Triboelectric Nanogenerator Enhanced Nanofiber Air Filters for

May 10, 2017 - We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG) enhanced polyimide (PI) nanofiber air filter for particula...
21 downloads 25 Views 3MB Size
Triboelectric Nanogenerator Enhanced Nanofiber Air Filters for Efficient Particulate Matter Removal Guang Qin Gu,†,‡,§,⊥ Chang Bao Han,†,‡,⊥ Cun Xin Lu,†,‡,§ Chuan He,†,‡ Tao Jiang,†,‡ Zhen Liang Gao,†,‡ Cong Ju Li,*,†,‡ and Zhong Lin Wang*,†,‡,∥ †

Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China § University of Chinese Academy of Sciences, Beijing 100049, China ∥ School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States ‡

S Supporting Information *

ABSTRACT: We developed a high-efficiency rotating triboelectric nanogenerator (R-TENG) enhanced polyimide (PI) nanofiber air filter for particulate matter (PM) removal in ambient atmosphere. The PI electrospinning nanofiber film exhibited high removal efficiency for the PM particles that have diameters larger than 0.5 μm. When the R-TENG is connected, the removal efficiency of the filter is enhanced, especially when the particle diameters of the PM are smaller than 100 nm. The highest removal efficiency is 90.6% for particles with a diameter of 33.4 nm and the highest efficiency enhancement reaches 207.8% at the diameter of 76.4 nm where the removal efficiency enhanced from 27.1% to 83.6%. This technology with zero ozone release and low pressure drop offers an approach for air cleaning and haze treatment. KEYWORDS: triboelectric nanogenerator, electrospinning, polyimide nanofiber, particulate matter, air filter

I

properties usually pose more serious adverse consequences on human health than the large sized particles,21,22 such as stroke damage exacerbated and persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially.23,24 Nowadays, electrostatic precipitation and fibrous filter are widely utilized to remove PM. The electrostatic precipitators capture PM through generating high electric field and charging the particles electrically.25 One major drawback of the electrostatic precipitators is that they inevitably ionize air, and hence produce ozone, which cause negative effects on human health with the possibility of causing cancer.26,27 As for fibrous filters, they use different types of fibrous filters, such as high efficiency particulate air filter (HEPA), polymer nanofiber films, and so forth to remove the PM. The fibrous filters have the advantage of high efficiency to remove the particles larger than the holes because of the multilayer microfiber/nanofiber structure. However, the pressure drop increases with the dust

n recent years, air pollution caused by atmospheric particulate matter (PM) has become more and more serious due to rapid industrialization, urbanization, and increasing energy consumption.1−6 Haze, mainly caused by the PM pollution, has a severe impact on human health, traffic, communication, and even global climate.7−10 Generally, PM particles are grouped as coarse, fine, and ultrafine particles (UFPs) with aerodynamic diameters within 2.5−10 μm (PM10), < 2.5 μm (PM2.5), and 300. A hand-held particle counter (3016-IAQ, Lighthouse), a scanning moblility particle sizer (SMPS 3938L75, TSI), and an aerodynamic particle sizer (3321, TSI) were used to detect the PM particle number concentration before and after filtration. The removal efficiency was calculated by comparing the number concentration before and after filtration. Pressure Drop and Ozone Measurement. The pressure drop was measured by a differential pressure gauge (Testo 510), and the gas velocity was tested by an anemometer (Testo 450-V1). Ozone was tested by an ozone monitor (aeroQUAL, series 200). Characterization. The SEM images were taken by FEI Quanta FEG 450 SEM with an acceleration voltage of 5 kV for imaging. The transmittance of the films is taken by an ultraviolet−visible-nearinfrared spectrophotometer (UV 3600).

ASSOCIATED CONTENT S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b02321. Nanostructures on the surface of kapton film; enhancement ratio of PM removal efficiency in the diameter region of 15−550 nm (PDF)

AUTHOR INFORMATION Corresponding Authors

*E-mail: [email protected]. *E-mail: [email protected]. ORCID

Zhong Lin Wang: 0000-0002-5530-0380 Author Contributions ⊥

CONCLUSION A high-efficiency R-TENG enhanced PI nanofiber air filter was developed for PM removal. The PI nanofiber filter exhibited high removal efficiency for the PM particles with diameter larger than 0.5 μm. When working with the R-TENG, the removal efficiency of the filter is enhanced, especially in the region with the diameter of the particles in the PM smaller than 100 nm. The highest enhancement is 207.8% at the diameter of 76.4 nm where the removal efficiency enhances from 27.1% to 83.6% and the highest removal efficiency is 90.6% at the diameter of 33.4 nm. What is more, the pressure drop of the filter does not increase and there is no ozone produced. This

G.Q.G. and C.B.H. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS Support from the “thousands talents” program for the pioneer researcher and his innovation team, the National Key R & D Project from Minister of Science and Technology (2016YFA0202704), National Natural Science Foundation of China (Grant No. 51432005, 51608039, 5151101243, and 51561145021), and Natural Science Foundation of Beijing, China (Grant No. 4154090) is appreciated. 6215

DOI: 10.1021/acsnano.7b02321 ACS Nano 2017, 11, 6211−6217

Article

ACS Nano

Exposure on Obesity in Mice Role of p47(phox). Arterioscler., Thromb., Vasc. Biol. 2010, 30, 2518−U357. (19) Calderon-Garciduenas, L.; Solt, A. C.; Henriquez-Roldan, C.; Torres-Jardon, R.; Nuse, B.; Herritt, L.; Villarreal-Calderon, R.; Osnaya, N.; Stone, I.; Garcia, R.; Brooks, D. M.; Gonzalez-Maciel, A.; Reynoso-Robles, R.; Delgado-Chavez, R.; Reed, W. Long-Term Air Pollution Exposure is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid beta42 and alpha-Synuclein in Children and Young Adults. Toxicol. Pathol. 2008, 36, 289−310. (20) Rui, W.; Guan, L. F.; Zhang, F.; Zhang, W.; Ding, W. J. PM2.5Induced Oxidative Stress Increases Adhesion Molecules Expression in Human Endothelial Cells through the ERK/AKT/NF-kappa Bdependent pathway. J. Appl. Toxicol. 2016, 36, 48−59. (21) Nalwa, H. S.; Zhao, Y. L.,Nanotoxicology; American Scientific Publishers: USA, 2007. (22) Chen, R.; Chen, C. Y., Nanotoxicity. In The Nanobiotechnology Handbook; Xie, Y.B. Ed.; Taylor & Francis: Abingdon, 2012; pp 599− 620. (23) Liu, Q. H.; Babadjouni, R.; Radwanski, R.; Cheng, H.; Patel, A.; Hodis, D. M.; He, S. H.; Baumbacher, P.; Russin, J. J.; Morgan, T. E.; Sioutas, C.; Finch, C. E.; Mack, W. J. Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model. PLoS One 2016, 11 (4), e0153376. (24) Allen, J. L.; Liu, X. F.; Pelkowski, S.; Palmer, B.; Conrad, K.; Oberdorster, G.; Weston, D.; Mayer-Proschel, M.; Cory-Slechta, D. A. Early Postnatal Exposure to Ultrafine Particulate Matter Air Pollution: Persistent Ventriculomegaly, Neurochemical Disruption, and Glial Activation Preferentially in Male Mice. Environ. Health Perspect. 2014, 112 (9), 939−945. (25) Feng, Z. B.; Long, Z. W.; Yu, T. Filtration Characteristics of Fibrous Filter Following an Electrostatic Precipitator. J. Electrost. 2016, 83, 52−62. (26) Bo, Z.; Yu, K. H.; Lu, G. H.; Mao, S.; Chen, J. H.; Fan, F. G. Nanoscale Discharge Electrode for Minimizing Ozone Emission from Indoor Corona Devices. Environ. Sci. Technol. 2010, 44, 6337−6342. (27) Chen, J. H.; Davidson, J. H. Ozone Production in the Negative DC Corona:The Dependence of Discharge Polarity. Plasma Chem. Plasma Process. 2003, 23, 501−518. (28) Hosseini, S. A.; Tafreshi, H. Vahedi; 3-D Simulation of Particle Filtration in Electrospun Nanofibrous Filters. Powder Technol. 2010, 201, 153−160. (29) Thomas, D.; Penicot, P.; Contal, P.; Leclerc, D.; Vendel, J. Clogging of Fibrous Filters by Solid Aerosol Particles Experimental and Modelling Study. Chem. Eng. Sci. 2001, 56, 3549−3561. (30) Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary Triboelectric Nanogenerator Based on a Hybridized Mechanism for Harvesting Wind Energy. ACS Nano 2013, 7, 7119−7125. (31) Zhu, G.; Su, Y. J.; Bai, P.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Wang, Z. L. Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano 2014, 8, 6031−6037. (32) Han, C. B.; Du, W. M.; Zhang, C.; Tang, W.; Zhang, L. M.; Wang, Z. L. Harvesting Energy from Automobile Brake in Contact and Non-Contact Mode by Conjunction of Triboelectrication and Electrostatic-Induction Processes. Nano Energy 2014, 6, 59−65. (33) Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Adv. Funct. Mater. 2014, 24, 4090−4096. (34) Zhang, C.; Tang, W.; Han, C. B.; Fan, F. R.; Wang, Z. L. Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy. Adv. Mater. 2014, 26, 3580−3591. (35) Han, C. B.; Jiang, T.; Zhang, C.; Li, X. H.; Zhang, C. Y.; Cao, X.; Wang, Z. L. Removal of Particulate Matter Emissions from a Vehicle

REFERENCES (1) Nel, A. Air Pollution-Related Illness: Effects of Particles. Science 2005, 308, 804−806. (2) Sun, Y. L.; Zhuang, G. S.; Ying, W.; Han, L. H.; Guo, J. H.; Mo, D.; Zhang, W. J.; Wang, Z. F.; Hao, Z. P. The Air-Borne Particulate Pollution in Beijing - Concentration, Composition, Distribution and Sources. Atmos. Environ. 2004, 38, 5991−6004. (3) Cass, G. R. Organic Molecular Tracers for Particulate Air Pollution Sources. TrAC, Trends Anal. Chem. 1998, 17, 356−366. (4) Ancelet, T.; Davy, P. K.; Trompetter, W. J.; Markwitz, A. Sources of Particulate Matter Pollution in a Small New Zealand City. Atmos. Pollut. Res. 2014, 5, 572−580. (5) Hennig, F.; Fuks, K.; Moebus, S.; Weinmayr, G.; Memmesheimer, M.; Jakobs, H.; Brocker-Preuss, M.; Fuhrer-Sakel, D.; Mohlenkamp, S.; Erbel, R.; Jockel, K. H.; Hoffmann, B.; Investi, H. N. R. S. Association between Source-Specific Particulate Matter Air Pollution and hs-CRP: Local Traffic and Industrial Emissions. Environ. Health Perspect. 2014, 122, 703−710. (6) Thurston, G. D.; Ito, K.; Lall, R. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution. Atmos. Environ. 2011, 45, 3924− 3936. (7) Chow, J. C.; Watson, J. G.; Mauderly, J. L.; Costa, D. L.; Wyzga, R. E.; Vedal, S.; Hidy, G. M.; Altshuler, S. L.; Marrack, D.; Heuss, J. M.; Wolff, G. T.; Pope, C. A.; Dockery, D. W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manage. Assoc. 2006, 56, 1368−1380. (8) Zhang, Q.; Quan, J. N.; Tie, X. X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D. L. Effects of Meteorology and Secondary Particle Formation on Visibility During Heavy Haze Events in Beijing, China. Sci. Total Environ. 2015, 502, 578−584. (9) Kerr, R. A. Climate Change - Pollutant Hazes Extend Their Climate-Changing Reach. Science 2007, 315, 1217−1217. (10) Grabner, M.; Kvicera, V. The Wavelength Dependent Model of Extinction in Fog and Haze for Free Space Optical Communication. Opt. Express 2011, 19, 3379−3386. (11) Brook, R. D.; Franklin, B.; Cascio, W.; Hong, Y. L.; Howard, G.; Lipsett, M.; Luepker, R.; Mittleman, M.; Samet, J.; Smith, S. C.; Tager, I. Air Pollution and Cardiovascular Disease - A Statement for Healthcare Professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 2004, 109, 2655−2671. (12) Brook, R. D.; Rajagopalan, S.; Pope, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A.; Peters, A.; Siscovick, D.; Smith, S. C.; Whitsel, L.; Kaufman, J. D.; Epidemiol, A. H. A. C.; Dis, C. K. C.; Metab, C. N. P. A. Particulate Matter Air Pollution and Cardiovascular Disease an Update to the Scientific Statement from the American Heart Association. Circulation 2010, 121, 2331−2378. (13) Pope, C. A.; Dockery, D. W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manage. Assoc. 2006, 56, 709−742. (14) Dockery, D. W.; Pope, C. A.; Xu, X. P.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B. G.; Speizer, F. E. An Association between AirPollution and Mortality in 6 United-States Cities. N. Engl. J. Med. 1993, 329, 1753−1759. (15) Donaldson, K.; Seaton, A. A Short History of the Toxicology of Inhaled Particles. Part. Fibre Toxicol. 2012, 9, 13. (16) Kim, K. H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136− 143. (17) Sun, Q. H.; Yue, P.; Deiuliis, J. A.; Lumeng, C. N.; Kampfrath, T.; Mikolaj, M. B.; Cai, Y.; Ostrowski, M. C.; Lu, B.; Parthasarathy, S.; Brook, R. D.; Moffatt-Bruce, S. D.; Chen, L. C.; Rajagopalan, S. Ambient Air Pollution Exaggerates Adipose Inflammation and Insulin Resistance in a Mouse Model of Diet-Induced Obesity. Circulation 2009, 119, 538−U91. (18) Xu, X. H.; Yavar, Z. B.; Verdin, M.; Ying, Z. K.; Mihai, G.; Kampfrath, T.; Wang, A. X.; Zhong, M. H.; Lippmann, M.; Chen, L. C.; Rajagopalan, S.; Sun, Q. H. Effect of Early Particulate Air Pollution 6216

DOI: 10.1021/acsnano.7b02321 ACS Nano 2017, 11, 6211−6217

Article

ACS Nano Using a Self-Powered Triboelectric Filter. ACS Nano 2015, 9, 12552− 12561. (36) Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun Nanofibers in Energy and Environmental Applications. Energy Environ. Sci. 2008, 1, 205−221. (37) Zhao, X. L.; Wang, S.; Yin, X.; Yu, J. Y.; Ding, B. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5. Sci. Rep. 2016, 6, 35472. (38) Fang, H.; Wu, W.; Song, J.; Wang, Z. L. Controlled Growth of Aligned Polymer Nanowires. J. Phys. Chem. C 2009, 113, 16571− 16574. (39) Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. RadialArrayed Rotary Electrification for High Performance Triboelectric Generator. Nat. Commun. 2014, 5, 4426. (40) Han, C. B.; Zhang, C.; Tang, W.; LI, X. H.; Wang, Z. L. High Power Triboelectric Nanogenerator based on Printed Circuit Board (PCB) Technology. Nano Res. 2015, 8, 722−730. (41) Kocik, M.; Dekowski, J.; Mizeraczyk, J. Particle Precipitation Efficiency in an Electrostatic Precipitator. J. Electrost. 2005, 63, 761− 766. (42) Xiao, G.; Wang, X. H.; Zhang, J. P.; Ni, M. J.; Gao, X.; Luo, Z. Y.; Cen, K. F. Granular Bed Filter: A Promising Technology for Hot Gas Clean-Up. Powder Technol. 2013, 244, 93−99. (43) Liu, K. Y.; Rau, J. Y.; Wey, M. Y. Collection of SiO2, Al2O3 and Fe2O3 Particles using a Gas-Solid Fluidized Bed Filter. J. Hazard. Mater. 2009, 171, 102−110.

6217

DOI: 10.1021/acsnano.7b02321 ACS Nano 2017, 11, 6211−6217