1 Synthesis of L-Ascorbic A c i d T H O M A S C.
CRAWFORD
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
Central Research, C h e m i c a l Process Research, Pfizer Inc., Groton, CT 06340
The methods by which L-ascorbic acid has been synthesized are readily divided into three major categories. The first involves coupling a C fragment and a C fragment, and the second involves coupling a C fragment and a C fragment. The third involves the conversion of a C chain into the correct oxidation state and stereochemical configuration. All of these approaches will be reviewed with special regard given to those syntheses that are suitable for the prepara tion of analogues of L-ascorbic acid, the preparation of radiolabeled derivatives of L-ascorbic acid, and the current commercial synthesis of L-ascorbic acid. 1
5
2
4
6
Following the isolation of crystalline "hexuronic acid" from the adrenal cortex of the ox and from orange juice in 1928 (1) and the determina tion in 1933 (2) that the structure of this material was 1 (with other proton tautomers shown in Scheme 1), efforts were begun to synthesize this novel vitamin. In a very short time several syntheses were success fully accomplished that confirmed that the structure of L-ascorbic acid or vitamin C was indeed that proposed (2). Complete details of the crystal structure of 1 have since been obtained by both x-ray (3,4) and neutron diffraction (5) analysis and are approximated by structure 1a. Efforts directed toward the synthesis of L-ascorbic acid have been governed by the following factors: 1. The need to synthesize material to confirm the structure and provide larger quantities of material for further study. 2. The desire to synthesize analogues of L-ascorbic acid. 3. The desire to prepare radiolabeled material for use in the study of L-ascorbic acid metabolism in plants,fish,animals, and humans. 4. The need to develop a commercially viable, low cost syn thesis. This is illustrated by the fact that in 1934 1 kg of L-ascorbic acid sold for $7000 (6). 0065-2393/82/0200-0001$10.00/0 © 1982 American Chemical Society In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
ASCORBIC
L-ASCORBIC
ACID
ACID
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
6
\\ CH 0H
CH OH
9
9
I
HCOH
2
HCOH
OH
Scheme 1.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
1.
CRAWFORD
3
Synthesis of ia-Ascorbic Acid
T h e d e s i g n of syntheses of L - a s c o r b i c a c i d m u s t t a k e i n t o c o n s i d e r a tion the following points: 1.
T h e synthesis m u s t b e c h i r a l since o n l y t h e L - e n a n t i o m e r is biologically active.
2.
T h e final step i n t h e synthesis m u s t b e c a r r i e d o u t u n d e r n o n o x i d a t i v e c o n d i t i o n s b e c a u s e of t h e v e r y f a c i l e o x i d a t i o n of L - a s c o r b i c a c i d to d e h y d r o - L - a s c o r b i c a c i d f o l l o w e d b y further degradation.
3.
L - A s c o r b i c a c i d m u s t b e stable t o t h e c o n d i t i o n s u s e d to enerate i t (i.e., n o v i g o r o u s a c i d or b a s e t r e a t m e n t i n t h e n a l step b e c a u s e d e g r a d a t i o n of L - a s c o r b i c a c i d c a n result).
4.
F o r c o m m e r c i a l use, t h e synthesis m u s t b e
economical.
T h i s c h a p t e r p r o v i d e s a n o v e r v i e w of t h e v a r i o u s a v a i l a b l e syntheses of L - a s c o r b i c a c i d . T h e k e y s y n t h e t i c d i s c o v e r i e s t h a t h a v e r e s u l t e d i n t h e p r e p a r a t i o n of L - a s c o r b i c a c i d a n a l o g u e s , the p r e p a r a t i o n of r a d i o l a b e l e d d e r i v a t i v e s of L - a s c o r b i c a c i d , a n d t h e p r o d u c t i o n of c o m m e r c i a l q u a n t i t i e s of L - a s c o r b i c a c i d are h i g h l i g h t e d . F o r a c o m p r e h e n s i v e r e v i e w of a l l these a p p r o a c h e s , see R e f e r e n c e
7.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
4
ASCORBIC
A l l syntheses of L - a s c o r b i c a c i d are a c t u a l l y p a r t i a l syntheses
ACID
be
c a u s e t h e c h i r a l i t y at C5 a n d C4 is o b t a i n e d v i a n a t u r a l l y d e r i v e d sugars a n d n o t b y t o t a l synthesis. V a r i o u s m e t h o d s b y w h i c h the six c a r b o n s of a s c o r b i c a c i d h a v e b e e n a s s e m b l e d w i t h t h e a p p r o p r i a t e o x i d a t i o n state a n d s t e r e o c h e m i s t r y are s h o w n i n S c h e m e 2. O n e a p p r o a c h to t h e synthesis of L - a s c o r b i c a c i d is b y c o m b i n i n g a C
5
f r a g m e n t a n d a C i f r a g m e n t ( i n effect m a k i n g t h e
b o n d b e t w e e n C l a n d C2 i n l ) .
carbon-carbon
Intermediates derived from L-xylose
a n d L - a r a b i n o s e h a v e b e e n u s e d i n these syntheses. L - A s c o r b i c a c i d has been synthesized b y combining a C
2
fragment a n d a C
4
fragment ( i n
effect m a k i n g t h e c a r b o n - c a r b o n b o n d b e t w e e n C2 a n d C3 i n 1) s t a r t i n g
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
w i t h L-threose.
N o syntheses of L - a s c o r b i c a c i d h a v e b e e n r e p o r t e d i n
w h i c h t h e c a r b o n - c a r b o n b o n d b e t w e e n C3 a n d C4 or b e t w e e n C4 a n d C5 (see 1) has b e e n f o r m e d ( i n effect a C or a C
4
fragment plus a C
2
3
fragment plus a C
3
fragment
f r a g m e n t r e p r e s e n t i n g C5 a n d C6,
respec
t i v e l y ) . M o s t m e t h o d s f o r m a k i n g these c a r b o n - c a r b o n b o n d s w i l l r e s u l t i n t h e f o r m a t i o n of a m i x t u r e of e n a n t i o m e r s a n d / o r diastereomers. M o s t syntheses of L - a s c o r b i c a c i d start w i t h p r e f o r m e d C
6
sugars,
w h i c h b y m a n i p u l a t i o n of t h e o x i d a t i o n state at C l , C2, C5, a n d / o r
C6
C-j + C5 ( x y l o s e , a r a b i n o s e )
HCOH
C2 + C4 ( t h r e o s e )
HO
\>H
Scheme 2.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
1.
CRAWFORD
5
Synthesis of L-Ascorbic Acid
a n d b y m a n i p u l a t i o n of t h e stereochemistry a t C 2 o r C 5 h a v e b e e n c o n v e r t e d i n t o L - a s c o r b i c a c i d b y a v a r i e t y of r e a c t i o n sequences. T h e m o s t common C
6
s u g a r s t a r t i n g m a t e r i a l is D - g l u c o s e , w h i c h has b e e n
con
verted into intermediates formally derived f r o m L - g u l o s e , L-galactose, L-idose, or L-talose. A s u r v e y o f t h e r e p o r t e d syntheses o f L - a s c o r b i c a c i d reveals t h a t d e r i v a t i v e s r e l a t e d t o 2-keto a c i d
(Scheme 3 ) are the most fre
(2)
quently used intermediate to L-ascorbic acid. lactone
(4)
( i n protected
are less f r e q u e n t l y u s e d .
form),
3-Keto
acid
(3), keto-
a n d 6-aldehydo-L-ascorbic acid
T h e use of e a c h of these i n t e r m e d i a t e s
w i l l b e i l l u s t r a t e d i n t h e f o l l o w i n g d i s c u s s i o n of t h e different
(5)
(2-5)
syntheses
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
of L - a s c o r b i c a c i d .
Ascorbic
Acid via Ct and C
5
Fragments
T h e first synthesis of L - a s c o r b i c a c i d
( l ) was reported
i n 1933,
b e f o r e t h e correct s t r u c t u r e h a d b e e n d e t e r m i n e d . I n e a r l y 1933, M i c h e e l a n d K r a f t (8) s u g g e s t e d t h a t c a r b o x y l i c a c i d (6) w a s t h e s t r u c t u r e f o r L - a s c o r b i c a c i d . A short t i m e l a t e r t h e synthesis of D - a s c o r b i c a c i d s h o w n i n Scheme 4 starting w i t h D-xylosone was reported ( 9 - 1 2 ) . T h i s synthe sis g a v e m a t e r i a l i d e n t i c a l w i t h n a t u r a l L - a s c o r b i c a c i d , except f o r t h e specific r o t a t i o n , a n d w a s u s e d ( 9 - 1 2 ) as e v i d e n c e t o s u p p o r t s t r u c t u r e 6 as t h e s t r u c t u r e f o r L - a s c o r b i c a c i d . (9-12),
S h o r t l y after these i n i t i a l
t h e same s e q u e n c e of reactions w a s r e p o r t e d (13-15)
reports
and, hav
i n g t h e a d v a n t a g e o f k n o w i n g t h e correct s t r u c t u r e of L - a s c o r b i c a c i d , t h e s e q u e n c e of reactions l e a d i n g f r o m L - x y l o s o n e t o L - a s c o r b i c a c i d w a s c o r r e c t l y d e p i c t e d as t h a t s h o w n i n S c h e m e 5; t h e synthesis p r o c e e d s v i a 3-keto a c i d d e r i v a t i v e 3 a. I t is i r o n i c t h a t o n e o f t h e m o r e d i f f i c u l t a n d important problems
of those t i m e s — t h e synthesis of L - a s c o r b i c a c i d —
w a s a c c o m p l i s h e d b e f o r e t h e correct s t r u c t u r e of 1 w a s k n o w n . T h i s C i h o m o l o g a t i o n of osones p r o v e d to b e v a l u a b l e i n the p r e p a r a t i o n of L - a s c o r b i c a c i d analogues
(16) as w e l l as i n t h e p r e p a r a t i o n o f
r a d i o l a b e l e d L - a s c o r b i c a c i d (17-20).
T h i s synthesis w a s g r e a t l y i m
p r o v e d w h e n aldoses w e r e d i s c o v e r e d t o b e d i r e c t l y o x i d i z e d t o osones w i t h c u p r i c acetate ( E q u a t i o n 1) (21).
Subsequently, the conditions
w e r e m o d i f i e d so t h a t D - x y l o s e c o u l d b e o x i d i z e d t o D - x y l o s o n e i n 5 0 55%
y i e l d w i t h c u p r i c acetate i n m e t h a n o l .
T h e i n t e r m e d i a c y of t h e
i m i n o ether w a s p r o v e d b y the isolation of 7 w h e n D-glucosone w a s treated w i t h potassium cyanide (3a)
(16).
T h e initial cyanohydrin
adduct
e a s i l y u n d e r g o e s c y c l i z a t i o n to t h e i m i n o ether i n t e r m e d i a t e ( a q u e
ous s o l u t i o n f o r 10 m i n at r o o m t e m p e r a t u r e , S c h e m e 5 ) . T h i s f e a t u r e w i l l b e c o m p a r e d w i t h t h e c o n d i t i o n s r e q u i r e d f o r t h e l a c t o n i z a t i o n of other i n t e r m e d i a t e s .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
4
Scheme 3.
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
CRAWFORD
Synthesis of L-Ascorbic Acid
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
1.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
ASCORBIC
CHO
CN
c=o
CHOH
I
I
I I
KCN
c=o
HCOH
I
I
HCOH
HOCH
I
I
HOCH
CH OH
I
2
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
ACID
CH OH 2
3a
CH?OH HCOH
HCI
4 0 % overall Scheme 5.
CHO
CHO
I
I
c=o
HOCH
I
HCOH
I
Cu(OAc) 50-55%
HOCH
2
I I
HCOH
HOCH
I CH OH 2
I
CH OH 2
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
(D
1.
CRAWFORD
9
Synthesis of L-Ascorbic Acid
OH
OH
HCOH
I
HCOH
I
CH OH
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
2
7 A s e c o n d synthesis i n w h i c h a C i f r a g m e n t w a s c o u p l e d w i t h a C fragment was reported i n w h i c h acid chloride (8) a c y l n i t r i l e (9) and
b y use of s i l v e r c y a n i d e (23)
esterification p r o d u c e d
sonate.
5
w a s c o n v e r t e d to t h e
(Scheme 6).
Hydrolysis
e t h y l 3,4,5,6-tetra-0-acetyl-DL-o:t/Zo-2-hexulo-
T h e c o n d i t i o n s r e q u i r e d for the c o n v e r s i o n of t h i s m a t e r i a l t o
D L - a s c o r b i c a c i d w i l l b e d i s c u s s e d later. N o y i e l d s w e r e r e p o r t e d f o r this r e a c t i o n sequence. T h i s synthesis has n o t b e e n u s e d f o r the p r e p a r a t i o n of analogues or r a d i o l a b e l e d d e r i v a t i v e s of L - a s c o r b i c a c i d as has t h e osone-cyanide
synthesis first r e p o r t e d (9-12).
I n contrast t o t h e o s o n e -
c y a n i d e synthesis ( S c h e m e 5 ) i n w h i c h a 3 - k e t o g u l o n i c
acid derivative
is p r o d u c e d , the a c i d c h l o r i d e - s i l v e r c y a n i d e synthesis ( S c h e m e 6 ) sults i n t h e f o r m a t i o n of a 2 - k e t o g u l o n i c
a c i d d e r i v a t i v e (2a)
re
as a n
i n t e r m e d i a t e i n the a s c o r b i c a c i d synthesis. A t h i r d synthesis u t i l i z i n g a C i a n d C
5
c o u p l i n g p r o c e d u r e to p r o
d u c e L - a s c o r b i c a c i d w a s r e c e n t l y r e p o r t e d (24) (10)
(Scheme 7). L-Arabinose
w a s r e d u c e d to L - a r a b i n i t o l a n d p r o t e c t e d w i t h f o r m a l d e h y d e
to
p r o v i d e l , 3 : 2 , 4 - d i - 0 - m e t h y l e n e - L - a r a b i n i t o l ( l l ) a l o n g w i t h a n u m b e r of other p r o d u c t s .
C o m p o u n d 11 w i t h the free h y d r o x y l g r o u p at C 5 a n d
a l l other h y d r o x y l g r o u p s p r o t e c t e d is s u i t a b l y p r o t e c t e d f o r
conversion
i n t o L - a s c o r b i c a c i d b y o x i d a t i o n to the a l d e h y d e , c a r b o n - c h a i n extension w i t h p o t a s s i u m c y a n i d e , t h e n c o n v e r s i o n to L - a s c o r b i c a c i d . T h i s s y n t h e sis uses L - a r a b i n o s e as t h e source of c h i r a l i t y b y c a r b o n - c h a i n i n v e r s i o n . T h u s C 2 a n d C 3 i n a r a b i n o s e , w h i c h h a v e t h e same stereochemistry as C 4 a n d C 5 i n L-ascorbic acid, become C 4 a n d C 5 i n 1 b y reducing C l of a r a b i n o s e , s e l e c t i v e l y ( b u t inefficiently) p r o t e c t i n g C 1 - C 4 , o x i d i z i n g , a n d e x t e n d i n g the c h a i n at C 5 . Ascorbic Acid via C and C 2
k
Fragments
L - A s c o r b i c a c i d w a s p r e p a r e d b y u s i n g L-threose as t h e c h i r a l C
4
u n i t a n d e x t e n d i n g to t h e r e q u i r e d six c a r b o n s w i t h t h e c o r r e c t o x i d a t i o n
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
10
ASCORBIC
C0 H
COCI
I
9
I
ACID
2
AcOCH
AcOCH
I
I
HCOAc
PCI
9 0 % ) fol
l o w e d b y h y d r o l y s i s of t h e r e s u l t i n g p r o d u c t t o e t h y l 2 - k e t o - L - g u l o n a t e (L-xt/Zo-hexulosonate)
( 8 6 % ) a n d l a c t o n i z a t i o n b y e i t h e r a c i d o r base
( 9 0 % ) to L-ascorbic acid. E i t h e r this synthesis o r t h a t s h o w n i n S c h e m e 16 is s u i t a b l e f o r t h e p r e p a r a t i o n of C 6 d e u t e r a t e d reducing
or tritated derivatives of L-ascorbic a c i d
27 w i t h d e u t e r i u m o r t r i t i u m e n r i c h e d
sodium borohydride
gas o r w i t h
(51).
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
labeled
1.
Synthesis of L-Ascorbic Acid
CRAWFORD
CHO
I
CH 0H
I
HCOH
9
2
Me C
•
2
HOCH
I
0
C
H
|
2
OCH
HOCH
I I HCOH I HCOH
0-CMe 80% Xanthomonas
HOCH
I
HOCH
I
translucens
HCOH
HCOH
I
I
HOCH
HOCH
I
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
2
I
CH OH 2
CH OH 2
Scheme 18.
i n S c h e m e 19 (56-58).
T h i s m u l t i s t e p synthesis i n v o l v e s t h e c o n v e r s i o n
of D - g l u c u r o n i c a c i d i n t o 33 ( a d e r i v a t i v e of g u l o n i c a c i d ) f o l l o w e d b y o x i d a t i o n t o 3 4 a n d h y d r o l y s i s t o m e t h y l L-xt/Zo-2-hexulosonate
(36)
via 35. No
C A R B O N - C H A I N INVERSION.
T h i s section w i l l discuss the m e t h o d s
b y w h i c h D - g l u c o s e has b e e n c o n v e r t e d t o L - a s c o r b i c a c i d w i t h o u t c a r b o n - c h a i n i n v e r s i o n . T h e s e syntheses of L - a s c o r b i c a c i d f r o m D - g l u c o s e w i t h o u t c a r b o n - c h a i n i n v e r s i o n i n v o l v e t h e o x i d a t i o n of D - g l u c o s e a t C l a n d C 2 , a n d t h e i n v e r s i o n of c h i r a l i t y a t C 5 . T h e first synthesis r e p o r t e d i n this class is s h o w n i n S c h e m e 20. D G l u c o s e c a n b e efficiently ( > 9 0 % ) o x i d i z e d f e r m e n t a t i v e l y to c a l c i u m D-xt/Zo-5-hexulosonate
( 3 7 ) u s i n g Acetobacter
suboxydans
(59).
The
r e d u c t i o n of 37 has b e e n s t u d i e d b y s e v e r a l researchers.
T h e best results
were obtained
a n d afforded
using palladium boride
a n d hydrogen
a
m i x t u r e of c a l c i u m i d o n a t e ( 3 8 ) a n d c a l c i u m g l u c o n a t e ( 3 9 ) i n t h e r a t i o of 7 3 : 2 7 (60).
Other catalytic hydrogenation
conditions resulted i n a
l o w e r y i e l d of 3 8 , b u t r e d u c t i o n w i t h s o d i u m b o r o h y d r i d e afforded a 1:1 m i x t u r e of 38 a n d 39 (61).
T h e m i x t u r e of 38 a n d 39 c a n b e efficiently
c o n v e r t e d t o p u r e L-xt/Zo-2-hexulosonic a c i d ( 2 3 ) b y f e r m e n t a t i v e o x i d a t i o n of 38 to 23 a n d f e r m e n t a t i v e d e s t r u c t i o n of 39 u s i n g v a r i o u s o r g a n i s m s , i n c l u d i n g Pseudomonas
fluorescens
(62,63).
T h e y i e l d of 23
b a s e d o n s t a r t i n g i d o n i c a c i d is greater t h a n 9 0 % . B a s e d o n D-xylo-5h e x u l o s o n i c a c i d , t h e y i e l d of 23 is 5 0 - 6 0 % . to L - a s c o r b i c a c i d as p r e v i o u s l y d e s c r i b e d . o x i d i z e d , t h e stereochemistry
A c i d 23 c a n b e c o n v e r t e d
T h u s i n this synthesis, C l is
at C 5 is i n v e r t e d v i a o x i d a t i o n t o t h e
ketone a n d r e d u c t i o n , a n d t h e n C 2 is o x i d i z e d .
T h i s synthesis is n o t
s u i t a b l e f o r the p r e p a r a t i o n of analogues, b u t c o u l d b e u s e d f o r p r e p a r i n g C 5 - l a b e l e d d e r i v a t i v e s of L - a s c o r b i c a c i d .
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
26
ASCORBIC
C0 H
C0 Me
2
2
OH
I
HO
RO
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
OH
OR 33
C0 Me 2
Br
co
-u—u—u—u—u X o X o X
X
o X
o O X X X CN x o x o o x u—u—u—u—u—u X
O X
X
X
u CN
o
X X x |i o x o o X -o—o—u—u—
8 w
1.
Synthesis of L-Ascorbic Acid
CRAWFORD
« CN
O
5 O
2E O
O II X ( J — U — U — U
5 ™
3 c o
X U — U
O x
o
X
"O
o
0>
X
*
X
o
z
O ^ O x o x X u—u—u—u—u—u O X o 1
CN
X
Z
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
CN
X
©
ii x o x u—u- -u—u—yO
O
o
X
X
o CN
X
cn
X
CN
o>
X
-p.
o
X
CN
cn
2
z
x o X X u—u—u—u—u—u
O II
X
•u
CN
O
o
x
X
O
II
-u—u—uO X
M
X
X
o CN
X
•u
X
o
X
o
t
in 3
3
O
O
X
O
o 0>
JD
o v
H
HCOH
I
CH OH 2
Scheme 25. b i c a c i d w a s p r e p a r e d (83,84) is s h o w n . A s e c o n d m e t h o d f o r L - ( 4 - H ) 3
a s c o r b i c a c i d synthesis w a s r e c e n t l y r e p o r t e d ( 8 5 ) .
This material was
p r e p a r e d v i a t h e a s c o r b i c a c i d synthesis s h o w n i n S c h e m e 14 ( t h e B a k k e Theander synthesis), starting w i t h D - ( 3 - H ) g l u c o p y r a n o s e prepared b y 3
the catalytic reduction of l,2:5,6-di-0-isopropylidene-a-D-rifoo-hex-3-ulofuranose u s i n g t r i t i u m gas.
Literature Cited 1. Szent-Györgyi, A. Biochem. J. 1928, 22, 1387-1409. 2. Hirst, E. L.; Herbert, R. W.; Percival, E. G. V.; Reynolds, R. J. W.; Smith, F. Chem. Ind. (London) 1933, 221-222. 3. Hvoslef, J. Acta Chem. Scand. 1964, 18, 841-842. 4. Hvoslef, J. Acta Crystallogr., Sect. B 1968, 24, 23-35. 5. Ibid., 1431-1440. 6. Burns, J. J. "Kirk-Othmer Encyclopedia of Chemical Technology," 2nd ed.; Interscience: New York, 1963; Vol. 2, pp. 747-762. 7. Crawford, T. C.; Crawford, S. A. Adv. Carbohydr. Chem. Biochem. 1980, 37, 79-155. 8. Micheel, F.; Kraft, K. Hoppe-Seyler's Z. Physiol. Chem. 1933, 215, 215224. 9. Reichstein, T.; Grüssner, A.; Oppenauer, R. Helv. Chim. Acta 1933, 16, 561-565. 10. Reichstein, T.; Grüssner, A.; Oppenauer, R. Nature (London) 1933, 132, 280.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
1. Crawford Synthesis of L-Ascorbic Acid
35
11. Reichstein, T.; Grüssner, A.; Oppenauer, R. Helv. Chim. Acta 1934, 17, 510-520. 12. Ibid., 1933, 16, 1019-1033. 13. Haworth, W. N. Chem. Ind. (London) 1933, 52, 482-485. 14. Haworth, W. N.; Hirst, E. L. Chem. Ind. (London) 1933, 52, 645-646. 15. Ault, R. G.; Baird, D. K.; Carrington, H. C.; Haworth, W. N.; Herbert, R. W.; Hirst, E. L.; Percival, E. G.; Smith, F.; Stacey, M. J. Chem. Soc. 1933, 1419—1423. 16. Haworth, W. N.; Hirst, E. L. Helv. Chim. Acta 1934, 17, 520-523. 17. Burns, J. J.; King, C. G. Science 1950, 111, 257-258. 18. Salomon, L. L.; Burns, J. J.; King, C. G. J. Am. Chem. Soc. 1952, 74, 5161-5162. 19. von Schuching, S. L.; Frye, G. H. Biochem. J. 1966, 98, 652-654. 20. Rudoff, S., Univ. Microfilms, 58-2712; Diss. Abstr. 1959, 19, 1551-1552. 21. Stone, I. U.S. Patent 2 206 374, 1940; Chem. Abstr. 1940, 34, 7545. 22. Hamilton, J. K.; Smith, F. J. Am. Chem. Soc. 1952, 74, 5162-5163. 23. Major, R. T.; Cook, E. W. U.S. Patent 2 368 557, 1945; Chem. Abstr. 1946, 40, 354. 24. Othman, A. A.; Al-Timari, U. S. Tetrahedron 1980, 36, 753-758. 25. Helferich, B.; Peters, O. Ber. Dtsch. Chem. Ges. 1937, 70, 465-468. 26. Stedehouder, P. L. Recl. Trav. Chim. Pays-Bos 1952, 71, 831-836. 27. Helferich, B. U.S. Patent 2 207 680, 1940; Chem. Abstr. 1940, 34, 8184. 28. Loewus, F. Annu. Rev. Plant Physiol. 1971, 22, 337-364. 29. Reichstein, T,; Grüssner, A. Helv. Chim. Acta 1934, 17, 311-328. 30. Kristallinskaya, R. G. Proc. Sci. Inst. Vitam. Res., Moscow 1941, 3, 78-84; Chem. Abstr. 1942, 36, 3007. 31. Slobodin, Y. M. J. Gen. Chem. USSR 1947, 17, 485-488. 32. Strukov, I. T.; Kopylova, N. A. Farmatsiya 1947, 10, 8-12; Chem. Abstr. 1950, 44, 8327b. 33. Reichstein, T. British Patent 466 548, 1937; Chem. Abstr. 1937, 31, 8124. 34. Bassford, H. H.; Harmon, W. S.; Mahoney, J. F. U.S. Patent 2 462 251, 1949; Chem. Abstr. 1970, 72, 133,146k. 35. Politechnika Slaska, British Patent 1 222 322, 1971; Bogaczek, R.; Bogaczek, Fr. Demandé Pat. 2 001 090, 1969; Chem. Abstr. 1970, 72, 133,146k. 36. Flueck, N.; Wuersch, J. J. Carbohydr. Nucleosides, Nucleotides 1976, 3, 273-279. 37. Bothner-By, A. A.; Gibbs, M.; Anderson, R. C. Science 1950, 112, 363. 38. Dayton, P. B. J. Org. Chem. 1956, 21, 1535-1536. 39. Shnaidman, L. O.; Siling, M. I.; Kushchinskaya, I. N.; Eremina, T. N.; Shevyreva, O. N.; Shishkov, U. R.; Kosolapova, N. A.; Kazakevich, L. C.; Timafeeva, T. P. Tr., Latv. Inst. Eksp. Klin. Med. Akad. Med. Nauk SSSR 1962, 27, 1-14; Chem. Abstr., 1963, 58, 4508a. 40. Karr, D. B.; Baker, E. M.; Tolbert, B. M. J. Labelled Compd. 1970, 6, 155-165. 41. Hinkley, D. F.; Hoinowski, A. M. U.S. Patent 3 721 663, 1973; Chem. Abstr. 1973, 78, 160,063m. 42. Heyns, K. Justus Liebings Ann. Chem. 1947, 558, 177-187. 43. Bakke, J.; Theander, O. J. Chem. Soc. D 1971, 175-176. 44. Mackie, W.; Perlin, A. S. Can. J. Chem. 1965, 43, 2921-2924. 45. Heyns, K.; Alpers, E.; Weyer, J. Chem. Ber. 1968, 101, 4209-4213. 46. Williams, M.; Loewus, F. A. Carbohydr. Res. 1978, 63, 149-155. 47. Kitahara, T.; Ogawa, T.; Naganuma, T.; Matsui, M. Agric. Biol. Chem. 1974, 38, 2189—2190 48. Dax, K.; Weidmann, H. Carbohydr. Res. 1972, 25, 363-370. 49. Crawford, T. C.; Breitenback, R. J. Chem. Soc., Chem. Commun. 1979, 388-389. 50. Crawford, T. C. U.S. Patent 4 111 958, 1978. 51. Taylor, R. L.; Conrad, H. E. Biochemistry 1972, 11, 1383-1388.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by DUKE UNIV on May 31, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0200.ch001
36
ASCORBIC ACID
52. Berends, W.; Konings, J. Recl. Trav. Chim. Pays-Bas 1955, 74, 13651370. 53. Isherwood, F. A.; Mapson, L. W., British Patent 763 055, 1956; Chem. Abstr. 1957, 31, 8387b. 54. Gray, B. E. U.S. Patent 2 421 612, 1947; Chem. Abstr. 1947, 41, 5683h. 55. Kita, D. U.S. Patent 4 155 812, 1979. 56. Ferrier, R. J.; Furneaux, R. H. J. Chem. Soc., Chem. Commun. 1977, 332-333. 57. Ferrier, R. J.; Furneaux, R. H. Carbohydr. Res. 1976, 52, 63-68. 58. Ferrier, R. J.; Furneaux, R. N. J. Chem. Soc., Perkin Trans. 1 1978, 1996-2000. 59. Stubbs, J. J.; Lockwood, L. B.; Roe, E. T.; Tabenkin, B.; Ward, G. E. Ind. Eng. Chem. 1940, 32, 1626-1631. 60. Chen, C.; Yamamoto, H.; Kwan, T. Chem. Pharm. Bull. 1969, 17, 12871289. 61. Hamilton, J. K.; Smith, F. J. Am. Chem. Soc. 1954, 76, 3543-3544. 62. Hori, I.; Nakatani, T. Hakko Kogaku Zasshi 1954, 32, 33-36. 63. Alieva, R. M. Tr. Petergof. Biol. Inst. Leningr. Gos. Univ. 1966, 100-103; Chem. Abstr. 1966, 65, 19,025c. 64. Katznelson, H.; Tanenbaum, S. W.; Tatum, E. L. J. Biol. Chem. 1953, 204, 43-59. 65. Wakisaka, Y. Agric. Biol. Chem. 1964, 28, 369-374. 66. Wakisaka, Y. Japanese Patent 14 493, 1964; Chem. Abstr. 1964, 61, 16,742f. 67. Oga, S.; Sato, K.; Imada, K.; Asano, K. Japanese Patent 72 38 193, 1972; Chem. Abstr. 1973, 78, 82,947m. 68. Kita, D. Belgian Patent 872 095, 1979. 69. Andrews, G. C.; Bacon, B. E.; Bordner, J.; Hennessee, G. L. A. Carbohydr. Res. 1979, 77, 25-36. 70. Crawford, T. C.; Andrews, G. C.; Fauble, H.; Chmurny, G. N. J. Am. Chem. Soc. 1980, 102, 2220-2225. 71. Sonoyama, T.; Tani, H.; Kageyama, B.; Kobayashi, K.; Honjo, T.; Yagi, S. U.S. Patent 3 959 076, 1976; Chem. Abstr. 1976, 85, 121,786z. 72. Sonoyama, T.; Tani, H.; Kageyama, B.; Kobayashi, K.; Honjo, T.; Yagi, S. U.S. Patent 3 963 574, 1976; Chem. Abstr. 1976, 85, 44,945w. 73. Ikawa, K.; Tokuyama, K.; Kiyokawa, M.; Kimoto, M.; Yamane, S.; Tabato, T.; Sonoyama, T.; Honjo, T. Japanese Patent 7 766 684, 1977; Chem. Abstr. 1977, 7, 182,601y. 74. Ikawa, K.; Tokuyama, K.; Kiyokawa, M.; Kimoto, M.; Yamane, S.; Tobato, T.; Sonoyama, T.; Honjo, T. Japanese Patent 77 66 685, 1977; Chem. Abstr. 1977, 87, 182,600x. 75. Wakisaka, Y. Agric. Biol. Chem. 1964, 28, 819-827. 76. Andrews, G.; Bacon, B.; Crawford, T.; Breitenback, R. J. Chem. Soc., Chem. Commun. 1979, 740-741. 77. Kita, D. European Patent 0 007 751, 1979. 78. Crawford, T. U.S. Patent 4 180 511, 1979. 79. Andrews, G. C. U.S. Patent 4 212 988, 1980. 80. Ogawa, T.; Taguchi, K.; Takasaka, N.; Mikata, M.; Matsui, M. Carbohydr. Res. 1976, 51, C1-C4. 81. Matsui, M.; Ogawa, T.; Taguchi, K.; Mikata, M., Japanese Patent 77 00 255, 1977; Chem. Abstr. 1977, 87, 53,526d. 82. Isbell, H. S. J. Res. Natl. Bur. Stand. 1944, 33, 45-61. 83. Bell, E. M.; Baker, E. M.; Tolbert, B. M. J. Labelled Compd. 1966, 2, 148-154. 84. Brenner, G. S.; Hinkley, D. F.; Perkins, L. M.; Weber, S. J. Org. Chem. 1964, 29, 2389-2392. 85. Williams, M.; Saito, K.; Loewus, F. A. Phytochemistry 1979, 18, 953-956. Received for review February 9, 1981. Accepted April 8, 1981.
In Ascorbic Acid: Chemistry, Metabolism, and Uses; Seib, P., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.