c c u r between t h e s e h y d r o p h o b i c s o l u t e s and t h e m a c r o m o l e c u l a r segments o f t h e h y d r o g e l membranes. In a p r e v i o u s p u b l i c a t i o n (7.) i t was c o n c l u d e d t h a t h y d r o p h o b i c s o l u t e s , s u c h as p r o g e s t e r o n e , p e r m e a t e p-HEMA p r i m a r i l y v i a t h e " p o r e " mechanism. However, f o r p r o g e s t e r o n e i n p-HEMA w i t h 5.25 m o l e % EGDMA, i t was f o u n d t h a t t h e " p a r t i t i o n " m e c h a n ism d o m i n a t e s p e r m e a t i o n . In t h i s m e c h a n i s m , i t i s presumed t h a t t h e s o l u t e s p e r m e a t e by d i s s o l u t i o n and d i f f u s i o n w i t h i n t h e m a c r o m o l e c u l a r segments o f t h e p o l y m e r b a c k b o n e . In t h e " p o r e " mechanism v a l u e s a r e e x p e c t e d t o be l e s s t h a n one and r e f l e c t
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
354
WATER IN POLYMERS
t h e d i s t r i b u t i o n o f s o l u t e between membrane s o l v e n t and b u l k s o l v ent. In t h e " p a r t i t i o n " mechanism p o l y m e r s e g m e n t / s o l u t e i n t e r a c t i o n i s h i g h w h i c h l e a d s t o w i d e r a n g e o f Kp v a l u e s w h i c h a r e much g r e a t e r t h a n o n e . From t h e d a t a g i v e n i n T a b l e s I I I and I V , i t i s a p p a r e n t t h a t Kp v a l u e s f o r b o t h membranes a r e much g r e a t e r t h a n o n e . These h i g h KD v a l u e s f o r p-HEMA a p p e a r t o be i n c o n s i s t e n t w i t h t h e " p o r e " mechanism f o r s o l u t e t r a n s p o r t . T h i s c o n t r a d i c t i o n c a n be s o l v e d a s s u m i n g t h a t KD i s d o m i n a t e d by t h e h i g h s o l u b i l i t y o f t h e hydrophobic s o l u t e w i t h i n the hydrophobic region of the hydrogel, w h e r e a s , p e r m e a t i o n i s c a r r i e d by d i f f u s i o n w i t h i n " f l u c t u a t i n g p o r e s " as d e s c r i b e d i n h y d r o p h i l i c s o l u t e p e r m e a t i o n . It i s , t h e r e f o r e , i m p o r t a n t t o s e p a r a t e " p o r e " and " p a r t i t i o n " c o n t r i b u t i o n s t o the t o t a l permeation i n o r d e r t o determine the dominant mechanisms f o r h y d r o p h o b i c s o l u t e s i n p-HEMA. As n o t e d i n p r e v i o u s s e c t i o n s o f t h i s m a n u s c r i p t , i t has been proposed t h a t t h r e e types o f water e x i s t w i t h i n hydrogel f i l m s , n a m e l y , b o u n d , i n t e r m e d i a t e , and b u l k w a t e r . From t h i s m o d e l , i t i s p r o p o s e d t h a t h y d r o g e l membranes p r e p a r e d w i t h o u t c r o s s l i n k e r a r e composed o f two domains d e s i g n a t e d A and Β ( 8 ) . Domain A c o n s i s t s o f p o l y m e r s e g m e n t s , bound w a t e r and i n t e r f a c i a l w a t e r . Domain Β i s c o n s i d e r e d t o be b u l k w a t e r w h i c h f o r m s t h e " f l u c t u a ting pores." P-HEMA w i t h 5 . 2 5 mole % EGDMA, h a v i n g no " b u l k - l i k e " w a t e r , i s assumed t o be composed e n t i r e l y o f A t y p e d o m a i n s . T r a n s p o r t i n t h e A domains o f t h e h y d r o g e l o c c u r s t h r o u g h t h e bound and i n t e r f a c i a l w a t e r a n d / o r t h r o u g h t h e h y d r o p h o b i c p o l y meric regions. T h e r e f o r e , p e r m e a t i o n i n t h e A domains w i l l o c c u r v i a t h e " p a r t i t i o n " mechanism as p r e v i o u s l y d e s c r i b e d . KD v a l u e s f o r t r a n s p o r t i n A domains v a r y w i d e l y d e p e n d i n g on t h e s o l u t e solubilities. T r a n s p o r t i n t h e Β domains o c c u r s by d i f f u s i o n o f the s o l u t e i n " b u l k - l i k e " water. KD v a l u e s a r e i d e a l l y one i n t h i s case s i n c e the s o l u t e i s s i m p l y p a r t i t i o n i n g from bulk water i n t o hydro'gel domains o f " b u l k - l i k e " w a t e r . D i f f u s i o n composed e x c l u s i v e l y o f A - t y p e d o m a i n s , as p o s t u l a t e d i n p-HEMA w i t h 5 . 2 5 m o l e % EGDMA, o c c u r s o n l y by t h e p a r t i t i o n mechanism w h i c h has no " b u l k - l i k e " water. T h i s model was s u c c e s s f u l l y a p p l i e d t o e s t i mate t h e c o n t r i b u t i o n o f e a c h domain t o t h e t o t a l p e r m e a b i l i t i e s o f s t e r o i d s i n h y d r o g e l membranes. I t c a n be shown t h a t p-HEMA c o n t a i n s 2 2 . 8 % " b u l k - l i k e " w a t e r ( 8 ) . As n o t e d , KD f o r p a r t i t i o n i n t o t h i s w a t e r must be 1 . 0 . W i t h t h i s i n f o r m a t i o n , t h e r a t i o o f s o l u t e d i f f u s i o n due t o Β domains t o t o t a l s o l u t e p e r m e a b i l i t y , DB/PT> w h i c h r e p r e s e n t s t h e f r a c t i o n o f " p o r e - t y p e " p e r m e a t i o n i n p-HEMA membranes, can be d e t e r m i n e d ( 8 ) . These v a l u e s a r e g i v e n i n T a b l e V. I t may be n o t e d t h a t t h e v a l u e s o f D B / Ρ Τ a r e a l l approximately 0 . 8 0 except C o r t i s o l which i s 0 . 8 8 . This i n d i c a t e s t h a t t h e " p o r e " c o n t r i b u t i o n t o t r a n s p o r t i n p-HEMA i s s i m i l a r f o r a l l hydrophobic s t e r o i d s except the r e l a t i v e l y water s o l u b l e s t e r o i d , C o r t i s o l , w h i c h p e r m e a t e s by " p o r e s " t o a g r e a t e r e x t e n t .
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
K I M ET AL.
Hydrogel
Membranes
355
TABLE V
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
Transport Parameters o f S t e r o i d s i n p-HEMA by M o d e l i s t i c A n a l y s i s
D i f f u s i o n C o e f f i c i e n t (Dg) i n " B u l k - l i k e " Water (cm /sec)
Solute
2
Testosterone Norethindrone Progesterone 17-Hydroxy progesterone Estradiol Cortisol
7.20 7.29 5.59 5.56
χ χ χ χ
10" 10" 10 10"
6.41 5.95
χ x
10" 10'
7
7
- 7
7
7
7
-5.78 -6.06 -6.68 -6.27
0.80 0.77 0.76 0.82
0.54 0.54 0.56 0.63
-7.07 -6.44
0.77 0.88
0.75 1.35
The r e l a t i v e l y h i g h f r a c t i o n s o f D B / P T f o r a l l s t e r o i d s s u g g e s t t h a t p e r m e a t i o n t h r o u g h p-HEMA membrane i s d o m i n a t e d by t h e " p o r e " mechanism. The h i g h KD v a l u e s a r e c o n s i s t e n t w i t h t h e p r o posed m o d e l . A c c o r d i n g t o t h e model and d a t a o b t a i n e d i n t h e p-HEMA membrane, p a r t i t i o n i n g o f h y d r o p h o b i c s o l u t e s i s g o v e r n e d p r e d o m i n a n t l y by A t y p e d o m a i n s . S o l u t e w i t h i n t h e s e domains makes a s m a l l c o n t r i b u t i o n t o p e r m e a b i l i t y . S o l u t e p e r m e a t i o n i s d o m i n a t e d by t h e " p o r e " m e c h a n i s m . The a s s u m p t i o n made i n t h e model i s t h a t A domains a r e o f t h e same n a t u r e i n b o t h p-HEMA and c r o s s l i n k e d p-HEMA. If t h i s is s t r i c t l y t r u e , t h e p a r t i t i o n c o e f f i c i e n t s w h i c h a r e d o m i n a t e d by A t y p e domains i n p-HEMA s h o u l d be r e l a t e d t o p a r t i t i o n c o e f f i c i e n t s i n p-HEMA w i t h 5.25 mole % EGDMA a c c o r d i n g t o t h e volume f r a c t i o n o f A t y p e domains p r e s e n t i n p-HEMA. ( T h i s volume f r a c t i o n i s 0.772 s i n c e " b u l k - l i k e " w a t e r i s 2 2 . 8 % i n p-HEMA.) These v a l u e s a r e g i v e n i n T a b l e V as t h e r a t i o K p ( I ) / K p ( I I ) . K D ( H and K D C I I ) a r e p a r t i t i o n c o e f f i c i e n t s o f s t e r o i d s i n p-HEMA and p HEMA w i t h 5.25 m o l e % EGDMA r e s p e c t i v e l y . The e s t r a d i o l v a l u e o f 0.75 i s i n c l o s e agreement w i t h t h e p r e d i c t e d v a l u e o f 0 . 7 7 2 . However, t h i s r a t i o f o r t h e o t h e r s t e r o i d s e x c e p t C o r t i s o l i s a p p r o x i m a t e l y 0.54 t o 0 . 6 3 . Though t h e q u a n t i t a t i v e a g r e e m e n t i s not good, q u a l i t a t i v e agreement w i t h t h e p r e d i c t e d v a l u e i s o b tained. T h i s i n d i c a t e s t h a t d i f f e r e n c e s e x i s t between t h e A domains i n p-HEMA and p-HEMA c r o s s l i n k e d w i t h EGDMA. I t was d i s c u s s e d p r e v i o u s l y t h a t d i f f u s i o n c o e f f i c i e n t s o f h y d r o p h i l i c s o l u t e s i n p-HEMA a c c o r d i n g t o E q . 3 showed a s t r a i g h t l i n e c o r r e l a t i o n p r o v i d e d t h e f r e e volumes a c c e s s i b l e t o t h e v a r i ous s o l u t e s a r e e q u a l . D i f f u s i o n c o e f f i c i e n t s of these s t e r o i d s (from Table I I I ) are p l o t t e d i n F i g . 2 using the r v a l u e o f 11.45 % (16). E x p e r i m e n t a l v a l u e s o f I n Dm/Do f o r t h e s e s t e r o i d s d e v i a t e s u b s t a n t i a l l y from the l i n e a r l i n e o b t a i n e d from hydro2
2
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
356
W A T E R IN
POLYMERS
Figure 2. Dependence of diffusion coefficients on solute molecular size in p-HEMA: (—) correlation of steroid diffusion in Β-type domains with water-soluble solutes; (—) experimental values of steroid diffusion
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
20.
κίΜ E T A L .
Hydrogel
Membranes
357
philic solutes. However, i f t h e c a l c u l a t e d v a l u e s o f I n D B / D O a r e f i t w i t h t h e l i n e a r c o r r e l a t i o n o b t a i n e d from t h e h y d r o p h i l i c s o l u t e s , e x c e l l e n t a g r e e m e n t i s o b t a i n e d ( F i g . 2 ) . These r e s u l t s p r o v i d e f u r t h e r s u b s t a n t i a t i o n o f t h e model p r e s e n t e d a b o v e , i . e . , t h a t h y d r o p h o b i c s o l u t e s p e r m e a t e p-HEMA membranes p r i m a r i l y v i a the " b u l k - l i k e " water r e g i o n s . In c o n c l u s i o n , 1} H y d r o p h i l i c s o l u t e s p e r m e a t e p-HEMA and p-HEMA c r o s s l i n k e d w i t h l o w e r m o l e % EGDMA v i a t h e " p o r e " m e c h a n ism. T h e d i f f u s i o n c o e f f i c i e n t s o f t h e s o l u t e s depend on t h e m o l e c u l a r s i z e a n d may u t i l i z e t h e " b u l k - l i k e " w a t e r i n t h e h y d r o gels. As t h e water content o f hydrogel i n c r e a s e s , t h e s o l u t e p e r meability increases. 2 ) H y d r o p h o b i c s o l u t e s p e r m e a t e p-HEMA and p-HEMA c r o s s l i n k e d w i t h EGDMA v i a e i t h e r t h e " p o r e " o r " p a r t i t i o n " mechanisms. D i f f u s i o n c o e f f i c i e n t s a r e lower than those o f hydro p h i l i c s o l u t e s ; h o w e v e r , s t e r o i d s c a n p e r m e a t e even i n p-HEMA w i t h 5 . 2 5 m o l e % EGDMA d u e t o t h e p r e d o m i n a n t " p a r t i t i o n " m e c h a n i s m f o r h y d r o p h o b i c s o l u t e p e r m e a t i o n i n t h i s membrane. Hydro p h i l i c s o l u t e s f a i l t o permeate t h e high c r o s s l i n k e d h y d r o g e l s . 3) B a s e d on p a r t i t i o n c o e f f i c i e n t d a t a , t h e h y d r o p h i l i c s o l u t e s examined a p p e a r t o p e r m e a t e p-HEMA and p-HEMA w i t h 1 m o l e % EGDMA v i a " b u l k - l i k e " water regions. Partition coefficients of steroids i n p-HEMA a r e d o m i n a t e d by t h e i r h i g h s o l u b i l i t y o f t h e s t e r o i d s i n t h e hydrophobic regions o f t h e hydrogels o r A domains, whereas, p e r m e a t i o n i s d o m i n a t e d by d i f f u s i o n w i t h i n " f l u c t u a t i n g p o r e s . " Acknowledgements S t i m u l a t i n g d i s c u s s i o n s w i t h D r s . J . D. A n d r a d e , D. G. G r e g o n i s , and J . F e i j e n made t h i s work p o s s i b l e . We g r e a t f u l l y a c k n o w l e d g e D r . S. R o n e l , Hydron Med. S c i . , I n c . , f o r h i s g e n e r o u s d o n a t i o n s o f p u r e HEMA. S u p p o r t e d by NIH g r a n t s HD 09791 and HL 13738. Abstract The permeabilities of water soluble nonelectrolytes and sev eral hydrophobic steroids in poly(hydroxyethyl methacrylate) hydrogel films were determined. The effects of crosslinking and variations in equilibrium water content of the films, on the ob served permeabilities, were investigated. For hydrophilic solutes the permeation and partition coefficients are consistent with transport via the "bulk-like" water regions of the hydrogel films. These "bulk-like" water regions probably exist within the porous regions of the film. Decreases in the "bulk-like" water via copolymerization or crosslinking reduce both the partition and per meation coefficients, indicating exclusion of hydrophilic solutes from non "bulk-like" water regions. For hydrophobic solutes, per meability coefficients are smaller and partition coefficients are much larger relative to the hydrophilic solutes. For the hydro phobic solutes modelistic analysis of the permeation and partition
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
WATER IN POLYMERS
358
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
data indicate permeation occurs predominantly by a pore-type mechanism in poly(hydroxyethyl methacrylate) and by a partition mechanism in highly crosslinked poly(hydroxyethyl methacrylate) films. The porous flux was associated with the "bulk-like" water regions of the hydrogel films and the partition flux with the collective polymer matrix, "interfacial" and "bound" water region of the films.
O.;
Literature
Cited
Lim, D.
Nature,
1.
Wichterle,
2.
Ratner, B. D.; Hoffman, A. S., "Hydrogel for Medical and Related Applications"; ACS Symposium Series, Ed. by J. D. Andrade, 1976, 31, (1-36).
3.
Jhon, M. S.; Andrade, 7, 509.
4.
Lee, H. B.; Andrade, 1974, 15, 706.
5.
Sung, Y. K., Ph.D. Dissertation, Lake City, Utah, 1978.
6.
Lee, H. B.; Jhon, M. S.; Andrade, face Sci., 1975, 51, 225.
7.
Zentner, G. M.; Cardinal, 1978, 67, 1352.
8.
Zentner, G. M.; Cardinal, J. R.; Feijen, Pharm. Sci., 1979, 68, 970.
9.
Wisniewski,
J. D.
1960, 285, 117.
J. Biomed. Mater.
J. D.; Jhon, M. S.
Polymer
University J. D.
Res., 1973, Preprints,
of Utah,
Salt
J. Colloid.
J. R.; Kim, S. W. J. Pharm. J.; Song, S.
S.; Kim, S. W. J. Membrane Sci.
Inter Sci., J.
(submitted).
10.
Mortimer,
G. Α., J. Org. Chem., 1964, 30, 1632.
11.
Lyman, D. J.; Kim, S. W. J. Polymer Sci., 41, 139.
12.
Yasuda, Merrill,
13.
Wilke,
14.
LeBas, G., "The Molecular Volume of Liquid Chemical Com pounds"; Logmans, Green and Co.: London and New York, 1951.
Symposium, 1973,
H.; Peterlin, Α.; Colton, C. K.; Smith, Κ. Α.; E. W. Die. Makromolecular Chemie, 1969, 126, 177. C. R.; Chang, P.
A.I.Ch.E.
Journal,
1955, 1, 264.
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
20.
κίΜ E T A L .
Hydrogel
Membranes
359
15.
Wisniewski, S., Ph.D. Dissertation, Lake City, Utah, 1978.
University
of Utah,
16.
Lacey, R. E.; Cowsar, D. R., "Controlled Release of Bio logically Active Agents"; Ed. by A. C. Tanquary and R. E. Lacey, Plenum Press: New York and London, 1974, (117-144).
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: August 19, 1980 | doi: 10.1021/bk-1980-0127.ch020
RECEIVED January 4, 1980.
In Water in Polymers; Rowland, S.; ACS Symposium Series; American Chemical Society: Washington, DC, 1980.
Salt