24 The Reaction Chemistry of Superoxide Ion in Aprotic Media D O N A L D T. SAWYER, E D W A R D J. N A N N I , JR., and J U L I A N L . R O B E R T S , JR. Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
University of California, Department of Chemistry, Riverside, C A 92521
Superoxide ion (O -) is a strong Brönsted base, an effective nucleophile, and a moderate one-electron reducing agent. In the presence of O - polychloro hydrocarbons, are rapidly degraded via a primary nucleophilic displacement of chloride ion; the relative S 2 second-order rate constants for the chloromethanes are CCl > CHCl > CH Cl > CH Cl , with an approximate value of 1300 M s for CCl in DMF at 25°C. Combination of O - with basic substrates such as hydrophenazines, reduced flavins, and hydroxylamine yields substrate oxidation products via direct transfer of one, two, or three hydrogen atoms to O - from the reduced substrate. Superoxide ion reacts with the cation radical of methyl viologen (MV ) via a primary radical-radical coupling process to yield a diamagnetic adduct. The latter decomposes, apparently via a peroxide intermediate, to products that may represent the biological toxins of methyl viologen. A similar radical coupling reaction occurs between a neutral flavin radical and O - to yield a flavoperoxide anion. The latter is an effective reaction mimic for flavοoxygenases. When O - and reduced tran sition metal ions are combined, an overall redox process occurs via either direct electron transfer or a series of disproportionation steps. The kinetics and mechanisms of these processes have been studied in relation to those for the superoxide dismutases. 2
2
N
4
3
3
2
2
-1 -1
4
2
2
+
2
2
I h e e l e c t r o n transfer r e d u c t i o n o f d i o x y g e n y i e l d s s u p e r o x i d e i o n ( 0 " ) as a p r i m a r y p r o d u c t i n b i o l o g i c a l ( I ) as w e l l as c h e m i c a l systems (2). T h i s redox process has b e e n c h a r a c t e r i z e d b y electro c h e m i c a l s t u d i e s i n a p r o t i c s o l v e n t s s u c h as d i m e t h y l f o r m a m i d e 2
0065-2393/82/0201-0585$06.00 © 1982 A m e r i c a n C h e m i c a l Society In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
586 (DMF)
(3) a n d b y p u l s e
radiolysis studies
m o l a l i t y as t h e s t a n d a r d state for 0 0
2
(4) (for
unit
0 ") 2
EDMF= - 0 . 6 0 V VS. N H E ] E° ' = -0.17 V J
+ e-*±(V
H
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
and
2
i n water
m U
j
2 0
F i g u r e 1 is a s u m m a r y o f t h e r e d u c t i o n p o t e n t i a l s for d i o x y g e n a n d its r e d u c t i o n p r o d u c t s i n a q u e o u s m e d i a for a c i d i c , n e u t r a l , a n d b a s i c conditions. T h e s e data represent a best estimate from the considera tion o f pulse radiolysis, electrochemical, spectrophotometry, and c a l o r i m e t r i c m e a s u r e m e n t s (4-9), and*are b a s e d o n ρ Κ v a l u e s o f 4 . 6 9 for H 0 · (4) a n d 11.9 for H O (8). α
2
2
z
T h e l i m i t e d lifetime o f superoxide ion i n aqueous solutions, b e c a u s e o f r a p i d h y d r o l y s i s a n d d i s p r o p o r t i o n a t i o n [(4) a n d F i g u r e 1], H Or
+
+ ( V Η0 ·
+ Η 0 · -* 0 2
2
20 - + 2 H 2
+
+ H0 "
2
Η 0 · + Η 0 · -» 0 2
pK
2
2
+ H 0 2
*± H 0 2
2
5
k
4
+ 0
2
(2)
= 1.0 x 1 0 M ^ s "
3
2
= 4.69 8
k
2
a
= 8.6 x 1 0 M ' V Kp„
7
= 4 x 10
1
(3)
1
(4)
2 0
(5)
p r o m p t e d n u m e r o u s i n v e s t i g a t i o n s o f its r e a c t i o n c h e m i s t r y i n a p r o t i c solvents. I n s u c h solvents (and i n the absence o f p r o t i c substrates a n d t r a c e l e v e l s o f m e t a l i o n s ) s u p e r o x i d e i o n is s t a b l e , w i t h a h a l f - l i f e o f m o r e t h a n 8 h at m i l l i m o l a r c o n c e n t r a t i o n s . T h e d i f f e r e n c e i n t h e r e d u c t i o n p o t e n t i a l s for d i o x y g e n i n n e u t r a l [ - 0 . 6 0 V vs. the normal h y d r o g e n electrode ( N H E ) ] a n d
acidified
(+0.12 V vs. N H E ) D M F p r o v i d e s an approximate m e a s u r e o f the a c i d i t y o f Η 0 · i n a p r o t i c m e d i a (pK 2
a
~ 13). H e n c e , s u p e r o x i d e i o n is a
stronger base i n D M F t h a n i n a q u e o u s m e d i a b e c a u s e o f the m u c h w e a k e r solvation o f anions b y aprotic solvents. For the same reason, the proton-driven disproportionation of superoxide
i o n ( E q u a t i o n 5) is
e v e n m o r e c o m p l e t e i n a p r o t i c s o l v e n t s a n d c a u s e s s u p e r o x i d e i o n to h a v e u n i q u e l y s t r o n g B r o n s t e d b a s i c i t y [ e . g . , 1 - b u t a n o l ( p K = 3 3 ) is a
d e p r o t o n a t e d b y s u p e r o x i d e i o n i n D M F ] (10). T h i s chapter s u m m a r i z e s the p r i m a r y reaction c h e m i s t r y o f superoxide ion i n aprotic solvents. T h e reactivity o f superoxide ion i n a q u e o u s m e d i a is e x p e c t e d t o b e s i m i l a r , b u t m o d e r a t e d b y t h e l e v e l i n g effects o f w a t e r a n d t h e c o m p e t i t i v e p r o t o n - i n d u c e d d i s p r o p o r tionation reactions. T h e latter process y i e l d s substrate anions, d i o x y gen, a n d h y d r o g e n p e r o x i d e . T h i s process, p l u s s i m i l a r reactions o f a c i d i c s u b s t r a t e s i n a p r o t i c s o l v e n t s , l e a d s to o x i d a t i o n s b y o x y g e n a n d h y d r o g e n p e r o x i d e o f substrate anions that w e r e e r r o n e o u s l y attri b u t e d t o d i r e c t e l e c t r o n t r a n s f e r to s u p e r o x i d e i o n (3).
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
5
-0.065
-H 0.12
Iι
+0.9
+ 0.401
+0.5
+ 0.815
L .
2
+ 0.35
-HO,
-1-0.5
J
2
H 0
+ 0.9 2
-
Ί
+0.867
HO + · 0
+ 0.65
2
_
+ 1.349
- H 0 + ·0Η-
+ 1.763
HoO + ·0Η-
+ 1.20
•1.3
+ 1.229
1 1
-HoO 2V2
+0.9
+ 1.44
0 ^ ^ 0 2 0 .
+0.281
+0.695
H0
-f 1.66
+1.3
+ 1.8
+ 2.2
2
2
•4
1
OH
-2H 0
1
H 0
-
7
p H 14 (1 M O H " )
pH
p H 0 (1 M H + )
Figure 1. Potentials for oxygen redox couples in aqueous media at 25°C; values represent standard re duction potentials vs. the NHE. The standard state for 0 is 1 atm.; a standard state of unit molality shifts the one-electron process by +0.17 V; the two-electron process by +0.085 V; the three-electron process by +0.06 V; and the four-electron process by +0.04 V.
1
-0.33
-0.33
-0.05
+ 1.4
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
BIOLOGICAL REDOX COMPONENTS
588
Oxidation-Reduction Reactions One-Electron
Reductant.
0 /Or
T h e r e d o x p o t e n t i a l for t h e
2
c o u p l e i n d i m e t h y l f o r m a m i d e ( E q u a t i o n 1) is s u f f i c i e n t l y n e g a t i v e to m a k e s u p e r o x i d e a moderate r e d u c i n g agent. F o r e x a m p l e , d i s s o l v e d s u l f u r d i o x i d e is r e d u c e d b y s u p e r o x i d e i o n
Or + s o
2
«± 0
2
(11).
SOr
+
Ke = 5
(6)
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
T h e p r o c e s s , w h i c h is d r i v e n to t h e r i g h t b y t h e d i m e r i z a t i o n o f SOr dithionite ( K
to
3
d i m e r
= 5 x 1 0 ) , i n d i c a t e s t h a t s u p e r o x i d e i o n is a m o r e
effective one-electron r e d u c i n g agent than dithionite i n D M F . Other examples o f reductions b y superoxide ion i n c l u d e 3,5-dii-butyl-o-quinone ( D T B Q ) in D M F Or and
+ D T B Q «± D T B Q " + 0
numerous
transition
Cu(II)(9,10-phenanthroline) (TPP)Cl (15).
metal
K
2
= 0.8 x 1 0
7
complexes
(12),
in
(14),
(7)
aprotic
Cu(II)salicylate
( T P P is t e t r a p h e n y l p o r p h i n a t o )
6
solvents;
(13),
and
Mn(III)-
Fe(III)(TPP)Cl
I n aqueous m e d i a , superoxide i o n (generated b y pulse radioly
sis) r e d u c e s F e ( I I I ) ( E D T A ) (16) a n d f e r r i c y t o c h r o m e c cyt c ( F e
3 +
) + Or ^
R e c e n t s t u d i e s (18)
cyt c ( F e
2 +
) + O
K
z
8
(17).
= 4 χ 10
confirm that substantial a m o u n t s
4
(8)
of singlet
oxygen ( Ό ) result from the oxidation o f superoxide ion b y coordi 2
n a t e d saturated transition m e t a l oxidants ( w i t h Ε °'-values greater than +0.34 V ) i n D M F . Measurements of singlet oxygen b y photon count i n g i n d i c a t e a s i g n i f i c a n t y i e l d w h e n f e r r i c e n i u m p e r c h l o r a t e is t h e oxidant, but a n e g l i g i b l e amount from superoxide ion oxidation b y F e ( I I I ) ( C l 0 ) 3 . T h i s result c a n b e r a t i o n a l i z e d o n the basis that the 4
c o o r d i n a t e l y saturated f e r r i c e n i u m i o n forms a s i n g l e t transition-state c o m p l e x w i t h superoxide ion, [ ( C p ) F e : 0 : ] . Other oxidants 2
2
t r
that
c o n v e r t s u p e r o x i d e i o n to s i n g l e t o x y g e n i n c l u d e M n ( I I I ) ( 0 3 t e r p y )
3 + 2
( 0 t e r p y is 2 , 2 ' , 2 " - t e r p y r i d i n e Ι , Ι ' , Γ - t r i o x i d e ) a n d [ M n ( I V ) ( o - p h e n ) 3
0]
2
4 + 2
( o - p h e n is
1,10-phenanthroline).
O x i d a n t v i a H y d r o g e n - A t o m Transfer.
T h e results o f a
recent
i n v e s t i g a t i o n (19) d e m o n s t r a t e t h a t s u p e r o x i d e is a n e f f e c t i v e o x i d a n t o f basic r e d u c i n g substrates w i t h r e a d i l y transferable h y d r o g e n atoms. W h e n s u p e r o x i d e i o n is c o m b i n e d ( 1 : 1 m o l r a t i o ) w i t h e i t h e r d i h y d r o p h e n a z i n e o r N - m e t h y l h y d r o p h e n a z i n e ( b o t h m o d e l s for r e d u c e d flavins) i n d i m e t h y l f o r m a m i d e , a s t o i c h i o m e t r i c y i e l d o f p h e n a z i n e or JV-methylphenazine r a d i c a l , r e s p e c t i v e l y , results from a t w o - h y d r o g e n a t o m or a o n e - h y d r o g e n a t o m transfer
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
24.
Superoxide Ion in Aprotic Media
SAWYER ET AL.
phenH
2
+ 0 " + Hsol
589
phen + ^ (-sol) + H 0 + O H "
2
n
C H N p h e n H + 0 " - * C H N phen- + H 0 " 3
2
(9)
2
3
(10)
2
S i m i l a r r e a c t i o n s are o b s e r v e d for r e d u c e d flavins, h y d r o x y l a m i n e , a n d h y d r a z i n e . T h e stoichiometry o f the reactions
is c o n t r o l l e d b y
the
n u m b e r of r e d u c i n g h y d r o g e n atoms per substrate m o l e c u l e . C o n v e r s i o n o f s u c h h y d r o g e n a t o m s to p r o t o n s p r o v i d e s s t a b i l i z a t i o n o f t h e 2
2
reduction products of superoxide ion ( 0 ~ ,
O", and O ").
2
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
M o s t o f the r e p o r t e d oxidations o f p r o t i c substrates b y s u p e r o x i d e a c t u a l l y r e p r e s e n t a n i n i t i a l p r o t o n a b s t r a c t i o n to g i v e s u b s t r a t e a n i o n and disproportionation species, H 0
_ 2
and 0
2
(3). T h e l a t t e r o x i d i z e t h e
s u b s t r a t e a n i o n for c a t e c h o l s a n d α - t o c o p h e r o l . A l t h o u g h t h e s a m e p r o cess w a s s u g g e s t e d for t h e o x i d a t i o n o f a s c o r b i c a c i d (3), t h e t o t a l a b sence o f any intermediate 0 tion o f 0 " ) 2
a n d a 1:1
2
(from the p r o t o n - i n d u c e d d i s p r o p o r t i o n a
i n i t i a l r e a c t i o n s t o i c h i o m e t r y for t h e
0 "2
a c o r b i c a c i d r e a c t i o n to g i v e p r i m a r i l y ascorbate r a d i c a l a n i o n r e q u i r e a n a l t e r n a t i v e m e c h a n i s m . T h e s e factors a n d t h e r a p i d b i m o l e c u l a r k i n e t i c s (fc , 2
2.8 Χ 1 0
4
M
_ 1
s
_ 1
)
indicate that a concerted
hydrogen-
a t o m t r a n s f e r a n d p r o t o n t r a n s f e r to s u p e r o x i d e i o n f r o m a s c o r b i c a c i d o c c u r s (JO) CH OH 2
HCOH
/
Ο
CH OH 2
HCOH Ο
\
HC
C = 0 + Or
I I c—c I I OH
O H
Hjjasc
-> H C
/
\
C = 0 +
I I c—c I ^ ι
H 0 2
( I D 2
Ο ί- ) Ο asc"
f o l l o w e d b y a p r o t o n - i n d u c e d d i s p r o p o r t i o n a t i o n o f the ascorbate r a d i c a l a n i o n (asc") t o d e h y d r o a s c o r b i c a c i d ( d e h y d ) a n d a s c o r b a t e a n i o n (Hasc") H a s c + 2 a s c " -> d e h y d + 2 H a s c " 2
(12)
B o t h H a s c a n d a s c " a p p e a r to b e u n r e a c t i v e w i t h h y d r o g e n p e r o x i d e i n D M F a n d t h e r e is n o e v i d e n c e for a c o n c e r t e d t w o - h y d r o g e n a t o m transfer from H a s c to s u p e r o x i d e i o n . T h e f a c i l e o x i d a t i o n o f ascorbate i o n i n a q u e o u s m e d i a at p H 9.9 b y s u p e r o x i d e i o n [ g e n e r a t e d b y p u l s e r a d i o l y s i s (20)] p r o b a b l y o c c u r s v i a a s i m i l a r h y d r o g e n - a t o m t r a n s f e r 2
2
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
590
BIOLOGICAL REDOX COMPONENTS
mechanism, as suggested previously (21). Hence, ascorbic acid ap pears to be unique among acidic substrates in its ability to reduce superoxide ion directly to hydrogen peroxide without significant con comitant proton-induced disproportionation.
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
Radical-Radical Coupling Combination of superoxide ion with the cation radical (MV"*") of methyl viologen (l,l'-dimethyl-4,4'-bipyridinium ion, paraquat) in D M F and D M S O results in a primary radical-radical coupling reac tion to yield a diamagnetic product (Figure 2). This conclusion is based on electrochemical, spectroscopic, N M R , electron paramagnetic reso nance (EPR), thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), and mass spectrometric measure ments (22). Characterization of reaction intermediates and products provides the basis for proposing a self-consistent mechanistic scheme. This is the first definitive example of a radical reaction for superoxide ion.
MVt
(13) Ο
\
ΟΘ
[MV0 ] 2
IΝ — C H
CH —Ν 3
[MV0 ]
3
2
O-O H
-Jtr CH
3
0=C—Ν—CH=CH—C=< MV0
2
T T
N-CH
3
(14)
I °· polymer
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
SAWYER ET AL.
Superoxide
Ion in Aprotic
Media
591
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
24.
Ε, V vs. SCE Figure 2. Cyclic voltammograms in DMF (0.1 M tetraethylammonium perchlorate) of a, 1 m M Of; b, 1 m M methyl viologen cation radical (MV-); and c, 0.5 m M 0 " plus 0.5 raM M V within 5 min after mixing. Controiled-potential coulometry was used to prepare Ο ^ from 0 and MV from MVCl . Measurements were made with a Pt electrode (area, 0.23 cm ) at a scan rate of 0.1 V/s (22). f
2
2
2
2
2
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
592
Resonance stabilization apparently precludes significant radical c o u p l i n g at t h e C - 4 p o s i t i o n . S u c h a p r o c e s s w o u l d l e a d to a s y m m e t r i c a l d i o x e t a n e i n t e r m e d i a t e a n d d i s s o c i a t i o n to t w o 4 - N - m e t h y l p y r i d o n e m o l e c u l e s ; o n l y t r a c e l e v e l s are d e t e c t e d i n t h e p r o d u c t s o l u t i o n . I n t h e p r e s e n c e o f D M S O o r o t h e r s u b s t r a t e s s u b j e c t to o x y g e n a tion b y peroxides, [ M V 0 ] undergoes such reactions before it can form t h e d i o x e t a n e i n t e r m e d i a t e a n d p r o d u c t s o f E q u a t i o n 14.
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
2
[MV0 ] + DMSO-> 2
DMSO
+ CH -NV-/0N-CH 3
3
(15)
ο [MVO] The
[ M V O ] species can
epoxide
r e a r r a n g e to a l a c t a m , h y d r o l y z e
to a g l y c o l , a n d
r e a c t w i t h d i o x y g e n to g i v e a
v i a an
pyridone
+
(MVO )
[MVO]
CH —^— F l E t O O " 2
T h i s r e a c t i o n r e p r e s e n t s a s e c o n d e x a m p l e o f s u p e r o x i d e i o n a c t i n g as a c o u p l i n g reagent w i t h stable radicals. T h e neutral radical ( F l E t ) can b e p r o d u c e d from the one-to-one c o m b i n a t i o n o f F l E t a n d 0 " , or b y e l e c t r o c h e m i c a l r e d u c t i o n o f F l E t . T h e 4 a - F l E t O O ~ s p e c i e s , a n effec t i v e r e a c t i o n m i m i c for flavomonooxygenases (24), r e a d i l y o x y g e n a t e s d i m e t h y l s u l f o x i d e ( D M S O ) a n d other substrates subject to o x y g e n atom a d d i t i o n from p e r o x i d e ions. T h e r e s u l t i n g p s e u d o base, 4aF l E t O " , r e v e r t s to F l E t a n d H 0 u p o n a d d i t i o n o f p r o t o n s , o r is o x i d i z e d b y any residual oxygen. +
2
+
+
2
I n s p i t e o f v i g o r o u s a n d p e r s i s t e n t r e s e a r c h effort (3, 25-27), s u p e r o x i d e i o n has n o t b e e n f o u n d to a c t as a n i n i t i a t o r o f r a d i c a l c h a i n r e a c t i o n s . R a d i c a l - r a d i c a l c o u p l i n g o n l y is o b s e r v e d for t h o s e f o r c i n g c o n d i t i o n s ( M V * or F l E t ' p l u s s u p e r o x i d e i o n ) w h e r e a l t e r n a t i v e r e a c t i n s o f s u p e r o x i d e i o n are n o t f a v o r e d .
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
594
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
8,000 h
300
400
500
λ (nm) Figure 3. Absorption spectra in DMF (0.1 M tetraethylammonium perchlorate) of a, 0.5 m M N -ethyl-4a-hydroperoxy-3-methyllumiflavin (FlEtOOH); b, 0.52 mM FlEtOOH plus 0.52 mM t-BuO~K ; and c, 0.49 mM FlEt plus 1.15 mM 0 - (23). 5
+
+
2
Nucleophilicity Peroxide
and Monooxygenase
Reactivity
by
Intermediates
A l k y l H a l i d e s . U n d e r a p r o t i c c o n d i t i o n s , s u p e r o x i d e i o n attacks a l k y l h a l i d e s v i a n u c l e o p h i l i c s u b s t i t u t i o n (28). K i n e t i c s t u d i e s (2932) c o n f i r m t h a t t h e r e a c t i o n i s first o r d e r i n s u b s t r a t e a n d first o r d e r i n s u p e r o x i d e i o n , t h a t t h e rates f o l l o w t h e o r d e r 1 ° > 2 ° » 3 ° a n d I > B r > C I , a n d that the attack b y s u p e r o x i d e i o n results i n i n v e r s i o n of configuration. I n aprotic solvents, p r i m a r y a n d secondary a l k y l halides y i e l d dialkyl peroxides w h e n c o m b i n e d w i t h excess s u p e r o x i d e i o n (31-33), w h i c h is c o n s i s t e n t w i t h a m u l t i s t e p m e c h anism R X + 0 " -> R 0 2
RO
z
+ ( V
+ X "
2
R0 " + 0 2
(19) 2
R 0 " -I- R X — > R O O R + Χ " 2
(20) (21)
T h e p r i m a r y step occurs v i a a n S 2 displacenent o f h a l i d e from the c a r b o n . T h e r e s u l t i n g p e r o x y r a d i c a l is r e d u c e d b y a s e c o n d s u p e r N
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
SAWYER ET A L .
24.
Superoxide Ion in Aprotic Media
595
o x i d e i o n t o g i v e t h e a l k y l p e r o x i d e i o n , w h i c h acts as a n u c l e o p h i l e for a t t a c k o f a s e c o n d s u b s t r a t e m o l e c u l e . I n D M S O (or i n t h e p r e s e n c e o f o t h e r r e a c t i v e s u b s t r a t e s ) R e a c t i o n 2 0 is f o l l o w e d b y a t t a c k o f t h e s o l v e n t b y R 0 ~ t o g i v e d i m e t h y l s u l f o n e 2
a n d a l c o h o l s (30, 3 4 , 3 5 ) R0
_ 2
+ DMSO -» D M S 0
+ RO"
2
(22)
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
A r e c e n t i n v e s t i g a t i o n (36) h a s d e m o n s t r a t e d t h a t p o l y c h l o r o h y d rocarbons ( C C 1 , CHCI3, C H C 1 , a n d p , p ' - D D T ) are r a p i d l y d e g r a d e d 4
2
2
by superoxide ion i n aprotic m e d i a ( D M F a n d D M S O ) . T h e primary step appears to b e a n u c l e o p h i l i c or c o n c e r t e d r e d u c t i v e d i s p l a c e m e n t o f c h l o r i d e i o n . K i n e t i c s t u d i e s c o n f i r m t h a t t h e i n i t i a l s t e p is r a t e l i m i t i n g a n d first o r d e r w i t h r e s p e c t t o s u p e r o x i d e i o n a n d s u b s t r a t e . T h e o v e r a l l r e a c t a n t a n d p r o d u c t s t o i c h i o m e t r i e s for t h e d e g r a d a t i o n o f the p o l y c h l o r o m e t h a n e s a n d ρ , ρ ' - D D T i n D M F are s u m m a r i z e d i n T a b l e I. I n a d d i t i o n , t h e s e c o n d - o r d e r rate constants for t h e p r i m a r y - 1
process are t a b u l a t e d ; the v a l u e o f 1300 M
s
_ 1
for C C 1 is t h e fastest 4
d i s p l a c e m e n t y e t o b s e r v e d for s u p e r o x i d e . C o m b i n a t i o n o f C C 1 w i t h six equivalents o f oxygen i n D M S O 4
y i e l d s a p r o d u c t s o l u t i o n t h a t , after d i l u t i o n w i t h w a t e r , c a n b e t i t r a t e d w i t h a q u e o u s H C 1 . T h e r e s u l t i n g t i t r a t i o n c u r v e is c o n s i s t e n t w i t h t h a t for a n a u t h e n t i c s a m p l e o f c a r b o n a t e i o n i n t h e s a m e m e d i u m . B e c a u s e p e r o x i d e s o x y g e n a t e D M S O t o i t s s u l f o n e (37), a r e a s o n a b l e c o n c l u s i o n
Table I.
Stoichiometries and Kinetics for the Reaction of 0 " with Polychloromethanes and p,p ' - D D T in D M F (0.1 M Tetraethylammonium Perchlorate) at 25°C 2
ci-
Substrate (S), 0.1-5 mM CH3CI CH C1 CHCI3 2
Of per S
released per S
1 2 4
1 2
2
eel*
2
9
3 4
6 3
p,p'-DDT
k , M~'s 80 460 1300 130
2
Overall Reactions: (a) (b) (c) (d) (e)
C H 3 C I + ( V -»· i C H O O C H + C I " + i 0 C H C 1 + 2 C V -*· C H 0 + 2 C 1 ~ + | 0 C H C 1 + 4 ( V -> H C ( 0 ) O Q - + 3 C 1 ~ + f 0 C C 1 + 6 C V -> C O / " ^ 4 C 1 - + 4 0 ρ , ρ ' - D D T + 3 0 Γ - * products + 2C1" + f O 3
2
2
3
2
2
2
3
4
2
2
;
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
596 is t h a t t h e
overall product from
s u p e r o x i d e i o n is C 0
2 4
the
reaction o f C C 1 w i t h
excess
4
" a n d t h a t i t r e a c t s w i t h t h i s s o l v e n t to y i e l d
CO3 -. 2
W h e n C H C I 3 is c o m b i n e d w i t h f o u r e q u i v a l e n t s o f s u p e r o x i d e i o n i n D M F , a b a s i c p r o d u c t s o l u t i o n is o b t a i n e d t h a t h a s t h e c h a r a c t e r i s t i c s o f p e r o x y f o r m a t e i o n (the a c i d i f i e d p r o d u c t s o l u t i o n o x i d i z e s I " to
h). O n the basis o f these e x p e r i m e n t s a n d the reaction s t o i c h i o m e
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
tries,
overall
reactions
are
proposed
for
the
degradation
of
the
p o l y c h l o r o s u b s t r a t e s (see T a b l e I ) . A s e l f - c o n s i s t e n t set o f r e a c t i o n s for the s u p e r o x i d e - c a r b o n tetrachloride system illustrates the m e c h a n i s t i c p r o c e s s e s for t h i s c l a s s o f s u b s t r a t e s . CC1
4
+ 0 - -> [ C C l ( 0 - ) ] 2
4
CC1 0 3
3
3
3
4
+ 2 O r -> 2 0
2
3
^ CC1 0
t r
+ O r -> C C 1 0 - + 0
CC1 0 - + CC1 3
CCl OOCCl
2
2
2
CCl OOCCl 3
2
+ CI"
2
(23) (24)
2
+ CI"
3
(25)
+ 2 CC1 0-
(26)
3
I C C 1 0 + O r -> C C 1 ( 0 ) 0
2
general
2
—>2
CC1 0 + 2 C l 2
+ Cl~
(27)
Lo i>cci(o)or + o 2
2
C C 1 ( 0 ) 0 " + C C 1 0 -> C C l ( 0 ) O O C C l ( 0 ) + CI" 2
2
C C l ( 0 ) O O C C l ( 0 ) + 2 Or
2 CC1(0)0" + 2 0 I——>2 C O
C0
2
+ 2 θ Γ - ^ C0
2 4
" + 0
z
(28) (29)
2
+ 2C l -
(30)
2
T h e peroxide intermediates o f Reactions 24, 27, a n d 30 can participate in monooxygenase
reactions
i n the presence
o f substrates s u c h
as
DMSO. Esters.
A n o t h e r d i m e n s i o n o f the n u c l e o p h i l i c i t y o f superoxide
i o n is its a b i l i t y to a t t a c k t h e c a r b o n y l c a r b o n o f esters to y i e l d c a r b o x y l i c a c i d a n i o n s a n d a l c o h o l s (38-40),
a n d to attack the c a r b o n y l
c a r b o n o f a c y l h a l i d e s to y i e l d d i a c y l p e r o x i d e s (41).
T h e ester h y
drolysis occurs v i a a c y l o x y g e n scission on the basis o f c o m p l e t e reten tion o f configuration i n the alcohol m o i e t y from an optically active ester
(38).
F o r the reaction o f s u p e r o x i d e i o n w i t h e t h y l acetate a n d p h e n y l a c e t a t e i n p y r i d i n e , t h e s e c o n d - o r d e r rate c o n s t a n t s a r e 0 . 0 1 1 a n d 160 M ^ s
- 1
M " ^ "
1
4
, r e s p e c t i v e l y (40). T h i s r a t i o o f r a t e c o n s t a n t s ( 1 0 ) is
c o n s i s t e n t w i t h o t h e r d a t a for t h e r e a c t i o n s o f p h e n y l a n d e t h y l e s t e r s w i t h e f f e c t i v e n u c l e o p h i l e s (42, 43), a n d w i t h a n S 2 m e c h a n i s m . T h e N
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
24.
SAWYER ET A L .
Superoxide Ion in Aprotic Media
597
p r i m a r y r e a c t i o n a p p e a r s to b e a n u c l e o p h i l i c a d d i t i o n t h a t is f o l l o w e d b y e l i m i n a t i o n at t h e c a r b o n y l c a r b o n Ο
(40)
Ο"
Ο
I
Il
II
R—C—OR' + O rfcfR—C—OR' -* R—C
I
o-o
\
+ OR'
(31)
o-o
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
w i t h s u b s e q u e n t s t e p s to g i v e a n o v e r a l l e s t e r h y d r o l y s i s r e a c t i o n . Ο
Ο
Il
II
RCOO Ο
II
+ 0 < f -> R C O O " + 0 Ο
Ο
II
II II
RCOO" + RCOR' Ο
II
(32)
2
Ο
RCOOCR + "OR'
Ο
(33)
Ο
II
II
RCOOCR +
20
2RCO" + 20
2
(34)
A d d i t i o n o f s u p e r o x i d e i o n to a - k e t o - , α - h y d r o x y - , a n d α - h a l o c a r b o n y l c o m p o u n d s results i n a n u c l e o p h i l i c a d d u c t o f the c a r b o n y l c a r b o n , w h i c h u n d e r g o e s a n o x i d a t i v e c l e a v a g e to g i v e the c a r b o x y l i c a c i d that is d e r i v e d f r o m t h e a - p o s i t i o n (44). A g a i n , t h e p e r o x y a c i d a n i o n i n t e r m e d i a t e s ( E q u a t i o n 32) r e p r e s e n t e f f e c t i v e m o n o o x y g e n a s e s for s u b strates s u c h as D M S O . A g e n e r a l characteristic o f the n u c l e o p h i l i c attack o f a l k y l h a l i d e s a n d esters b y s u p e r o x i d e i o n is t h a t a p e r o x y r a d i c a l is t h e i n i t i a l p r o d u c t . T h i s p e r o x y r a d i c a l is r a p i d l y r e d u c e d b y a s e c o n d s u p e r o x i d e ion to a p e r o x i d e a n i o n , w h i c h c a n oxygenate s u s c e p t i b l e substrates. H e n c e , t h e n u c l e o p h i l i c i t y o f s u p e r o x i d e i o n p r o v i d e s a m e a n s to a c t i vate the r e d u c t i o n p r o d u c t o f d i o x y g e n to o r g a n o p e r o x y r a d i c a l s a n d organoperoxide ions. T h i s a b i l i t y m a y represent a significant hazard i n b i o c h e m i c a l systems.
Metal-Catalyzed Disproportionation M e t a l c a t i o n s c a n a c t as L e w i s a c i d s a n d t h r o u g h c h a r g e n e u t r a l i z a t i o n c a n b r i n g a b o u t the d i s p r o p o r t i o n a t i o n o f s u p e r o x i d e i o n to d i o x y g e n a n d a m e t a l p e r o x i d e (45). C o m b i n a t i o n o f s u p e r o x i d e i o n w i t h Zn(C10 )2, C d ( C 1 0 ) , a n d F e ( C 1 0 ) results i n s u c h a process. F o r M n ( C 1 0 ) a n d C o ( C 1 0 ) the resultant m e t a l p e r o x i d e s are u n s t a b l e a n d u n d e r g o f u r t h e r d i s p r o p o r t i o n a t i o n . A p l a u s i b l e m e c h a n i s m is o u t 4
4
2
4
2
4
2
4
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
BIOLOGICAL REDOX COMPONENTS
598
l i n e d for m a n g a n e s e ( I I ) t o i l l u s t r a t e t h e r i c h v a r i e t y o f r e a c t i v e i n t e r mediates Mn
2 +
+ ( V
Mn(II)(Or)+ + O r - * [ 0
2
Mn(II)((V)
:Mn(II) :0
2
2
Mn(II)(0 ") + Mn(II)(0 -) 2
2
Mn(II) + 0 Mn(III)(Or )
2 +
2
^
+ Mn(II)
2
] -> 0
+
(35) 2
2
+ Mn(II)(0 -) 2
2 Mn(II)0 + 0
Mn(III)(Or )
(36) (37)
2
2+
(38)
[Mn(III)-0-0-Mn(III)]
4 +
(39)
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
4
[ Μ η ( Π Ι ) - 0 - 0 - Μ η ( Ι Ι Ι ) ] + + Mn(II)-> [Mn(III)-0-Mn(III)] [Mn(III)0]
2 +
4 +
+ [Mn(III)0]
+ Mn(II)^ [Mn(III)-0-Mn(III)l
2 +
4 +
(40) (41)
C l e a r l y , m a n y o f these i n t e r m e d i a t e s c a n o x i d i z e a n d oxygenate v a r i ous organic functional groups. T h e chemistry o f E q u a t i o n s 3 5 - 4 1 rep r e s e n t s a l i k e l y m e c h a n i s m for t r a n s i t i o n - m e t a l a c t i v a t i o n o f d i o x y g e n , e s p e c i a l l y w i t h r e s p e c t t o r a n c i d i f i c a t i o n o f fats a n d o i l s . A s m e n t i o n e d , s u p e r o x i d e i o n is a n e f f e c t i v e o n e - e l e c t r o n r e d u c t a n t for t r a n s i t i o n - m e t a l i o n s . U n d e r l i m i t e d c o n d i t i o n s , s u p e r o x i d e i o n a l s o c a n a c t as a n o x i d a n t o f r e d u c e d t r a n s i t i o n - m e t a l i o n s . T h e p r o c e s s must b e a u g m e n t e d through the formation o f a stable m e t a l - p e r o x i d e intermediate. Examples include Fe(II)ethylenediaminetetraacetic a c i d ( E D T A ) i n a q u e o u s m e d i a (46) a n d i r o n ( I I ) t e t r a p h e n y l p o r p h y r i n i n a p r o t i c m e d i a (15). S u c h r e a c t i o n s a r e a n e s s e n t i a l p a r t o f t h e f a v o r e d m e c h a n i s m s f o r t h e s u p e r o x i d e d i s m u t a s e ( S O D ) e n z y m e s (47). T h e F e ( I I I ) E D T A s y s t e m (48) r e p r e s e n t s a n e f f e c t i v e m o d e l for S O D i n a q u e o u s m e d i a ; t h e p r o p o s e d m e c h a n i s m is F e ( I I I ) E D T A + O r -> F e ( I I ) E D T A + 0 F e ( I I ) E D T A + Or ^
(42)
2
Fe(III)EDTA + H O 2
(43)
z
T h e bis(8-quinolinato)manganese(II) c o m p l e x [Mn(II)(8-Q) (H 0) ] a l s o is a n e f f e c t i v e c a t a l y s t for t h e d i s p r o p o r t i o n a t i o n o f s u p e r o x i d e i o n i n a p r o t i c m e d i a ( 4 9 ) , a n d h a s b e e n s u g g e s t e d as a n e f f e c t i v e m o d e l for t h e m a n g a n e s e S O D e n z y m e s (50). A r e a s o n a b l e m e c h a n i s m for t h e M n ( I I ) ( 8 - Q ) ( H 0 ) c a t a l y z e d d i s p r o p o r t i o n a t i o n o f s u p e r o x i d e ion involves a M n ( I I I ) - p e r o x i d e intermediate, w h i c h should b e a n effective o x i d a n t for s u p e r o x i d e i o n . 2
2
2
2
2
M n ( I I ) ( 8 - Ç ) ( H 0 ) + O r — M n ( I I I ) ( 8 - Q ) ( 0 H ) ( H 0 ) + OH" (44) 2
2
2
2
Mn(III)(8-Q) (0 H)(H 0) + 2
2
2
2
2
O r - ^ Mn(II)(8-Ç) (H 0) 2
2
2
+ 0
2
+ HOr
(45)
T h i s m e c h a n i s m is a r e a l i s t i c m o d e l for the m a n g a n e s e - S O D , i r o n S O D , a n d c o p p e r - z i n c - S O D enzymes.
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
24.
SAWYER ET AL.
Superoxide Ion in Aprotic Media
599
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
Summary Superoxide is a versatile reactant, but its most dominant charac teristic is as an effective Bronsted base. It readily removes protons from water and weakly acidic substrates such as 1-butanol, and in so doing it disproportionates to yield peroxide and dioxygen. Under apro tic conditions, its strong basicity causes superoxide ion to act as a powerful nucleophile (probably second only to fluoride ion). Superoxide ion also is a moderate, but facile, one-electron reductant (about as effective as dithionite). Strong one-electron oxidants with closed coordination spheres (e.g., ferricenium ion) oxidize superoxide ion to singlet oxygen. Reduced transition-metal ions are oxidized by superoxide ion when their oxidized state forms stable peroxide adducts. Basic reductants such as dihydrophenazine, dihydroflavins, hydroxylamine, and hydrazine are oxidized by a hydrogen-atom trans fer mechanism. The only example of any radical character for superoxide ion is the formation of a diamagnetic adduct with reduced methyl viologen cation radical via a radical-radical coupling mech anism. Acknowledgment This work was supported by the National Science Foundation under Grant No. CHE79-22040. Literature
Cited
1. McCord, J. M.; Fridovich, I. J. Biol. Chem. 1969, 244, 604. 2. Wilshire, J. P.; Sawyer, D. T. Acc. Chem. Res. 1979, 12, 105. 3. Nanni, E .J.,Jr.; Stallings, M. D.; Sawyer, D. T.J.Am. Chem. Soc. 1980, 102, 4481. 4. Bielski, Β. H.J.Photochem. Photobiol. 1978, 28, 645. 5. Fee, J. Α.; Valentine, J. S. In "Superoxide and Superoxide Dismutase"; Michelsen, A. M.; McCord, J. M.; Fridovich, I., Eds.; Academic: New York, 1977; pp. 19-20. 6. Latimer, W. M. "Oxidation Potentials," 2nd ed.; Prentice-Hall: New York, 1952. 7. George, P. In "Oxidases and Related Redox Systems"; King, T. E.; Mason, M. E.; Morrison, M., Eds.; Wiley: New York, 1965; pp. 3-36. 8. Hoare, J. P. In "Oxidation-Reduction Potentials of Aqueous Solutions: A Selective and Critical Source Book"; Bard, A. J.; Parsons, R.; Jordan, Jr., Eds.; Int. Union Pure Appl. Chem., 1981; Chap. 4, in press. 9. Koppenol, W. H. Nature 1976, 262, 420. 10. Chin, D.-H.; Chiericato, G., Jr.; Nanni, E . J., Jr.; Sawyer, D. T., J. Am. Chem. Soc. 1982, 104, 1296. 11. Stallings, M. D.; Sawyer, D. T. J. Chem. Soc., Chem. Comm. 1979, 340. 12. Valentine, J. S.; Curtis, A. B. J. Am. Chem. Soc. 1975, 97, 224. 13. O'Young, C.-L.; Lippard, S. J. J. Am. Chem. Soc. 1980, 102, 4920. 14. Valentine, J. S.; Quinn, A. E . Inorg. Chem. 1976, 15, 1997. 15. McCandlish, E.; Miksztal, A. R.; Nappa, M.; Spenger, A. Q.; Valentine, J. S.; Strong, J. D.; Spiro, T. G.J.Am. Chem. Soc. 1980, 102, 4268.
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Downloaded by PENNSYLVANIA STATE UNIV on May 10, 2012 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0201.ch024
600
BIOLOGICAL REDOX COMPONENTS
16. Ilan, Υ. Α.; Czapski, G. Biochim. Biophys. Acta 1977, 498, 386. 17. Rao, R. S.; Hazon, E .J.Phys. Chem. 1975, 79, 397. 18. Nanni, E .J.,Jr.; Birge, R. R.; Hubbard, L. M.; Morrison, M. M.; Sawyer, D. T. Inorg. Chem. 1981, 20, 737. 19. Nanni, E .J.,Jr.; Sawyer, D. T.J.Am. Chem. Soc. 1980, 102, 7591. 20. Bielski, B. H.J.;Richter, H. W. J. Am. Chem. Soc. 1977, 99, 3019. 21. Afanasev, I. B.; Polozova, Η. E. Zh. Org. Khim. 1978, 14, 1013. 22. Sawyer, D. T.; Nanni, E .J.,Jr.; Angelis, C. T.; Dickson,J.J.Am. Chem. Soc. 1981, 103, 4268. 23. Nanni, E. J., Jr.; Sawyer, D. T.; Ball, S. S.; Bruice, T. C.J.Am. Chem. Soc. 1981, 103, 2797 24. Ball, S. S.; Bruice, T. C.J.Am. Chem. Soc. 1980, 102, 6498. 25. Czapski, G. Annu. Rev. Phys. Chem. 1971, 22, 171. 26. Ilan, Υ. Α.; Meisel, D.; Czapski, G. Isr. J. Chem. 1974, 12, 891. 27. Behar, D.; Czapski, G.; Rabini, J.; Dorfman, L. M.; Schwartz, H . A. J. Phys. Chem. 1970, 74, 3209. 28. Sawyer, D. T.; Gibian, M. J. Tetrahedron 1979, 35, 1471. 29. Magno, F.; Seeber, R.; Valcher, S.J.Electroanal. Chem. 1977, 83, 131. 30. San Fillipo, J., Jr.; Chern, C.-I.; Valentine, J. S. J. Org. Chem. 1975, 40, 1678. 31. Johnson, R. A.; Nidy, E . G.J.Org. Chem. 1975, 40, 1680. 32. Gibian, M.J.;Tangpoonpholvivat, R.; Ungermann, T.; Morrison, M. M.; Sawyer, D. T., unpublished data. 33. Dietz, K.; Forno, A. E. J.; Carcombe, B. E.; Peover, M. E.J.Chem. Soc. Β 1970, 816. 34. Merritt, M. V.; Sawyer, D. T.J.Org. Chem. 1970, 35, 2157. 35. Gibian, M. J.; Ungermann, T.J.Org. Chem. 1976, 41, 2500. 36. Roberts, J. L., Jr.; Sawyer, D. T.J.Am. Chem. Soc. 1981, 103, 712. 37. Goolsby, A. D.; Sawyer, D. T. Anal. Chem. 1968, 40, 83. 38. San Fillipo, J., Jr.; Romano, L.J.;Chern, C.-I.; Valentine, J. S.J.Org. Chem. 1976, 41, 586. 39. Magno, F.; Bontempelli, G.J.Electroanal. Chem. 1976, 68, 337. 40. Gibian, M. J.; Sawyer, D. T.; Ungermann, T.; Tangpoonpholvivat, R.; Mor rison, M. M.J.Am. Chem. Soc. 1979, 101, 640. 41. Johnson, R. A. Tetrahedron Lett. 1977, 331. 42. Jencks, W. P. "Catalysis in Chemistry and Enzymology"; McGraw-Hill: New York, 1969; pp. 480-487. 43. Bender, M. L. "Mechanisms of Homogeneous Catalysis for Protons to Proteins"; Wiley: New York, 1971; pp. 176-179. 44. San Fillipo, J., Jr.; Chern, C.-I.; Valentine, J. S.J.Org. Chem. 1976, 41, 1077. 45. Nanni, E .J.,Jr., Ph.D. Dissertation, University of California, Riverside, CA, 1980. 46. McClune, G. J.; Fee,J.Α.; McCluskey, G. Α.; Groves,J.T.J.Am. Chem. Soc. 1977, 99, 5220 47. Pick, M.; Rabani, J.; Yost, F.; Fridovich, I. J. Am. Chem. Soc. 1974, 96, 7329. 48. Stein, J.; Fackler, J. P.; McClune, G. J.; Fee, J. Α.; Chan, L. T. Inorg. Chem. 1979, 18, 3511. 49. Howie, J. K.; Sawyer, D. T.J.Am. Chem. Soc. 1976, 98, 6698. 50. Howie, J. K.; Morrison, M. M.; Sawyer, D. T. "Electrochemical Studies of Biological Systems"; Sawyer, D. T., Ed.; ACS Symposium Series, No. 38, ACS: Washington, D.C., 1977, 97. RECEIVED for review June 2, 1981. ACCEPTED November 16, 1981.
In Electrochemical and Spectrochemical Studies of Biological Redox Components; Kadish, K.; Advances in Chemistry; American Chemical Society: Washington, DC, 1982.