Anal. Chem. 1992, 64, 747R-753R ( ~ 9 ~ovakovic, ) J.; ~ubes,J.; Nemec, I. J . PlaMf clwometogr.--~od. n c 1990, 3, 521-528. (R10) Kindel, M.; LudwlgKoehn, H.; Lembcke, B. J. Chromatogr. 1989, 497, 139-146.
S. Toxlnr (S1) Dell, M. P. K.; Haswell, S. J.; Roch, 0. G.; Cdter, R. D.; Medbck, V. F. P.; Tomlhs, K. A n a b t (London) 1990, 775, 1435-1439. (52) Pestka, J. J. J. Immunol. Methods 1991, 736,177-183. (S3) Iwasa, J.; Kamano, H.; Hashizume, T.; Baba, N.; Nakajlma, S. Chem. 1990, 5 , 353-356. (S4) Trlpathl, D. N.; Chauhan, L. R.; Bhattacherya, A. Anal. S d . 1991, 7 , 423-425.
(55) Whltaker, T. B.; Dlckens, J. W.; Slate, A. B. Peanut Scl. 1990, 77,
(V3) Deshmukh, L.; Kichambare, P. D.; Kharat, R. B. J. Indian Chem. Soc. 1990, 6 7 , 812-613. (V4) Gawdzlk. B.; Gajbakyan, D. S.; Matynia, T.; Sarklsyan, A. R. J. Planar clwomatogv.--Mod. nc isso, 3 , 280-2132. (V5) Hamada. T.; Morlta. T.; Matsuzuka, M.; Ishida, K. Fresenlus J . Anal. chem.1990. 338,54-57. (ve) Msain, s. w.; (ylouiipou, v. J . Planarchrometogr.--Mod. nc 1989, 2, 474-476. (V7) Ihlda, K.; Nlnomiya, S.; Uchlda, Y.; Osawa, M. J . ChomatOgr. 1991, 539, 169-175. (V8) Ishide, K.; Uchlda. Y.; Nlnomiya, S.; Osawa, M. Fresenlus J . Anal. chem.1990, 336,419-422. (V9) Jaln, A.; Slngh, 0. V.; Tandon, S. N. Indian J . Chem., Sect. A 1991. 30A. 198-197.
96100.
T. Vnvnlnr (TI) Sllwbk, J.; Podgorny, A.; Slwek, A. J . Planar Chrometogr.--Mod. n C 1990, 3, 429-430. (T2) Mitchell, K.; Failon, R. J. J . a n . Mlcrobiol. 1990, 736,2035-2041. (T3) Corti, P.;Caricchla, A. M.; Franchl, G.; Lencbnl, E.; Murratzu. C.; Corblnl. G. Ann. Phem. F f . 1990, 47, 117-125; Chem. Ab&. 1990, 772, 165089y. Tr4) Koswk. S.: Moersei. J. T. M h n n 1990. 34. 89-91: Chem. Abstr. ‘ b o , 7 7 3 # 74213~. fl5) Funk, W.; Derr, P. J. PIenar clwometoar.--Mod. TLC 1990, 3 ,
-
. .- .
149- 1.53
(T6) Posteke, E.; Cisse, M.; Le bang. M. D.; Pradeau, D. J . Phem. Sci. 1991, 80, 368-370.
u. MbcaaamourOrgankCompoundr (Ul) Hannah,P.; Bok, L.; Sticher, 0.; Hitunen, R. J. Planar C%romatogr.w .nc ISSO, 3,515-520. (U2) WaksmundzkaHejnos, M.; Wawrzynowicz, T. J. Planar C%”atop,w .nc 1990, 3 , 4 3 9 - 4 1 . (U3) Wawrzynowlcz, T.; Waksmundzka-Hajnos. M. J . Liq. ChromatOgr. 1990, 73,3925-3940. (U4) Salhy, P.; Farkas. L.; Rusznak, I . Acta Chim. Hung. 1990, 727, 95-98. .. (U5) Marsh. C. M.; Hlekane, C. J. J. Planar Chromatogr.--Mod. n C 1990. 3. 537-538. (U6) ‘Luquln, M.; Ausina, V.; Lopez Caiahorra, F.; Belda, F.; Garcia Barceb, M.; Celma, C.; Rats. G. J . Clin. Wr&bl. 1991. 2 9 , 120-130. (U7) Gu, T.; Gu, X.; Yu, R. K. J . Llq. Chromatogr. 1990, 73,2771-2781. (U8) a,X.; Gu, T.; Yu, R. K. Anal. Bkchem. 1990, 785, 151-155. (US) (iondos,G.; szecsenyi, I.; h a . L. J . Planar chrometogr.--Mod. nc 1989, 2, 163-164. (U10) Futter, J. E. J. Planar W o m a t o g r . - w . n C 1989, 2 , 241-243. (U11) Spwway. T. D.; Wilson, I. D.; Warrander, A.; Damanl, L. A. J . Planar clwomatogv.-w. nc i989,2, 203-208. (U12) Dasherath, D.; Vibhute, Y. B. Asian J. Chem. 1990, 2 . 107-108. (U13) Davidkova. P.; Kopecek. J.; Gasparlc, J. J . Inf. Rec. Mater. 1989. 17. 117-124. (U14) Ajmal, M.; Mohammad. A.; Anwar, S. J. Planar Chromatogr.-A&. nc isso, 3. 338-339. (U15) Sllwlok, J.; Kus. P.; Sajewlcz, M. J. Chromatogr. 1989, 472, 314-317. . . - .. .
(Ul8) Hohm, G. Seifen, O&. Fefte, W e W 1990. 776, 273-280; 0”. Abstr. 1990. 773. 80970f. (U17) Martinez, R.; k y n a , P. J. Uq. ChromatOgr. 1990, 73,1959-1965. (U18) Ung, B. L.; Baeyens, W. R. G.; Marysael. H.; Stragier, K.; DeMoerloose, P. J . Uq. ChmmetOgr. 1989, 72, 3135-3149. (Ul9) Jlrovetz, L.; Nlklforov, A.; Buchbauer, 0.; Braun, D. Mkrochim. Acta 1989, 3 , 1-6. ( ~ 2 0 )shenna,J.; Brubaker, K. J . Planar chrometogr.-w. nc 1989, 2 , 392-393. ( ~ 2 1 )Aczel, A. J. Planar chrometogr.-mj. nc 1989, 2 , 151-152.
V. Inorganks and Organometalib (Vl) Deshmukh. L.; Kharat, R. B. J . chrometcgr. S d . 1990, 2 8 , 400-402. (V2) Deshmukh, L.; Kharat, R. B. J . Llq. C h m t c g r . 1991, 74, 1483- 1494.
(V11) Malkrowdca, I.; Rozylo, J. K.; Gaybakyan, D. S. J. Planar Chrometogr.--Mod. nc 1990, 3,422-424. (V12) Rozylo, J. K.; Mallnowska, I.; Gaybakyan, D. S. J . Planar Chromet o g r . - w . nc 1990, 3 , 157-159. (vw A. K.; mjput, R. P. s. J . Planar Chrometogr.-w. nc 1990, 3, 63-85. (V14) Panemr, K. S.; Slngh, 0. V.; Tandon, S. N. Anal. Le#. 1990, 23, 125- 133. (V15) Shlmku, T.; Hhata. ti.; Nakajima, K. Chromatographle 1989, 2 8 , 620-822. (Vl6) Shlmlzu, T.; Nonaka. K.; Arikawa, N. J . Plenar Chromatcgr.--Mad. nc 1989, 2 , 393-394. (V17) Shlmku, T.; Ohtomo, T.; Shlmlzu, T. J . Planar Chromatcgr.--Mod. nc ISSO. 3, 88-89. (V18) Shlmizu, T.; Hashlmoto, K.; Tsunoda. K. Chromatogrephia 1991, 37, 60-82. (Vl9) Ajmal, M.; Mohammed. A.; Fatlma, N.; Ahmad, J. J . Planer Chromatogr.--Mod. nc ISSO. 3 , 181-185. N20) AImaI. M.; Mohammed. A.: Fatlma. N. J . Indian Chem. Soc. 1989. . 66. 425-426. Chem. (V21) Rajput. R. P. S.; Agrawal, S.; Mlsra. A. K. Acta Clem. I&, 1nlln. .- - -, f.4. ,. 73-78. .- . - . (V22) Wal, C. M.; Du, H. S. Anal. Chem. 1990, 6 2 , 2412-2414. (V23) Murr, M. L.; Slngh. 0.; Safaya, P. Roc. Natl. Aced. Sci., India, Sect. A 1991, 67, 1-4. (V24) Ajmal, M.; Mohammad, A.; Fatlma, N.; Ahmad, J. J . Pianar Chromanc isso, 3,398-400. (V25) Mohammed, A.; Tlwarl. S. Microchem. J . 1991, 44, 39-48. (V26) Zou, H.; Zhang, Y.; Lu, P. Mkroch/m. Acta 1991, 7 , 145-149. (V27) Tesic, 2. L.; Janjlc, T. J.; Mallnar, M. J.; Celap, M. B. J . chrometogr. 1989, 487, 471-476. (V26) Suzuki, N.; Saltoh, K.; Shibata, Y. J. Chomatogr. 1990, 504, 179- 185. (V29) Shrey. S.; Bansal. S. K.; Sindhu, R. S. Orlent. J . Chem. 1990, 6, 132-134. (V30) Galbakhn, D. S.; Rozylo, J. K.; Kolodziejczyk. H.; Khatchatrian, A. 0. J . mnar C%romatogr.--Mod. nc 1989, 2 , 142-147. (V31) Janjc, T. J.; Mlbjkovlc. D. M.; Arbutlna, Z. J.; Tesic, Z. L.; Ceiap, M. B. J . ClWometOgr. 1909, 481, 465-470. (V32) Ray, R. K.; Bandyopadhyay, M. K.; Kauffman, G. B. J. Chromatogr. 1989, 469. 383-389. (V33) Ray. R. K.; Kauffman. G. 8. J. Chomatcgr. 1990, 504, 484-468. (V34) Ray, R. K.; Kaufmann, 0. B. Inwg. Chlm. Acta 1989, 762, 45-48. (V35) Schuater, M.; Kuglec, B.; Koenig, K. H. Fresenlus J . Anal. Chem. 1990, 338, 717-720. (V38) Xle, P.; Yen, Y.; Yu, C.; Shen. M. J . Planar Chromatogr.-w. nc 1990, 3, 141-143. (V37) Tlmerbaev, A.; Shadrln, 0.; Zhivoplstsev, V. Chromatographle 1990, 30, 436-44 1. (V38) Hasunuma, R.; Ogawa, T.; Ishll. J.; Kawanlshi. Y. J . Chromatogr. 1001. .... 537. ... 397-405. ... .... (V39) Funk, W.; Enders, A.; Donnevert, G. J. Pianar Chromatogr.--Mod. nc 1989. 2 . 282-284. (V40) Funk,.W.’; Kornapp. M.; Donnevert, G.; Netz, S. J. Planar Chromatw.--Mod. nc 1 9 ~ 92,276-281. , (V41) Huealn, S. W.; Ishghy. 2.; Chahsl, M. J. Planar chrometogr.--Mod. nc 1990, 3,271-272.
w.-M.
.
.
Thermal Analysis D. Dollimore Department of Chemistry and College of Pharmacy, University of Toledo, Toledo, Ohio 43606
INTRODUCTION review publications re & in Chemktry Abstracts Thermal Analysis ( C A SelectsPOfromDec 1989 to Nov 1991 are used. This covers an increasing number of abstracts,and
I am sure that some bias is present and some important contributions have been omitted. There has been a proliferation of special reports and conference proceedings. Examples are the 12th Nordic Sympo-
0003-2700/92/038~147R~10.00/0 0 1992 American Chemical Society
147 R
THERMAL ANALYSIS
sium on Thermal Analysis and Calorimetry (I),the Second Japan-China Joint Symposium on Calorimetry and Thermal Analysis (2),the Czechoslovak Forum of Thermal Analysis (3),Developments in Calorimetry, the Ninth Ulm Conference on Calorimetry (4),and the 10th National Conference of Association Italiana Calorimetria e Analisi Termica (5). Other special issues include chemical thermodynamics and calorimetry presented at the International Conference held in Beijing (6), the 25th Anniversary Conference of the Japanese Society of Calorimetry and Thermal Analysis (7), the invited papers on High-Temperature Superconductors (8),and a special issue on biological calorimet dedicated to Professor Ingemar Wadso on his 60th birthday%. Selected papers from the 18th North American Thermal Analysis Society also appeared as a special edition (10). A third edition of the book by Wildmann and Riesen has appeared under a slightly changed title, Thermal Analysis: Applications, Concepts and Methods ( 1 1 ) . The book by Wunderlich is a useful textbook on the subject of thermal analysis, especially for those interested in polymer application (12).There is an additional volume available in the series Comprehensive Analytical Chemistry entitled Puke Methods of Measuring Basic Thermophysical Parameters (13).The application of thermal analysis to foods is covered in a useful volume (14). The Analytical Instrumentation Handbook contains a chapter on thermal analysis (15)as does the supplementary volume of the Encyclopedia of Polymer Science and Engineering (16).
INSTRUMENTATION There are many papers describing new equipment, modifications to equipment, or new theoretical concepts. It is possible here and elsewhere in thii report to give only a select few examples. There is a big effort to introduce thermal analysis into the teaching curriculum of many undergraduate and graduate courses. Typical of this movement is the publication by Wiederholt et al. describing a simple thermobalance for teaching (17). In other papers on thermogravimetry (TG), attention is given to extending the lifetime of microfurnaces and repair of broken furnace stems (18,19).There is always a danger in using the same thermocouple to control the furnace and also record the sample temperature in TG experiments. Alves (20)avoids the difficulty by providing two simple expressions for the calculation of the maximum tem erature difference between the center and the outer boun ary of a sample. Baseline noise was found to be improved by an adjustment to the flow system in the Cahn thermogravimetric analyzer (21). In differential thermal analysis (DTA) and differential scanning calorimetry (DSC), the present definitionsessentially mean that any unit which can be shown to operate as a calorimeter can be called a DSC unit. There are several publications which focus on the existence of temperature gradients a c r w the actual sample and also a c r m the sample and holder and the influence this has on the DTA curve (22-24). This a proach also allows the baseline in any transitions to be pyotted allowing for variations in the heat capacity and in thermal symmetry (25).Sandu and Singh (26)address the baseline correction for DSC, as well as solutions of the calorimetric curves for single, multiple, physical or chemical transformations. Harmelin and Jiang show that in DSC the choice of the metal in the sample pan and lid can affect the baseline particularlywhen the thermal reaponse of metal alloys is investigated (27). High-pressure DTA is described for measuring oxidation induction times (28)and for studying pressure, volume, and temperature relationships (29).The problem with high-temperature DSC is mainly one of calibration. Hongtu and Laye (30)have assembled a high-temperature unit, however, and describe calibration procedures up to 1550 K. A cooling device for low-temperature DSC has also been developed (31). In gas analysis, efforts have been made to detect distinct chemical species, an example is carbon monoxide (32).The use of gas sampling by collecting the gases in gas sampling tubes for later analysis is advocated by Slaghius and Morgan (33). Emanation thermal analysis ap lied to the thermal behavior of inorganic materials is descrikd by Balek (34). In this technique, the measurement is of the inert gas release from samples previously labelled. Many investigations prefer to use simultaneous thermal
a
148R
ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992
analysis techniques in which two or more such techniques are combined. This is cost1 but the advantages are such that such systems continue to described. Thus acoustic emission has been coupled with DTA for different potassium perchlorate samples (35)and X-ray diffractioncoupled with DTA in studying liquid crystals (36). A unique development is the use of thermal analysis systems coupled with a tritium tracer technique (37).
THERMODYNAMIC MEASUREMENTS In thermal analysis,the material under investigation is often a solid. This complicates the determjnation of thermodynamic functions, for often a kinetic factor is also involved. This is due to the rigid structure of solids and the variability of surface parameters. It is necessary to specify the previous history of such samples. Transformations of phase can be reversible or irreversible. Reversible transactions are endothermic in the heating mode and exothermic in the cooling mode. A typical example is the report on the behavior of 2,6-dinitrotoluene(38). In the DSC study the enthalpy of transition between the two crystal forms of the material could be measured, together with the enthalpy of fusion. Likewise, Faudot and Harmelin (39)were able to determine the temperatures and the enthalpy change of the a-@ solid transition and the solid liquid phase change for pure neodymium. Similar transitions have been studied for neptunium and plutonium (40).The method can easily be applied to organic materials, and the report by Ferrillo and Granzon on the melting behavior of isomeric diisocyanates may be noted (41). The study of the solid-vapor or the liquid-vapor system is more difficult on DSC units as there is loss of material to the vapor phase. The study has to be performed under a controlled pressure of the gas. It is often advantageous to simply use a method which determines directly the temperature dependence of the vapor pressure (42-44). The change from a metastable form to a stable form represents a change from an energy-rich form to one of lower energy and is consequently exothermic and irreversible. There is often a kinetic factor to such measurements in glassy polymer systems, and this is reflected in a dependence of results on experimental conditions, as shown by studies on asphalts (45)and on Nylon (46).The molecular weight can also be seen to influence the kinetics of crystallization (47). While the Avrami equation finds general use in this field there are several new attempts at advancing formal mathematical treatments of the kinetics of crystallization (48-50). The position of the baseline in DSC experiments is determined by the heat capacities of the systems under investigation. This fact leads to experimental methods of measuring heat capacities based on DSC. Wunderlich (51) describes methods which permit a detailed interpretation leading to the establishment of high-quality heat capacity data for both the rigid state and the mobile liquid state. He remarks that conformational disorder in crystab can be found in many molecules that posses a plurality of conformational isomers. Jin and Wunderlich describe single-run heat capacity measurements at subambient temperatures leading to the acquisition of heat capacity data for selenium, aluminum, quartz, polystyrene, and sodium chloride (52). Using the same approach the heat capacities of paraffii and polyethylene were also measured (53).One challenging aspect is to determine heat Capacities from DCS measurements at high temperaturea. Gardner and Preston (54)measured heat capacities up to 800 K for various halides. The glass transition point (Tg) is generally recognized by a sudden break in the baseline of the DSC plot. It occurs where a rigid polymer body becomes plastic. For this reason, it can also be detected by measurement of mechanical properties as a function of temperature and techniques such as thermally stimulated depolarization current method (55). It can be seen in the am0 hous phase in frozen a ueou systems (56),in alloys (57),an?in organic polymers wtere semicrystalline polyamides can be cited as an example (58). For a thermodynamic treatment it would be advisable to wipe out the previous history of the solid and make the determination of the Tg point in the coolingmode. For industrial proce-, the prehistory of the system w important and man practical determinations of the Tg oint are obtained from X e heating mode. In a study using D8C it was found that organic liquids
-
THERMAL ANALYSIS
D. Dollhrare received his B.S. (1949). Ph.D. (1952), and D.Sc. (1976) degrees from London University. He held a postdoctorate position at Exeter University (1952-1954) and held a faculty appointment at St. Andrews University (1954-1956) before joining the University of Satford (1956-1982) where he held a Faculty position as Reader. He has been a Professor of Chemistry at the University of Toledo since 1982 and holds a similar position in the College of Pharmacy at that University and serves in an Adjunct capacity in the Geology Department. He is on the editorial board of Thermochimca Acta, was the Mettler Award Winner in 1979, and was Chairman of the Brttish Thermal Methods Group (1969-1971). He is the author of several books and editor of various Conference Proceed ings. In 1988 Dr. Dollimore attended ttie ICTA Conference to receive the DuPont/ICTA Award in Thermal Analysis. He is President of a consulting firm dealing with problems in surface science and heat treatment of solMs.
in pores had a lower Tg then in the bulk (59). DSC/DTA finds extensive use in obtaining details of condensed-phase diagrams and is now regularly used as an alternative to cooling curve or related methods. Typical examples are binary mixtures of petroselinic acid/oleic acid and a sclepic acid/oleic acid (60),binary metal mixtures such as copper-lead and bismuth-copper (61),and complex oxide systems (62).Seifert et aL (63) used DTA to study the systems of alkali-metal chloride with gadolinium(II1) chloride.
REACTION KINETICS Nonisothermal methods of determining reaction kinetics continues to be studied. It is possible to argue that the classical isothermalmethods of studying reaction kinetics are suspect on the grounds that the exothermic or endothermic nature of the reaction would lead to an error in the assignment of a temperature to the process. This is particularly true for the small samples used in the investigations of solids using thermal analysis. However the real season for using the nonisothermal approach is the pragmatic one that it is experimentally simple and saves time. The method is, however, beset by two roblems, the need to analytically integrate the integral S;E RT dt and the ability to recognize the reaction mechanism in the rate relationship da/dt = kF(a)
P
where a is the fraction decomposed, t is the time, k is a rate constant,and F(a)is the algebraic function of a that identifies the a-t relationship. Stromme (64)points out that the nonisothermal reaction rate is in general a function of the heating rate. Flynn (65) sets out the general differential isoconversionalmethod. It requires sets of two or more experiments with differing thermal programs. Urbanovici and Segal(66) in a long series of papers point out that 1/T = a + b l n B (a) where T is the temperature, B is the heating rate, and a and b are constents, (b) the true temperature of the sample and the programmed one can cause errors, (c) the above results allow a classification criterion for thermal decomposition, (d) the second-order function d2a/dt2in nonisothermal changes is not valid for reaction order conversion functions f(a) =
’
(1- a ) n
and (e) a method to obtain hi h-precision solutions to the temperature integral is offerel The suggestion that the shape of the TG curve can be used to establish the f(a) is made in several studies (67,68). Vzazovkin and Lesnikovich (69)show that for a given kinetic mechanism the error in the Arrhenius parameters may be excessively high, and they recommend in nonisothermal kinetic studies a nondiscriminatory analysis. Zuru et al. (70), however, show that if the isoconversional activation energy is calculated, then the activation energy calculated on the basis of the probable mechanism type,which gave the least standard deviation from the isoconversional value, indicates the most
probable mechanism. All of the data collected from nonisothermal methods, when subjected to various experimental conditions, must reproduce the actual TG plot (71-73).Other methods are based on a single curve analysis and together with computer programs allow the calculation of the reaction mechanism and the Arrhenius parameters (74-76). In a series of connected reactions, e.g., the decomposition of doped nickel oxalate, the isothermal kinetics will show a compensation effect log A = a + bE The equation holds good for catalyst reactions, homogeneous gas reactions, and homogeneous liquid reactions. In rising temperature experiments, however, a series of different reaction mechanisms operated on a single TG curve will give a compensation effect as will a series of rising temperature curves on a single substance at different heating rates. The f i s t is called a false compensation plot; the second is called a pseudocompensation plot. It is the subject of two papers by Koga and others (77,78). TG is not the only way in which rising temperature kinetic data can be obtained. DSC is an alternative technique (79). Beck and Brown (80)using simulated DTA responses, performed a kinetic analysis on the data and compared it to the input data. Lithium sulfate monohydrate has been suggested as a standard for kinetic purposes, and there are several papers on thistopic (81,82).In another field the solid decompositions induced by a laser are studied (83).Finally rate-controlled transformation rate thermal analysis has been applied to the thermolysis of uranyl nitrate hydrate (84,85).
INORGANIC COMPOUNDS The carbon football of Cmatoms reveals a fiborder phase transition from a low-temperature simple cubic structure with a four-molecule basis to a face-centered cubic structure at 249 K which can be followed on a DSC unit (86).These fullerenes have been fluorinated and TG and DSC used to characterize them (87). The production of thin diamond films have attracted a lot of attention in thermal analysis studies (88-90). Other studies on carbons include the effect of heat treatment of raw materials in the production of carbon blacks (91).Other studies concentrate on metals (92-94),on alloys (95),or on glasses (96). Simple salts with one metallic species as a constituent would seem to have the choice of decomposing either to the metal or to a simple oxide (93).This is often the basis for industrial processing which has lead to studies on cyanide salts (97).In order to induce nucleation in the decomposing solid the salt is often irradiated, as in the case of calcium bromate (98). Nitrates receive a lot a attention (99,100). Typical of the work on carbonates is the study showing the dependence of decomposition upon the pressure of C02for Ag2C03(101)and the influence of ionic additions to the decomposition of %COB (102).In molten potassium pyrosulfate, the reactions of six metal nitrates were investigated by thermal analysis (103). Simple oxalates still continue to attract a lot of thermal analysis work, there are papers on transplutonium oxalates (104,105), silver oxalate (106),rare-earth oxalates (107,108), copper oxalate (log), and many others. The higher and more complex organic salts are now being investi ated by thermal analysis (110-113).The nature of the acifi sites in layered Zr(HP03)2was characterized by a variety of techniques including thermal analysis (114). The oxidation kinetics of chromium(II1) chloride is reported by Sole et al. (115). The thermal decomposition of double salts containing two or more metal radicals is illustrated by the work of Brandova et al. (116)with C U ~ / ~ M ~ ~ , ~ ( H ~ PAmmonium O~)~~O~H~O. metavanadate doped with iron, cobalt, or nickel hydroxides is studied where the dopants enhance the formation of V205 (117). It is found that the thermal decomposition of potassium fluorooxodiperoxovanadate(V) is a multistage decomposition (118,119).In the decomposition of ammine complexes and related materials, the reader is referred to the numerous works of Allen and co-workers (120-125).In each case the decomposition is multistage but the final product is the oxide. It is not clear whether in the case of nickel and cobalt salts an inert atmosphere would have produced a metal. In studies on cobalt amino complexes Saito (126)found that exothermic peaks were due to catalytic oxidation of the ammonia released ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992
0
149R
THERMAL ANALYSIS
in air and were absent in argon. In studying simple oxides, the surface texture and morphology imposes restrictions on the product. The calcination temperatures are important because not only does the product sinter but it apparently often becomes hydrophobic, and there is the dissociation pressure at each temperature to measure. The dehydroxylation process in amorphous silica has been studied using DSC (127). It is shown that colloidal nondisperse amorphous silicas could be prepared by hydrolysis of (EtO)$i in HzO,NH3, and EtOH (128). In the hydrothermal and decom osition of ground gibbsite the prehistory was important 829). A similar result was obtained by Doherty et al. (130). The same general comments apply to TiOz (131), Fez03.(132),and AgzO (133). In studies on V205,thermal analysls was used to study ita reduction by CO (134). A study on ZrOz doped with chromium(II1) showed differences depending on the level of the doping (135). In the field of complex oxides, there are two divisions, one looking at preparations of various titanates and the other looking at the preparation of the superconductor type oxides. Typical studies of the YBa2Cu307and related compounds are those in which the precursors are varied or the techniques of measurement are different (136-140). The same general methods form the basis of the experimental studies on titanates (141-144). nerareearth gallatet, and aluminates have been reported (145). In a study on stannosilicates,Dyer and J d o r (146) used a variety of thermal analysis techniques. A novel method for wetting and dryin isotherms using a TG balance, which operates in saturatef vapor pressure in salt chamber humidistats is presented (147). The isotope effect on the glass transition and crystallization of hypoquenched glassy water uses DSC (148). Paulik et al. (149) presents a method for the continuous selective determination of water vapor evolved during thermal decomposition reactions. In another paper differences in thermal properties of normal and deuterated hydrates of inorganic compounds are presented (150). Unexpectedly, stable nitrogen, oxygen, carbon monoxide, and ar on clathrate hydrates have been reported (151). Other stufies are mainly concerned with the rate of dehydration (152-155).
ORGANIC AND POLYMERIC MATERIALS There are various methods that are useful in investigating organic "pow& e& thermosonhem (156)* Others make use of mass spectrosco y coupled with TG (157,158) while TG coupled with DSd)is d S 0 found useful (159). In the elucidation of aminophenol-iodine redox products emanation thermal analysis was successfully (160)* et (161) have made an extensive study of substituted phenols which should provide a basis for characterization. Crown ethers have also been studied, especially with regard to their complexes with appropriate metal compounds (162-1M)* In a combined TG and gas Yro1YSis on 'Om' tetrdkY1substituted ammonium iexafhorophosphates, the kinetics of the separate stages were evaluated (165). In the studies on polymers, new techniques of thermal Or new combinations Of techniques are Oftenquoted' These include thermal and mechanical fracture properties dielectric measurements (167), infrared 8 ectroscopY (168, 1691, electrochemical measurements (17079 and mass s ~ r o s c O p measurements y (171)* A TG was used to study polymers adsorbed on silica from nonaqueous solutions (172). A combination of IR spectroscopy and thermal analysis was used to examine for possible interactions between poly(viny1pyridines) and acidic polymers (173). The electrochemical polymerization of biophenes in the presence of bithiophene or terthiophene was characterized using thermal analysis methods (174). The characterization of water in dispersed form in polymers showed water melting at -40 "C (175). DSC can be used to study the state of cure and the kinetics of the curing process (176, 177). McNeill and coworkers have used thermal volatilization analysis to study polyesters and polycarbonates (178),pol (ac lic acid) (179), ly(alky1ene terephthalates) (1801,and &en% of PVC (181). %e thermal properties of syndiotactic polystyrene has been reported (182). There is a report on a new high-temperature transition in poly(tetrafluorthy1ene) (183). The effect of complexition of poly(2-vinylpyridine)with copper chloride in its thermal decomposition is also published (184). A DMA investigation of fibers indicates the use of this technique (185). 150R
ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992
There are numerous papers on fire retardancy. There is a particularly active group of workers based on the Department of Material Technology and the International Tin Research Institute at Uxbridge who study the effect of various metal salts on polymer materials (186-189). A majority of published material on flame retardancy is based on cellulosic materials (190-194). Many of the materials used in these f i e retardancy studies can be regarded as composite materials. Polymeric composites usually include either an inorganic or an organic component within a polymer matrix. In many cases there might be more than one additive (195). The heat curing behavior of light-cured restorative composite resins used in dental work is one example where thermal analysis proves useful (1%). Many composite systems use carbon; the pol er can often be investigated in an inert atmosphere, a n E h e carbon in air (197,198). In other reported thermal analysis studies on composites, the inorganic might be a metal, such as iron (199)or nickel (200),oxides such as quartz (201),lead zirconate (202),or an oxy salt such as calcium carbonate (203).
BIOLOGICAL, MEDICAL, AND PHARMACEUTICAL STUDIES There are a continued number of studies involving thermal analysis which can be identified with food materials. In oil and "i3-e Products there are on the Chemical and physical properties of the hi h-melting glyceride fractions of commercial mar erines (2047 and on North American shortenings (205). T t e s~ 818 and starches also receive a lot of attention. There is a DSC, and X-ray study on sum=, maltose, and lactose (206). The effect of sub-Tg isothermal ann* On the glass transition of Dsorbital is re rted (207). However, Starch in fOrms has been the SUI%& Of b e number of thermal analysis studies (208-212). d e isolation and Of Starch from Single kernels of wheat and barley has been d-bed (213)* A d&iled DSC Study O f m W bean starch-water Systems between l3.6 and 90.2% is reported (214). The products formed from rice husks have been investigated Where the effect offlUXh3agents on the fOrm&bn of silicon carbide whiskers upon heat treatment is noted (215). It was found possible to develop a programmed TG analysis to evaluate moisture and ash contents of wheat flour (216). In other food-related studies there are TG studies on lobster shell (217)and on the influenceof d o r i d e and dum tripolyphosphate on grill steaks (218). The freezing damage that may be caused in biological systems has prompted an investigation of the behavior of the NaC1-HzO system at low temperatures (219). DSC has been found useful in studyin the interaction of phospholipid vesicles with some agents (220). The same technique was also used to study ligand-induced biphasic denaturation (221) and to study effeds of pH and ionic strength on bovine serum albumin (222). TG, however, was used to study turkey tendon collagen (223) and steroids (2%). Encapsulation of microspheres of progesterone has been studied using thermal analysis techniques (225). The study of impuritylevelin d r y s by thermal analysis has been found to be greatly aided by t e use of efficient computer programs (226). otherstudies impinge on possible interaction between experiments and the active drug (227, 228). The physical characterization of ibuprofen with eudragrit co recipitates has been achieved using DSC (229). These kin& of studies are typical of the way in which thermal analysis is used in this field.
b,
antidmtory
MINERALS AND ENERGY-RELATED TOPICS Limestone minerals continue to receive attention, particularl studies where thermal analysis can be used to study the &composition of calcium carbonate on the presence of other oxides or carbonates (230-232). In studies related to magnetite it was shown that basic magnesium carbonate containing different alkali-metal carbonates did not show the exothermic DTA peak observed for the basic magnesium carbonate at 490 "C (233). However, dolomite receives attention because in many instances decrepitation occurs as well as decomposition (234). It was also noted that grinding the dolomite showed a gradual loss of the cation-orderin characteristic when a new phase of lower ordering appearec! (235). Wiedemann et al. used TG to stud the interaction between dolomite and sulfur dioxide (236). $lays on heating lose water
THERMAL ANALYSIS
they have adsorbed; then a dehydroxylation process takes place to produce a metastable form, and finally, a rec stallization usually occurs just above lo00 “C. The hydrow%tion of metakaolinite has been studied using various techniques (237). Various silicates have been examined using thermal analysis, these include zeolite-type minerals from the Whin Sill in England (238), man anese silicates from Italy (239), and perraultite from Que6ec (240). The dehydration of calcium sulfate has been studied (241,242),as has also its subsequent decomposition (243). The measurement of the hydration process in cements continues to be either by DTA, DSC, or TG (244-246). It was shown that the effect of sodium nitrate and calcium formate additions on the hydration of vibratory reground cement at -6 “C and at +20 OC accelerates the growth of early compressive strength (247). There are several reports on pulverized fuel ash (248, 249). The application of variable-atmosphere thermomagnetometry to the thermal decomposition of pyrite is described (250). Thermal analysis studies of coal in oxy en or oxidation atmosphere produce data on the kinetics an burning rates, etc. (251-254). The COz gasification of coal was examined using TG with K2C03as catalyst (255).A combination of mass spectrometry with TG is used by Szsbo et al. (256) to characterize the behavior of various coals on heat treatment. The high-pressure DTA unit has proved useful in studying the liquefaction of coal (257). Temperature-p ammed aqueous liquefaction of lignite has been extende to supercritical conditions (258).Thermal analysis have proved efficient in characterizing lubricating oils (259,260). DSC has also been shown to be efficient in determining the volatility characteristica of petroleum fractions (261). In the field of energetic materials the use of evolved gas analysis applied to the titanium-trontium nitrate alloprene system can be mentioned (262) and there is a paper on the examination of the kinetics of the reaction between tungsten and K2Crz0, (263). Beck and Brown (264) describe a finite-element simulation of the DTA response to ignition of a pyrotechnic composition.
d
Y
ACKNOWLEDGMENT I gratefully acknowledge Chemical Abstracts Service for providing CA Selects to aid in the literature search used in the preparation of this work. LITERATURE CITED
(1) Mdler, P. J.; Sorensen, 0. T. Thennochim. Acta 1991, 175, 118. (2) Suga, H.; Ozawa, T.; Wen-HsIng, Y.; Rl-Heng, H. Thermochlm. Acta 1991, 183, 373. (3) Bakk, K.; Habersberger, K.; Sestak, J. Thennochim. Acta 1991, 190, 110. (4) Hohne, 0. W. H.; Hemmlnger, W. Thermochim. Acta 1991, 187, 387. (5) Cabanl, S.; Chielllnl, E.; Della Gatta,G. ThemMchlm. Acta 1990, 762, 284. (8) Wen-Hslng, Yen. Thennochm. Acta 1990, 169, 358. (7) Ozawa, T.; Suga. H. Thennochm. Acta 1990, 763, 239. (8) Gakgher. P. K.; Ozawa. T.; Sestak, J. Thennochm. Acta 1991, 774,
324. (9) Kemp. R. B. Thermochim. Acta 1990, 172, 271. (10) Riga. A.; Roby, S. H.; Neag, M. Thennochlm. Acta 1990, 766. 371. (11) Widmenn. 0.; Riem, R. ThennelAna&&: AppuCethms, Concepts and Methods, 3rd ed.; Huethlg Buch Vertag: Heidelberg, 1990;133 pp. (12) Wunderlich, B. ThennelAnalysi.9; Academic Press: Boston, 1990;450 PP. (13) KublGr, L. I n Thermel Analysis: Puke Methods of MeeSurlng Basic Thennophysicel Parameters; Svehla, 0..Ed.; Comprehensive Analytical Chemistry; Elsevier: Amsterdam, 1990 Part E, Vd. XII, 370 pp. (14) Harwakar, V. R.. Ma, C. Y., Eds. Thermal Analysls of foods;Elsevier Applied Food Science Series; Elsevier: London, 1990 362 pp. (15) Ddlknore. D. I n Ana!vt/cal Insfrumentathm Hendbook; Ewlng, Craien Wood. Ed.; Marcel Dekker: New York. 1990;Chapter 25, pp 905-980. (18)Flynn, J. H. Thennel Anal.. fncyci. Porn. Scl. Eng. 1990, Suppl. Vol.,
890-723. (17)wledemok. E.; F a h e y , V.; Skozkl. R. J. ThennelAnel. 1989, 35, 541. (18) Earnest. C. M. ThermelActa 1990, 758, 157. (19) Eamest. C. M.; Klnzer, D. Themrochim. Acta 1990. 758, 167. (20) Aives. S. S. Themwd?ima.Acta 1990. 157, 249. (21) Floess, J. K.; Chlmlak, J.; Sarafln, A. F.; Longwell, J. P. Mergy Fuels 1991, 5, 138. (22) Wllburn, F. W.; Dolllmore, D.; Crlghton. F. S. Thermochm. Acta 1991. 7 8 7 , 173. 191. (23) Chang. S. S. Thennochim. Acta 1991. 778, 195. TwkKlm. k g . 1991, 75, 39. (24) Guk. H.; Alpaut, 0. (25) Flammershelm, H. J.; Rudakoff. 0.; Eckardt. N. Wks. Z.-frledrichScM;#er-Unlv. Jena: Narvwlss. R M 1990, 39,231. (28) Sandu, C.; Slngh, R. K. Thennochlm. Acta 1990, 759, 287. (27) Harmelin. M.; Oieng, J. Thennochlm. Acta 1990, 762. 453.
w:
(28) Glmzewskl, E. ThennocMm. Acta 1990, 770, 97. (29) Bhatt, S. M.; Mccerthy, S. P. Porn. Repr. (Am. Chem. Soc., Dlv. pdym. Chem.) 1990, 37, 581. (30) Hongtu, F.; Laye, P. G. Thew". Acta 1991. 180, 81. (31) Dworkln. A.; Jaffre, J.; Szwarc, H. Rev. Sei. Instrum. 1991, 62, 1654. (32) Krlstof. J.; Inczedy, J.; Mohaesl, G.J . 7”.Anal. 1990, 36, 1401. (33) skghlw, J. H.; Morgan, P. M. Thennochlm. Acta 1991, 175, 135. (34) Babk, V. J . 7”.Anal. 1990, 36, 1981. (35) Shlmada, S.; Katsuda. Y.; Furulchl, R.; Inagakl, M. Thennochlm. Acta 1991, 784,Ql. (38) Ungar, G.;Fslbo, J. L. Mol. Cryst. Uq. Cryst. 1990. 180B, 281. (37) Mlyake, H.; Matriuyama, M. Kenkyu Hoku-Toyama Dkgaku Torlchumu Kapku Senta 1989, 9 , 97. (38) Finch, A.; Payne, J. Thennochlm. Acta 1990, 764, 55. (39) Faudot, F.; Harmelin, M. Sw. Metali. Meter. 1990, 2 4 , 91. (40) Fdtyn, E. M. J. Nucl. Meter. 1990, 172, 180. (41) FeCrlUo, R. 0.; eanzow, A. H. J. 7”.Anal. 1990, 36,319. (42) Ruz, B. L.; Evtukhov, Yu. N.; Sazonov, V. A.; Shemet. V. Zh. Zh. F k . K h h . 1990, 64, 1078. (43)Davtes, R. H.; Finch, A.; Salem, K. Thennochh. Acta 1990, 770, 213. (44) Barone, 0.; Deb Gatta, 0.; Ferro, D.; Placente, V. J. Chem. Soc., Farady Trans. 1990, 86, 75. (45) Kumarl, D. ? k m O C h h . Acta 1990, 158. 71. (48) Moser, K.; Ohm, H.; Zwllllng, W. J. Appl. Porn. Sei: Appl. Polym.
svmp. 1991,48,459.
(47) Day, M.; Destandes, Y.; Roovers, J.; Sub-runchuk, T. Polymr 1991, 32. 1258. (48) Dobreva, A.; Stoyanov, A.; Gutsov. 1. J. Appl. Polym. Sei.: Apply. pdym. S m . 1991. 48, 473. (49) Shl, Q.; Selnfeld, J. H. J. Meter. Res. 1991, 6,2091. (50) Urbanovlcl, E.; &gal, E. ThennocMm. Acta 1990. 777, 87. (51) Wunderwch, B. Thermo&im. Acta 1990, 162, 59. (52) Jln, Y.; Wunderllch, B. J. 7”.Anal. 1990, 36, 1519. (53) Jln, Y.; Wunderllch, B. J. mys. Chem. 1991, 95, 9000. (54) Gerdner, P. J.; Preston, S. R. ThcKm4cMm. Acta 1991, 175, 129; 780, 281; 785, 219. (55) pissis, P.; Apekis, L. J. Non-Ctyst. WU.9, 1991, 131-133 (Part I), 95. (58) Blond, Q.; Slmatos, D. Thennochlm. Acta 1991, 775, 239. (57) BarO, M. D.; Surlnach, S.; Clavaguera-Mora, M. T.; Clavaguera. N.; Bark, C.; Rysava, N.; Trlska, A. J. Meter. Scl. 1991, 2 6 , 678. (58) Cheng, S. Z. D.; Herberer, D. P.; Lien, H. S.; Harris, F. W. J. Polym. sei., parts: pdym. m p . isso, 2 8 , 8 5 5 . (59) Jackson, C. L.; McKenna, G. B. J. Non-Cryst. Solids, 1991, 731-733 (Part I), 221. (80) Yoshlmoto, N.; Nakamura, T.; Suzukl, M.; Seta, K. J. Phys. Chem.
1991, 95. 3384. (81) T e m , 0.; Nlemeta, J.; Taskinen, P. Thennochlm. Acta 1990. 173, 137;1991, 785,155. (82) Lldrtmberg, F.; Wldmer, D.; Bednorz, J. 0.; Wllllams, T.; Reller, A. Z. phvs. 8 .: CandCMs. 19Pl. 82. 211. ,- . - -..- -..- . Metter .. .- - - .(83)--Selfert, H. J.; Sandrock, J.; Thlel, 0. Z . Anorg. AI@. Chem. 1991, 598-599. 307. (84) Stromnie, K. 0.7?”ochlm. Acta 1990. 767, 1. (85) Flynn. J. H. J. 7”. Anal. 1990, 36,1579: 1991, 37, 293. (86) Urbanovkl, E.; Segal, E. Thennochm. Acta 1990. 759, 35; 159,389; 764, 259, 285 768, 71.
-. --.
(87) Pokol, G.; Toth, F. H.; Peter, I.; Madaraz, J.; Kocsls, T.; ai, S. J. Thenn. Anal. 1990, 36, 1887. (88) Crlado, J. M.; Ortega, A.; Gotor, F. Thermochm. Acta 1990, 157. 171. (89) Vzazovkln, S. V.: Lesnlkovlch, A. I . Thermochlm. Acta 1992. 182,
133. (70) Zuru, A. A.; Whitehead, R.; Grlfflths, D. L. Thennochm. Acta 1990, 764, 285. (71) blpldor, U. B.; Buccl, R.; Carunchlo. V.; Magrl, A. a. Thennochm. Acta 1990, 158, 125. (72) Wpldor, U. B.; BuccI, R.; Megrl. A. D. Thermochim. Acta 1990. 767, 37. (73) Kieffer, L. S.;Bonivardl, A. L. Thermochim. Acta 1990, 777, 67. (74) Elder, J. P. Thermochm. Acta 1990, 771, 77. (75) Ma, S.; Hueng, 0.:Hill, J. 0. Thevmochlm. Acta 1991, 784, 233. (78) Rekh, L. Thennochlm. Acta 1991, 180, 303; 785, 205. (77) Koga, N.; Tanaka. H. J. Therm. Anal. 1991, 37. 347. (78) Koga, N.; Sestak, J. Thefmhim. Acta 1991, 182, 201. (79) Batch, G.L.; Macosko, C. Themrcchlm. Acta 1991, 188. 1. (80) Beck. M. W.; Brown, M. E. Thermochm. Acta 1990, 764, 379. (81) Koga, N.; Tanaka, H. Thennochlm. Acta 1991, 783, 125; 785, 135. (82) Galwey, A. K.; Koga, N.; Tanaka, J. J. Chem. Soc., Farady Trans. 1990, 86, 531. (83) Popescu. C.; Alexandrescu, R.; Morjan, I.; Posescu, M. Thermochm. Acta 1991. 784, 73. (84) Bordere, S.; Rouquerol, F.; Rouquerol, J.; Estlenne, J.; Foleanclg, A. J. Therm. Anal. 1990, 36, 185. (85) Bordere, S.; Fourcade, R.; Rouquerol, F.; Floreanclg, A,; Rouquerol, J. J . Chim. mys. mys.-ch/m. BIOI. m o , 87. 1233. (88) Heinly, P. A.; Fbcher, J. E.; McGhie, A. R.; Romanon, W. J.; Denensteln, A. M.: Mcceulev. J. P.: Smlth. Amos, B.: Cox. D. E. Phys. Rev. Lett. 1991, 66, 2911: (87) SeN, H.; Ufshltz, C.; Peres, T.; Flscher, J. E.; McGhie, A. R.; Romanow, W. J.; McCauley, J. P.; Smith, A. B. J. Am. Chem. Soc. 1991, 773,
5475.
(88) Vereshchagin. A. L.; Ulyanaova. 0. M.; Novosebv, V. V.; Petrova, L. A.; Brylyakov, P. M. Svsrkhtverd. Meter. 1990, 20. (89) Remesham, R.; Roppel, T.; Ellis, C.; HaJek, B. F. J. Elec~ochem.Soc. 1990, 737, 3203. (90) Putyam, A. A.; Makarova, 0.;Semenenenko, M. N. SverkhtverdMeter. 1990. 7.
ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992
151 R
THERMAL ANALYSIS (91) Svinvwlov, A. 0.; Rolesnlkov, S. I.; Sobokwa. E. 8.; Ttrundaevskaya, N. E. R M ~ ruerd. . ropl. (MOSWW) 1990. 108. (92) Wang, W.; Xu, J.; He, 0. Wull Huexue Xuebeo 1990, 6.252. (93) Dotlimore, D. n"chh. Acta 1991, 777, 59. (94) Bredesen, R.; Kofstad, P. Oxld. Met. 1990. 34. 361. (95) SUSlC, M.; Pan, S. U.; Marick, A. M. J. Mater. Sei. 1990, 25 (2B), 1369. (96) Kotaka, M. F.; EKouly, M. H.; Fayek, S. A. J. Mater. Scl. 1990. 2 5 , 2906, 2917. (97) Mythall. S. A.; Turcotte, A. M.; McNamara. V. M. Thennochm. Acta . 1991, 776, 213. (98) Nak, S. M. K.; Jacob, P. D. 7 7 w " h l m . Acta 1990, 757, 69. (99) Vasllev. V. I.; Kalevich, E. S.; Radchenkov, V. M.; Egunov, V. P.; Izmalkov, A. N.; Wmbarev, E. V.; VasHev, V. Ye. Radbkhhfy.4 1990, 3 2 , 6. (100) Maneva, M.; Petrov, N. J . Thenn. AMI. 1990, 36,2511. (101) Sawada, Y.; Kanou, N.; Mizutani, N. Th". Acta 1991, 783, 279. (102) Said, A. A.; Hassan. E. A.; A M ECSalaam, K. M.; Mohamed, M. M. J. Thenn. AMI. 1990, 36. 1331. (103) Ford, A. N.; Tarlq. S. A. Thennochkn. Acta 1991, 785, 245. (104) Vasllev, V. I.; Kalevlch, E. S.; Radchenko, V. M.; Shlmbarev, E. V.; Egunov, V. P.; IZmalkOV, A. N.; Vasllev, V. Ya. J. ~ e d k e M /Nud. . h. 1990, 743. 269. (105) Karelln. A. I.; Krot, N. N.; Kozlova, R. D.; Lobas. 0. P.; Maturkha, V. A. J. RadbaMl. NUCl. chem.1990, 143. 241. (106) Dolllmore, D.; Evans, T. A. Thennochlm. Acta 1991, 778, 283 1991, 179. 49. (107) kgse,K.; Yokobayashl, H.; Kazuo, M.; Klkuchl, M. 7?"ochlm. Acta 1991, 777, 273. (108) Hdaa,J.; Korkva, E. Ther".Acta 1991, 785, 25. (109) Broedbent, D.; DoHbnore, D.; Dolllmore. J.; Evand, T. A. J. Chem. SOC., F8f8&y Trans. 1991, 8 7 , 161. (110) Allan, J. R.; Dalrymple, J. Thwmochkn. Acta 1991, 785, 83. (111) SHeo. E. E.; Morando, P. J.; Baumgartner, E. C.; Blesa. M. A. ThermoCMm. Acta 1991. 784, 295. (112) Mousa, M. A.; Summan. A. M.; ACSousl, G. N. Thennochlm. Acta 1990, 765, 23. (113) Kumegl, T.; Tokota. H.; Mlzuta, S. S. Netsu Sdrutei 1990, 77, 9. (114) Wan, B. 2.; -, S.; Anthony, R. 0.; Clearfield, A. J. Chem. Soc., Fara&y Trans. 1991. 8 7 , 1419. (115) sde. K. C.; Modiman, M. B.; Brown, M. E. J. Chem. Soc., ~ 8 f 8 & y rrans. 1990, 86, 525. (116) Brandova, D.; Trojan. M.; Arndd. M.; Paullk, F. J. Therm. AM/. 1990, 38. - - , 677. - ... (117) Said, A. A. J. Thenn. Anal. 1991, 37, 849. (118) Jonlakova. D.; Schwendt, P.; Slvak, M. 7bemwchlm. Acta 1991, 784, 213. (119) JOneCkO. D.; Schwendt. P. J. Therm. AMI. 1990. 36, 2407. (120) Allan, J. R.; Carson. B.; Paton, A. D.; Twvey, K.; Gerrard, D. L.; Hoey, S. l h". Acta 1990, 757. 81. (121) Allan, J. R.; Baln, D. R.; Carson, B. R. Thennochlm. Acta 1990, 165, 201. (122) Allan. J. R.; Mbum. 0. H. W.; Richmond, F.; Wilson, A. S.; Gerrard, D. L.; Blrnlce, J. Thennochkn. Acta 1990, 770, 147. (123) Allan, J. R.; Milbum, 0. H. W.; Richmond, F.; Gerrard, D. L.; Blrnlce, J.; WHson, A. S. Themrochkn. Acta 1990, 773, 185. (124) Allan, J. R.; Paton. A. D.; Turvey, K. Thermochlm. Acta 1991, 784, 193. (125) Allan, J. R.; Carson, B. R.; Twvey, K.; Birnie, J.; Gerrard, D. L. Eur. W m . J . 1991, 27. 865. (126) Saeto. A. Thennoochkn. Acta 1991, 777, 197. (127) &Met, Y.; Bordere, S. CeMm. AM/. Thenn. 1990, 20-27, 113. (128) Bodley, R. D.; Ford, W. T.; McEnroe, F. J.; Asslnk, R. A, Langmd 1990. 6, 792. (129) Novak, C.; Pokol, 0.; Izvekov. V.; Gal, T. J. Therm. AM/. 1990. 36. 1895. (130) Dohrty, W. 0. S.; Onuchejo, E. M. T.; Packer, A. Cryst. Res. Techno/. 1990, 2 5 , 913. (131) Selln. S. A.; Phlllp. C. A.; Hanaflo. S.; Boehm. H. P. J. Mater. Scl. 1990, 2 5 , 4878. . (132) Cylbt, B.; Nouelm. H.; Mathleu, F.; Rousset. A. Meter. Chem. Phys. inni. ~. 28.389. .-. (133)-Tlssot,P.; Le%ue. H.;R ~ n o lJ.. F. Thennochlm. Acta 1990, 762, 435. (134) Sunder, F.; Van VUWm, C. P. J. Thennochlrn. Acta 1990, 765, 73. (135) Bennov. J.; oharbl. N.; Zarrouk. H.; Sanchez. C.; Hentry M. Ann. ah.(I%&) 1990. 75. 19. (136) Balek, V.; Gallegh~,P. K. Thermochkn. Acta. 1991, 766, 63. (137) O'Bryan, H. M.; Rhodes, W. W.; Gallagher, P. K. Chem. Meter. 1990, 2 , 421. (138) Nagse, K.; Yokobayashl, J.; Klkuchl, M.; Toklwa, A.; Syono, Y.; MorM a , Y. Thennochlm. Acta 1991, 775, 207. (139) Ung, H. C. J. Meter. Scl. 1990. 2 5 , 3297. (140) eaebner, J. E.; OBryan, H. M.; Fastnacht, R. A.; Jln, S. Phys. C (Amsterdem) 1991, 773, 135. (141) Fang. T. T.; Lln, H. B.; Hwang, J. B. J. Am. Ceram. Soc. 1990, 73, 3363. (142) Kladnig. W. F.; Mayer. H. J. Meter. Sci. 1990, 25?5. 1973. (143) Suchltel, C. T. A.; Payne, D. A. (2".Trans. 1990, 8 . 189. (144) Lee, M. H.; Chol. B. C. J. Am. Ce".SOC. 1991. 74, 2309. (145) O'Bryafl, H. M.; &He-, P. K.; Berkstreser, G. W.; Brandle. C. D. J. Meter. Res. 1990, 5 , 183. (146) Dyer, A.; Jafar. J. J. Chem. Soc.. D 8 h . Trans. 1990. 3239. (147) MwntS, R. D.; Morton, M.; Beblch, M. W. n " o c h l m . Acta 1990, 773, 81.
. .
152R
ANALYTICAL CHEMISTRY, VOL. 64, NO. 12, JUNE 15, 1992
(146) Johari. 0. P.; Hallbrucker. A.; Mayer, E. J. Chem. Phys. 1990, 92, 8742. (149) Krlstof. J.; Inczedy,J.; Paullk, J.; PauHk, F. J. Thenn. AM/. 1991, 37. 111. (150) Maneva, M.; *glev, M.; Nlkolova, D.; Rusova, D.; Kovandzhkv, P.; PetrOV, N.; UPtew, a. J. Then. AMI. 1990. 38, 1803. (151) Hallbrucker, A.; Mayer, E. J. Chem. Soc., f m & y Trans. 1990, 86, 3785. (152) Taneka, H.; Koga, N. Themrodrkn. Acta 1990, 773, 53. (153) M o h a d , M. A.; Halwawy. S. A. Bull. Fac. Scl. Assun. Univ. 1990, 79, 107. (154) Sharama. S. K.; Jotshl, C. K.; Kumar, S. Thennochm. Acta 1991, 784.9. (155) MuraQhi, K.; Negase, K. Thennochlm. Acta 1990. 759, 225. (156) Lee, 0.;Koge, Y.; Wade, A. P. Talent8 1990, 3 7 , 861. (157) Bohrena, R. Int. J . Chem. Klnet. 1990, 2 2 , 135, 159. (158) Nalr, T. D. R. Thennochlm. Acta 1991, 782, 337. (159) Rodante. F.; Marroeu, G. 7bemwchbn. Acta 1990, 771, 15. (160) Zayed, M. A.; &lek, V. ThenrocMm. Acta 1991, 779, 237. (161) Budtman, N. G.; Hill, J. 0.; Magee, R. J. J. Thenn. Anal. 1990, 36. 289; 1991, 3 7 , 79, 95. (162) Zhang, L.; Lu, A.; Dong, F.; Zhang, Y.; Wang, L.; Yang, G. oui/inahu 1990, 1 7 , 18. (163) Lu, T.; Gan, X.; Tang, N.; Tan, M. -n 1990, 9 , 2371. (184) FeQrova. 0. V.; Novorhlbva, N. Y. I.; Fedorova, L. S.; Tudorovskaya. 0. L.; Kotlyar, S. A.; Lukyanenko, N. 0. Zh. W g . Khlm. 1990, 35, 92. (165) Prasad, M. R. R.; Krlshnamwthy. V. N. Thennochm. Acta 1991, 185, 1. (166) Ryon, A. J.; Stanford, J. L.; Still, R. H. P o w 1991, 32, 1426. (167) NaSS, Kkk A.; Seferls, J. C. Thennochm. Acta 1990, 770, 19. (168) Lee. Y. S. K.; Hodd. K.; Wrbht, W. W.; Barton, J. M. I%. FWm. J .
---. - - - -
w.
(171) m U d 0 . G . ; pugllsi. C.; Samperl, F. Pob"/. Stab. 19@1,37, 291. (172) Ayub, A. L.; Ling. S. M. J. Appl. Pofym. Scl. 1990, 4 7 , 419. (173) Hugtin, M. 8.; Rego, J. M. Polymer 1990, 37, 1269. (174) Wd, Y.; Chan, C. C.; Tlan, J.; Jang, 0. W.; Hseueh. K. F. Chem. Mater. 1991. 3. 888. (175) Canseli, F.; eablelleMadelmt. C.; Olllvon. M. J. Cdold Interfece Sci. 1991, 744, 1. (176) Mlkroyannidis, J. A. J. Pofym. Scl. Part A : Po/ym. Chem, 1990, 2 8 , 86Q. (177)-0presnlk, M.; Sebenik, A.; Zigon, M.; Osredkar, V. ?7wmoch/m. Acta 1991. 778, 127. (178) McNelll, I . C.; Rlncon, A. Pofym. DegRed. Stab. 1991, 37. 163. (179) McNdll. I . C.; Sadeghl, S. M. T. Pot)". Degred. Stab. 1990.29, 233. (180) M M , I. C.; Boonekhel, M. Pofym. Degred. Stab. 1991, 3 4 , 187. J. 0.; Basan, S. Pdym. Degrad. Stab. 1991, (181) McNelll, I. C.; *man, 33, 263. (182) Pasaor, A. J.; Lendes, B. G.; Karajala, P. J. 7bermhim. Acta 1991, 777, 187. (183) Khanna, Y. P.; Chomyn, 0. K. R.; Murthy, N. S.; O'Brlen, K. P.; Relm schuessl, A. C. Mecromolecules 1990, 2 3 , 2488. ( 184) Lyons, A. M.; Pearce, E. M.; Mujsce, A. M. J. Po/ym, Scl., Part A : po/Lm. Chem. 1990, 2 8 , 245. (185) Khanne, Y. P.; T a w , T. J.; Kumar, R. J. Appi. W y m . Scl. 1991, 42, 693. (186) Homsby, P. R.; Watson. C. L. Pofym. h g f 8 d . Stab. 1990, 30, 73. (187) Homsby, P. R.; Mitchell, P. A.; Cusack, P. A. P w m . Degrad. Stab. 1991, 32, 299. (188) Cusack, P. A.; H e w , M. S.; Monk, A. W. Pofym. m d . Stab. 1991. 32, 177. (189) Balns, R. S.; Cusack, P. A.; Monk, A. W. Ew. Pofym. J. 1990, 2 6 , 1221. (190) Honocks, A. R.; Moss, W. A.; Edwards, N. C.; Price, D. Pofym. hp a d . Stab. 1991. 33, 295. (191) Rlce, D.; Akalen, M.; Horrocks, A. R. fke Retard. Technol. Me&, Int. C e n f . fke Sat. 1990, 199. (192) Shukry, N.; (Yrgls, B. S.; Sefalnk, M. 2. Bull. Soc. CMm. Fr. 1990, 515. (193) Letcher, T. M.; Lutseke, S. TeXr Res. J . 1990, 60, 305. (194) Elk, W. D. Themwchlm. Acta 1991, 166, 213. (195) Wetton, R. E.; &ish, P. J. pdl*n. Text. 1988, 6 , 303. (196) Ban. S.; Takahaskl. Y.; Tenase. H.; Hasegana, J. Dent. Meter. J. 1990, 9 . 153. (197) Andreeva. I. N.; Kurguzov, V. N.; Kosmachev, A. N.; Chlchlnova, N. V.; Kazakova, M. E.;Kalashnlk, A. T. Khlm. Volokne 1991, 44. (198) Janoweka, 0.; SlusarSkl, L. J. 77".AM/. 1991, 3 7 , 713. (199) Zhelyezkov, Zh.; Radovanov, I.; Nedkov, E. Tekk. A#Isul1990, 2 7 , 61. Compos. 1990, 7 7 , 223. (200) Maitl, S. N.; Mahapatro, P. K. M. (201) A m s , S. P.; bllsfeld, S.; Beery, J. G.; Garzon, F.; Mombowquette. C.; Hawley, M. R.; Kuhn. H. H. J. Meter. Chem. 1991, 7 , 525. (202) Slnha, Dolly; PIkl. P. K. C. J. Mter. Sci. 1990, 2 5 , 944. (203) LWhr. J.: Belsmann, R.: Janowksl. F.: A m w . M k " / . Chem. 1991, 769, 137. (204) DSousa. V.; DeMan, L.; DeMan, J. M. J. Am. O/l Chem. Soc. 1991. 66.153. (205) 'DeMen, L.; DeMan, J. M.; Blackman, B. J . Am. 0llChem. Soc. 1991, 68, 63. (206) Reynhardt, E. C. Mol. Phys. 1990, 6 9 , 1083. (207) Chang, 2. H.;Baust, J. G. Crgo-Lett. 1990. 7 1 , 251. (208) He, 0. C.; Kogure, K.; Suzuki. H. Nlppon Sakumtsu Gakkal KIi 1990. 59. 340.
-
Anal. Chem. 1992,64,153R-17QR (209) Kulp, K.; Olewnik, M.; Lorenz. K. StarchlStatKke 1991, 43, 53. (210) Billaderis, C. G.; Tonogai, J. R. J. A m . Foodchem. 1991, 39. 833. (211) Skvert, D.; P m a n z , Y. CereelChem. 1990, 6 7 , 217. (212) cdona.P.; Barry, J. L.; Cloeroc, D.; b e t , F.; Gouilloud, S.; Gab mlche. J. P. J. Cerael scl. 1990. 1 1 , 59. (213) south, J. E.; Monison, W. R. J. CeraelSci. 1990, 5 5 , 771. (214) Callfano, A. N.; Anon. M. C. J. FoodSci. 1990, 55. 771. (215) Patel, M.; Karera, A. Si&. Ind. 1990, 5 5 , 103. (216) Acquistucci, R.; Bucci, R.; Magrl, A. D.; Magi, A. L. 7Mrmochim. A& 1991. 188. 51. (217) a r c l a , A.; Ovledo, V. D. J. ThcKm. Anel. 1990, 3 6 , 1347. (218)Sheard, P.R.; Jdley, P. D.; Katlb, A. M. A.; Robhson, J. M.; Morley, M. J. Int. J. Food Scl. Tedmd. 1990, 25, 643. (219) W, A.; Borch, K. 7bemwchh.Acta 1991, 175, 53. (220) Lasonder, E.; Werlnga, W. D. J. WkM. Interface Scl. 1990, 139, 469. (221) Shrake. A.; Ross, P. D.J. Sld. Chem. 1990, 285, 5055. (222) Yamasaki. M.; Yam. H.; Aokl, K. Int. J. Blol. Macromol. 1990, 72. 263. (223)Bigl. A.; Rlpamontl, A.; Cojaui, 0.;Piuuto, G.; Roveri. N.; Koch. M. H. J. Int. J. W . Macnxnd. 1991, 73. 110. (224) Guler, H.; Saraydln, D. J. 77".Anal. 1990, 36, 733. (225) Gangade, N.; Rice, J. C. J. kMcrwncapsulatbn 1991, 8 , 185. (226) Braun, V.; Wollman, H. h m z k 1990, 45, 502. (227) Bothe, S.A.; Loelter, A. P. LMg Dev. Ind. h i m . 1990, 76, 673, 1045.
mm.
(228)h n TO&, E. c.; ~oetter,A. P.; m,s.A. ind. m m . 1990. 16, 2125. (229) Khilelkghr, M. S.;Khan, M. A.; Blount, C.; Goettsch, R. W.; Bolton. S. J . R".scl. 1991. 80. 799. (230) Mueller, T.; Abicht, HP : . ThennocMm. Acta 1991, 175, 199. (231) Xi, mngping; JI, C. Dongbel Gongxueywn Xuebao 1991, 70. 60.
(232) Hurst, H. J. 7h". Acta 1990, 157, 89. (233)Choudhery, V. R.; Pataskar, S. G.; Pandit, M. Y.; Gunjkar, V. G. Thermochh. Acta 1991, 180, 69. (234) W h y , R. A.; Johnson, L. A. 7bemwchim.Acta 1991, 185, 271. (235) Osao, R.; Ochlai. M.; Yamazaki. A.; Otsuka, R. Thermochim. Acta 1091, 183, 183. (236) Wiedemann, H. G.; Boller, A.; Bayer, G. Solid State Ionics 1990. 43, 53.
(237) Rocha, J.; Adams, J. M.; Kilnowski, J. J. SONdSfate Chem. 1990, 8 9 , 260.
(236) Young, B.; Dyer, A.; Hubbard, N.; Starkey, R. E. Ml"3l. Mag. 1991, 5 5 , 203. (239) LUCcheffl, G. EN. J. MiRW8l. 1991, 3 , 83. (240) Chao. 0. Y. Can. Minerel. 1991, 29, 355. (241) Amito, K.; Ono. Y.; Hashhume, 0.; Kanaji, Y. Nlppon Kagaku Ka/sh/ 1990, 1238. (242) M I S , A.; Wlnkerl, B.; Fernandez-Dlaz, L. Mlnwal. Mag. 1990, 54. 123. (243)Yamada, M.; Mabul, H.; Hashhume, G. Gypsum Lkne 1990,227, 195. (244) AWekazig, 8. E. I.; Bonner, D. 0.;Noweil, D. V.; Egan, P. J.; Dransfield, J. M. 7bemwchim. ~ c t IS aSO, 168,291. (245) Panon, L. J.; @ker, M.; Gutterrldge, W. A.; Killoh, D. Cem. Concr. Res. 1990, 20,919. (248) FIkm, C. Philippou, T. Cem. Conw. Res. 1990, 20, 20. (247) Jenotka, I.; Frtalova, D.; Stevoia, L. Cefam.-SIllk. 1990, 3 4 , 25. (248) Wild, S.;Hadi, M.; Ward, 0. L. Adv. Cem. Res. 1990, 3 , 55. (249) Beny, E. E.;Hemmings. R. T.; Cornelius, 8. J. Cem. Concr. Compar. 1990, 12, 253. (250) Hwst, H. J.; Levy, J. H.; Wane, S. S. J. React. So/& 1990, 8 , 159. (251) Serageldin, M. A.; Wang, H. Thermochm. Acta 1990, 777, 193. (252) Pan. W. P.; a n , Y.; Serageldin. M. A. Thermochim. Acta 1991, 180, 203. (253) C k m s , A. H.; Matheson, T. W.; Rogers, D. E. Fuel 1990, 6 9 , 255; 1991, 70,215. (254) Slaghuis, J. H.; Van der Wait, T. J. Fuel 1991, 70, 831. (255) Weeda, M.; Tromp, P. J. J.; Van der Linden, B.; Moollyn, J. A. Fuel 1990, 69, 841. (256) Szabo, P.; Verhegyl, G.; Till, F.; Szekety, T. Thermochim. Acta 1990, 770, 187. 179. (257) Inukai, Y.; Sakakl. T.; Slbata, M.; Mlkl, T.; Adachi, Y.; A r k , S. Ky&u Kogyo Gmu Shlkensho Hokoku 1990, 2805. (256) Sweeny, P. G.; Gutenkunst, V.; Mowok, J.; Steinberg, V. I. Fuel 1991. 70, 74. (259) Lamparczyk, H.; Wesolowskl, M. ThemMchim. Acta 1990. 759, 235. (280)o)Hbach,K. H.; Matuschek, 0.;Kettrup, A.; Joachlm. A. Thermochlm. Acta 1990, 166, 277. (261) AbouCOheit, A. K. Themwchim. Acta 1991. 776, 107. (262) elm,T. T.; Queay, J.; Charsley, E. L.; Warrington, S. B. Roc. Inf. pVrotech. Semln. 1990, 75, 353. (263)Laye. P. G.; Nelson, D. C. hoc. Inf. pVrot&. Semin. 1990, 15, 595. (264) Beck, M. W.; Brown, M. E. J. Chem. Soc., Fwaday Trans. 1991, 87, 711.
Supercritical Fluid Chromatography and Extraction T.L.Chester,*J. D.Pinkston, and D. E.Raynie The Procter & Gamble Company, Miami Valley Laboratories, P.O.Box 398707, Cincinnati, Ohio 45239-8707
INTRODUCTION Supercritical fluid chromatography (SFC) has continued growing in both capabilities and applications in the last 2 years. Significant progress has been made in improving specific techniques, ex anding the scope to address a wider range of problems, a n f applyng the resulting methodolo to the solution of quantitative analysis problems in real-world environment. In addition, supercritical fluid extraction (SFE) has prospered and grown tremendously in the last 2 years. Modern analytical SFE got a big head start in the late 1980s by borrowing pump and veeael technology from SFC and high-performance liquid chromatography (HPLC). However, in the last 2 years, new instrumentation, specific for anal ical SFE, has become available. Because of the tremen ow growth and recent popularity of analytical SFE, we have expanded this ear's review to include SFE progress d o n with that of SFEf and coupled analytical techniques invofving supercritical fluids. Of course, this growth in SFC and SFE is reflected in meetings and in the literature. There have already been four international meetings and one European meeting devoted exclusively to analytical SFC and SFE, as well as many symposia in other national and international meetings. However, we will only review the most si ificant and accessible literature on analytical SFC and Sl% selected from the 1990 and 1991 publication years of Chemical Abstracts (except for ref 1 which has not yet been abstrated and refs 2 and 3).
tg
cyt
QQQ3-27QQl92lQ364153R81 Q.QQ/Q
Several books dealing with SFC and SFE were published in the past and cited in our previous review (4). These books, however, were collections of stand-alone chapters usually dealing with specific research or application topics or giving short reviews. The absence of a complete, integrated book on SFC and SFE, one suitable as instruction for someone new to the field, or as a desk reference for a veteran, was noted at the Workshop on Supercritical Fluid Chromatography and Extraction, held in 1989, at Snowbird, UT. An effort was initiated at the meeting to create such a work. Fifty-five authors from around the world combined their efforts under the coordination and editorial guidance of M. L. Lee and K. E. Markides to produce the desired book (1).
SUPERCRITICAL FLUID CHROMATOGRAPHY There is a growing realization among chromatographers that
analytical se aration techniques, includin SFC as chromatography b C ) , HPLC, capillary electroptoresi; rCE), and even thin-layer chromatography (TLC), should not be considered competin with each other for the solution of every problem. Insteat each technique should be considered on ita merits and used where the advantages are most important. This was underscored by Steuer et al. in a comparison of HPLC, SFC, and CE in drug analysis (5). They concluded that SFC and CE are complementary to HPLC, that the three techniques are orthogonal in many respects, and that SFC, in particular, is a good choice when mass-sensitive detection 0 1992 American Chemical Society
159 R