Ultraviolet and light absorption spectrometry - Analytical Chemistry

Jun 15, 1988 - H-Point Standard Addition Method (HPSAM) in Simultaneous Spectrophotometric Determination of Binary Mixtures: An Overview. Theia'a N...
5 downloads 0 Views 4MB Size
Anal. Chem. 1900, 6 0 , 131 R-146R

(1103) McIntyre, N. S.; Martin, R. R.; Chauvln, W. J.; Winder, C. G.; Brown, J. R.; MacPhee, J. A. Fuel 1985, 6 4 , 1705-1712. (1104) Chassard-Bouchaud, C. Anal. Chlm. Acta 1987, 795, 307-315. (1105) Flscher, P.; Noren, J.; Loddlng, A.; Odelius, H. I n Secondary Ion Mass ~pecirometry,SIMS V ; Bennlnghoven. A., Colton, R. J., Slmons, D. S., Werner, H. W.. Eds.; Springer-Verlag: Berlin, 1986; pp 438-442. (1106) Allen, 0. C.; Jones, A. R.; Warner, A. G. Part. Charac. 1988, 3 , 89-95. (1107) Wntmaack, K.; Hansen, C.; Werner, E. Nucl. Instrum. Methods Phys. Res. 1988, 875, 222-225. (1108) Chandra, S.; Bernius, M. T.; Morrison, G. H. I n Secondary Zon Mass Spectrometry, SIMS V ; Benninghoven, A,, Colton. R. J., Simons, D. S., Werner, H. W., Eds.; Springer-Verlag: Berlin, 1986; pp 429-431. (1109) Brenna, J. T.; Morrison, G. H. I n Secondary Ion Mass Spectrometry, SIMS V ; Bennlnghoven, A., Colton, R. J., Slmons, D. S., Werner, H. W., Eds.; Springer-Verlag: Berlin, 1986; pp 124-126. (1110) Brenna, J. T.; Morrison, G. H. Anal. Chem. 1988, 5 8 , 1675-1680. (1111) Burns, M. S.; File, D. M. J. Mlcrosc. 1988, 144, 157-182. MISCELLANEOUS METHODS

(Jl) Kelly, N.; Kaiser, U. Res. Dev. 1987, 2 9 , 58-61. (J2) Oeschner, H. In Secondary Ion Mass Spectrometry, SIMS V ; Bennlnghoven, A., Colton, R. J., Slmons, D. S., Werner, H. W., Eds.; Springer-Verlag: Berlin, 1986; pp 70-74. (J3) Oeschner, H.; Bachmann, G.; Beckmann, P.; Kopnarskl, M.; Reed, D. A.; Baumann, S. M.; Wilson, S. D.; Evans, C. A,, Jr. I n Secondary Ion Mass Spectrometry, SIMS V ; Bennlnghoven, A., Colton, R. J., Slmons, D. S., Werner, H. W.. Eds.; Springer-Verlag: Berlin, 1986; pp 371-373. (J4) Ganschow, 0. I n Secondary Zon Mass Spectrometry, SIMS V ; Bennlnghoven, A., Colton. R. J., Slmons, D. S., Werner, H. W., Eds.; SprlngerVerlag: Berlin, 1986; pp 79-64. (J5) Jede, R.; Peters, H.; Duennebler, G.; Kaiser, U.; Meler, S.; Ganschow, 0. Tech. Mess. 1988, 5 3 , 407-413 (CA706(8):60403a). (J6) Beckmann, P.; Kopnarskl, M.; Oeschner, H. Mlkrochim, Acta, Suppl. 1985, 1 7 , 79-88. (J7) Gnaser, H.; Bay, H. L.; Hofer, W. 0. J. Vac. Sci. Tech., A 1987, 5 , 1194-1 197.

(J8) Williams, P. I n Secondary Ion Mass Spectrometry, SIMS V ; Bennlnghoven. A., Colton. R. J., Slmons, D. S., Werner, H. W.. Eds.; SprlngerVerlag: Berlin, 1986; pp 103-104. (J9) Williams, P.; Streit, L. A. Nucl. Instrum. Methods Phys. Res., 8 1988, 675,159-164. (J10) Becker, C. H.; Giiien, K. T. In Secondary Ion Mass Spectrometry, SIMS V ; Bennlnghoven, A., Colton, R. J., Slmons, D. S., Werner, H. W., Eds.; Springer-Verlag: Berlin, 1986 pp 85-89. (J11) Becker, C. H. Scannlng Ekctron Mlcrosc. 1988, 4 , 1267-1276. (J12) Becker, C. H. In Secondary Zon Mass Spectrometry, SIMS V ; Benninghoven, A., Cotton, R. J.; Slmons, D. S.; Werner, H. W., Eds.; Sprlnger-Verlag: Berlin, 1986; pp 151-155. (J13) Becker, C. H. J. Vac. Sci. Techno/.,A 1987, 5 , 1181-1185. (J14) Young, C. E.; Pellin, M. J.; Calaway, W. F.; Joergensen, B.; Schweitzer, E. L.; Gruen, D. M. Nucl. Instrum. Methods Phys. Res. 1987, 8 2 7 , 119-129. (J15) Wang, Y. L.; Levi-Setti, R.; Chabala, J. Scannlng Mlcrosc. 1987, 1 , 1-11. (J16) Peke, P. L.; Hambldge, K. M.; Goss, C. H.; Miller, L. V.; Fennessey, P. V. Anal. Chem. 1987, 5 9 , 2034-2037. (J17) Jlang, X.; Smith, D. L. Anal. Chem. 1987, 59. 2570-2574. (J18) Schweikert, E. A.; Fllpus-Luyckx, P. E. J . Radioanal. Nucl. Chem. 1987. 170, 451-460. (J19) Schweikert, E. A.; Summers, W. R.; Keith, D. J.; Fllpus-Luyckx, P. E.; Beug-Deeb, M. U. D. J. Trace Microprobe Tech. 1987, 5 , 1-22. (J20) Schweikert, E. A.; Summers, W. R.; Beug-Deeb, M. U. D.; FllpusLuyckx, P. E.; Quinones, L. Anal. Chlm. Acta 1987, 195, 163-172. (J21) Summers, W. R.; Schwelkert, E. A. Anal. Chem. 1988, 5 8 , 2126-2129. (J22) Bass, D. A.; Holcombe, J. A. Anal. Chem. 1987, 5 9 , 974-980. (J23) Styrls, D. L. Fresenius’ 2.Anal. Chem. 1988, 323, 710-715. (J24) Styris, D. L.; Redfield, D. A. Anal. Chem. 1987, 5 9 , 2891-2897. (J25) Llu, B.; LI, H. Kexue Tongbao 1987, 3 2 , 231-233 (CA707(10):886711). (J26) Clarke, W. B.; Koekebakker, M.; Barr, R. D.; Downing, R. G.; Fleming, R. F. Appl. Radlat. Isot. 1907, 3 8 , 735-743. (J27) Schmlt, J. P.; Marcotte, L.; Beaulieu, N.; Boulay, G. Can. J . Spectrosc. 1985, 3 0 , 36-39. (J28) Ham, N. S.; McAliister, T. Spectrochlm. Acta 1987, 4 2 8 , 459-465.

Ultraviolet and Light Absorption Spectrometry L. G. Hargis* University of New Orleans, New Orleans, Louisiana 70148

J. A. Howell Western Michigan University, Kalamazoo, Michigan 49008

This review reports developments in ultraviolet and light absorption spectrometry from December 1985 through December 1987, primarily as documented in the Ultraviolet & Visible Spectroscopy section of CA Selects, and extends the series of reviews in this area sponsored by Analytical Chemistry initiated in 1945 for light absorption spectrometry (1-3), ultraviolet absorption spectrometry (4-8),and ultraviolet and light absorption spectrometry (9,lO). As in previous years this review has been divided into sections on chemistry, physics, and applications. The level of activity in the area of ultraviolet and light absorption spectrometry as indicated from literature citations continues to be extensive and widely varied. Only those developments deemed by the authors to be of greatest interest to analytical chemists have been cited. In this respect the authors wish to apologize in advance for any errors of judgement made in the omission of various references. In the area of nomenclature, symbols, units, and their usage in spectrochemical analysis related to radiation sources, a review has appeared and the 1985 recommendations of the IUPAC Analytical Chemistry DiQision, Commission on Spectrochemistry and other Optical Procedures for analysis have been reprinted (11). A general review of the use of organic reagents (12) has appeared while a number of other reviews focused on specific reagents, e.g. pyrogallol (13),arsenazo derivatives of chro0003-2700/88/0360-131R$06.50/0

motropic acid (14),antipyrine (15),morin (16),thiazolylazo dyes ( 17), and a relatively new reagent Z-cY,&dinitrostilbene (18) for determining amines, amino acids, and thiols. The current status and future prospects of color reagents for rare earths (19, 20) and trace element determination by metal chelates in general (21),and for iron, copper, and zinc (22) have been reviewed. The use of w-formyl-o-hydroxyacetophenone and chromone for the spectrophotometric determination of primary and secondary amines has been reviewed (23). Two reviews focused on the reagents and procedures for the spectrophotometric determination of proteins (24,W). The development of surfactants for increasing sensitivities and selectivities in spectrochemical analysis (26) was the subject of another review. Reviews of colorimetric or spectrophotometric methods of determination of specific substances included the following: ozone by using ozone meters (27),nitrate in water (28),antibiotics (29),phenothiazines based on their oxidation (30), polyunsaturated fatty acids (31), triglycerides (32, 33), phosphatigylglycerol(34),lipid peroxides (35,36), lecthin (37), and sphingomyelin (38). A number of reviews discussing general principles of spectrophotometry, methodology, instrumentation, and techniques have been written (39-45). One review provided a discussion of spectrophotometric methods for the determination of essential elements in milk (46),while another 0 1988 American Chemical Society

131 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

considered the analysis of gases by means of ultraviolet and visible absorption (47). A number of spectrophotometric studies of various systems were reviewed and included catechol dioxygenases (48), polymers and coatings (49,50),and lignins (51).

Reviews in the area spectrophotometric techniques included a number dealing with optoacoustic techniques (52-60), fiber-optic sensors (61-66), derivative spectrophotometry (67-71), kinetic methods (72), stopped-flow time difference analysis (73), matrix isolation (74), and thermal lens spectrophotometry (75). One review presents an overview of the evolution of instrumentation for ultraviolet and visible spectrophotophotometry (76) while another discusses the improvement of spectrophotometers by the introduction microcomputers (77). Another installment of the compilation of molar absorptivity and Ala1%values for proteins has been made (78). The development and certification of the Certified Reference Material issued by the National Bureau of Standards as Standard Reference Materials (SRMs) has been reviewed (79). A review of time-variant filters discusses their application in reducing noise in analytical spectrometry (80). Reviews of data treatment methods include the application orthogonal function ultraviolet spectrometry and its application in pharmaceutical analysis (81) and a discussion of graphic methods for the spectrophotometric determination of acidity constants (82). One review has appeared which deals with the estimation of dyes in solution by transmission measurements (83) while another discusses recent developments in the classification of the chromophoric system and in the prediction of the color of azobenzenes (84). Methods of concentration and separation of trace elements from aqueous medium have been extensively reviewed during the past few years (85). The design of a total reflection and long capillary cell (LCC) was the subject of a review (86). A number of books, chapters, and manuals treating various aspects of ultraviolet and light absorption spectrometry have appeared over the past two years. Four such references which deal with the theory and practical aspects of the subject are Analytical Spectroscopy: Theory and Applications (87), Comprehensive Analytical Chemistry, Vol. 1 9 Analytical Visible and Ultraviolet Spectrometry (88),Spectrochemical Analysis (89), and Spectrophotometry and Spectrofluorometry: A Practical Approach (90).The latter book is aimed primarily for biochemists and clinicians. U V -V I S Spectrophotometry: Back to Basics i n UV-VIS (91)is a short compilation of answers to the most frequently asked questions in ultraviolet and visible spectrophotometry. Two short techniques manual which deal with sample handling are Optical Spectroscopy: Sampling Techniques Manual (92), “UV/Vis Spectroscopy” in Sample Preparation Technology (93). Two compilations of spectroscopic data which have been published are Atlas of Spectra of Organic Compounds, No. 32: Absorption Spectra of the Derivatives of 1,2- and 1,4Naphthoquinones i n Infrared, Ultraviolet, and Visible Regions (94) and Electronic Spectra i n Organic Chemistry, 2nd ed. (95). Books describing methodology in colorimetric and spectrophotometric analysis are Spectrophotometric Analysis i n Organic Chemistry, 2nd ed. (96), Practical Manual on Photometric Analysis Methods, 5th ed. (97),Separation and Spectrophotometric Determination of Elements (98), and Photometric Determination of Traces of Metals, Volume 3, Part 2A; Individual Metals, Aluminum to Lithium, 4th ed. (99). The applications of lasers in analytical spectroscopy is the subject of a book titled Analytical Applications of Lasers (100). Another book, Ultraviolet Spectroscopy of Proteins (101), as the title suggests deals with the spectroscopic behavior and characteristics of proteins in the ultraviolet and visible region.

CHEMISTRY This section deals with the chemistry involved in the development of suitable reagents, absorbing systems, and methods of determination. The number of papers devoted to inorganic constituents seems to have remained the same for this period as it was in our previous review. A high degree of activity continues in the areas of clinical and pharmaceutical analyses. Continued interest also seems to have been maintained in the area of simultaneous analysis and dual wavelen h methods, undoubtedly due to the impact of computers an diode array spectrophotometers. Another area in which

f

132R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

computers seem to have had a positive influence is in the utilization of derivative techniques. Flow injection analysis seems to be enjoying increasing popularity with analysts as indicated by a significant increase in the number of papers in this area over the past two years. Metals. Investigations of properties of reagents used in the spectrophotometric determination of various metals continue at a high level of activity. Astrazon Blue 5GL has been proposed as a reagent with anionic complexes of Ga(III), In(III),Tl(III), Fe(III), and Au(II1) to produce ion association complexes which absorb between 300 and 649 nm (102). Beer’s law was obeyed for 1-10,0.5-10,0.2-6.7,2.8-22,and 0.7-1.42 ppm for Ga, In, T1, Fe, and Au, respectively. The synthesis and analytical properties of biacet l(2-pyridy1)hydrazone thiosemicarbazone have been studiedrand the reagent found to form colored complexes with Ni(II), Co(II), Fe(II), Cu(II), Pd(II), Zn(II),Cd(II), and In(1II) which tended to demonstrate some potential as spectrophotometric reagent for these metals (103). In another investigation bis(pyrocatecho1ylazo)biphenyl type reagents were examined with respect to their ability to form suitable metal complexes for the spectrophotometric determination of the metals (104). Beer’s law was found to be obeyed for Cu(II), Sc(III), and V(IV) with bromphenol blue and cetylpyridinium chloride in the range of 0.015-0.16, 0.01-0.09, and 0.005-0.08 ppm when measured at 610 nm (105). A comparative stud on the color reaction of bivalent transition metals, Cu, Zn, Zd, and Mn, with bromopyrogallol red in the presence of cetyltrimethylammonium bromide, cetylpyridinium bromide, tetradecylpyridinium bromide, sodium dodecylsulfonate, sodium carboxymethylcellulose, cetyldimethylethylammonium bromide, methylcellulose, and poly(viny1 alcohol) has been carried out and recommendations made for the spectrophotometric microdetermination of the indicated metals (106).The synthesis and analytical properties of l-(2-pyridylmethylideneamino)-3-(salicylidene~ino)thiourea have been studied and their analytical utility as spectrophotometric reagents for the determination of In and Pb outlined (107). A study of several reagents as complexing agents for alkali and alkaline-earth metals has resulted in the utilization of crowned 4-(2,4-dinitrophenylazo)phenolin a mixed solvent system of chloroform-DMSO-triethylamine as a colorimetric reagent for the determination of 25-250 ppb levels of lithium ion (108). In a study of 4,s-dibromophenylfluorone complexes of Hf(IV), Al(III), Ga(III), In(III), U(IV), Sc(III),Y(III), Cr(III), and Bi(III), in the presence of surfactants molar absorptivities in excess of 1OOOOO have been reported (109). The potential of 3,3’-dichloro-,4,4’-dichloro-, as reagents for the and 5,5’-dichloro-2,2’-dimethyldithizone extraction-spectrophotometricdetermination of Cd(II), Co(II), Hg(II), Ni(II), Pb(II), Tl(I), Zn(II), and Bi(II1) has been reported (110). 2-(5,5-Dimethyl-4,5,6,7-tetrahydrobenzothiazolyl-2-azo)phenolhas been proposed as a possible reagent for the spectrophotometric and chelatometric determination of Ni(II), Co(II), Zn(II), and Cd(I1) (111). A study of asymmetric furylformazan derivatives indicates asymmetric pyridylfurylformazan exhibited the best properties as a spectrophotometric reagent for the determination of Zn and Cd (112). The utilization of p-hippuric acid chlorophosphonazo has been proposed as a reagent for the spectrophotometric determination of rare earths in iron and steel at about 680 nm over the concentration range of 0-0.8 ppm (113). 4(5)D-Arabinotetrahydroxybutylimidazoline-2-thione, and the oxime and rhodamine of 4(5)-imidazolcarboxaldehydehave been studied as potential spectrophotometric reagents for a variety of metal ions (114). The color-forming reactions between p-iodochflorophosphonazoand the trivalent lanthanides Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb have been found to produce &type mononuclear complexes but a clearly evident synergistic color effect occurs when equimolar amounts of other lanthanide ions are added to chelate solutions of Er, Tm, or Yb due to the formation of a y-type binuclear complex (115). These investigators found linear calibration graphs in the range of 0-8 pM for Ce, Pr, Ho, Tb, Dy, Tm, and Lu and 0-10 p M for Nd and Sm when the Yb concentration was 8.0 p M . The analytical properties of 1,Z-na hthoquinonethiosemicarbazonehave been investigated to etermine its utility as a color reagent for trace metals (116). A study of nitrosophenol and pyridylazo derivatives as complexes has shown potential for spectrophotometric methods for the determination of Co at 655 nm and Ag (C25pg) at 600 nm (117).

B

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Larry 0. Hargb Is a Profesm of Chemistry and Dlrecta 01 me Master of A m In S& en- Teachlng progam at tha Universny of New Orleans. He graduate3 horn Wayne State UnlversW wllh a 0,s. in 1961. an M.S. in 1963, and W.D. In 1964, spent a year as a Postdoctoral Research ASSOCIBIBat Pwdue univsrrw. and joined me faculty at UNO in 1965. HIS present research interests Include Uliravlolet and light absorptlon spectrometry. reaotlon-rate analyses. heteropolymolVWate chemlstry. and on-llne computer appllcstlons to chemical problems He has s W e d or co~tnhorednumerous remarch papers. an lnsnumentsl BnalYSIS laboratom manual an Intrcd~CtOrVanalvtical chemnlrv textbook .~and ~,~~ ~~~.~ chapters In several monographs dealing wlih spectrophotometry. Or. Hargis blds membership in the American Chemical Society (Analytical and Education divisions). phi Lambda Upsilon, and Sigma Xi.

'

a

~

~~~~

I

~~~~~~

I~

~I

~~

~

~

~

I

~

~~~

~

J ~ I M A. Howdl Is a profeosw of Chemlotry st Western Michigan Univmny and also

science advisor for me Detroit ~ i s t r i c t Laboratory 01 the Food and Drug Administration. He received his E.A. from Southern llllnols Univerrhv In 1959. hls M.S. +om the UnlversMy of Illinois In 1961, and hls Ph.0. In analytical chemlsw +Om Wayne State Unlverslty In 1964. HIS particular fields 01 Interest are In uliravlolet and visible absorption spectrometry. flame emlsslon and atomic absorption spe~tros~opy. and also computer applicatbns to chemical instrumentation. He Is the auiha of a number of research papers and chapters In books. Dr. Howell Is a member of the ACS. SAS. B Chemists. B

I-Phenyl-3-methyl-4-capronyl-5pyrazolone has been suggested as an extractant of yttrium subgroup rare-earth elements in heayq me-earth ores and their subsequent spectrophotometric determination with m-nitrochlorophosphonazo in the concentration range of 0-0.4 ppm of Y subgroup (118). The synthesis and characterizationof piperazine bis(dithimbmic acid) has been described as well as its application to the spectrophotometric determination of Ni (0.1-5 ppm), Cu (0.6-5 ppm), and Co (0.5-5 ppm) (119). Piperidine adducts of dibenzoylmethanates have produced molar absorptivities ranging between 20500 and 4470 when used in the extraction and spectrophotometric analysis of the divalent ions of Cu, Ni, Co, Fe, and Mn between 480 and 684 nm (120). A water-soluble porphyrin, sulfonated 5-(3,4-dihydroxyphenyl)-10,15,20-triphenylporphine,has been found to form 1:l (pH 4) and 1:2 (pH 7) complexes with Fe(II1)which absorb at 430 nm (f = 109oOO) and 415 nm ( 6 = 537000). respectively (121). Sulfonm 111has heen studied and Beer's law was found to he obeyed for Ti(II1) a t 580 nm (0.2-8.5 ppm), Sn(I1) a t 500 nm (1.5-9.8 pprn), and Ce(1V) at 578 nm (1.7-19.6 ppm) (122). Cu(I1) and Pd(I1) have been found to form complexes which adhere to Beer's with some 1,3,5-triphenylformazans law at concentrations up to 3.8 and 6.5 ppm, respectively (123). A number of papers comparing or studying several reagents for a specific metal or group of metals have appeared. One paper has reported the results of a study of 60 anionic dyes which can be proportionally extracted with crown ethers in the presence of Na and K ions (124). The most sensitive systems for K determinations are dipicrylamine with dibenzeBcrown-6 or benzel5crown-5. zincon with lacrown-6, and bromothymol blue or bromochlorophenol blue with benmlacrown-6. Na was determined in the range of C-7 ppm by using dipicrylamine and benzo-12-crown-4. Two thiacrown compounds, 4'-@-hydroxyphenylazo)-1,4,8,ll-tetrathiacyclopentadec-13-ene and 4'-(p-hydroxyphenylam)benz0-1,4,8,11tetrathiacyclopentadec-13-enead 4'-(2-hydroxy-5-chlorophenylazo)benzo-1,4.8,~l-tetrathiacyclopentadec-13-ene, have been synthesized and studied with respect to their potential as extraction and spectrophotometric reagents for a variety of metals (125). The latter compound was useful in extracting Ag(1) with 1,2-dichloroethane and &(I) in the presence of hydroxylamine sulfate with 1,2-dichloroethane-amyl alcohol. Fourteen asymmetric bromophnsphonobisazo compounds with

various auxochromic substituents have been synthesized and found to be prospective chromogenic reagents for cerium and ytterbium rare-earth elements (126). In another study of potential color reagents for the rare earths, a number of 2,7bis(arylazo)derivatives of chromotropic acid were synthesized and tested (127). 2-(5-Bromo-2-pyridylazo)-5-(N-sulfopropy1amino)phenol has been found to be a highly sensitive reagent for Zn(I1) (e = 133000 a t 552 nm) and UO? ( 6 = 66 000 at 578 nm) while 2-(3,5-dibromo-2-pyridylazo)-5-(Nethyl-N-sulfopropy1amino)benzoicacid was equally effective for Co(II1) (e = 1520o0 a t 670 nm) and Ni(I1) (e = 137000 a t 620 nm) (128). 2-[2-(3,5-Dibromopyridyl)azo]-5-(dimethylamino)benzoic acid and 2-(2-benzothiazolylazo)-5-(dimethy1arnino)benzoic acid have been studied in conjunction with a number metals and found potentially useful extraction and spectrophotometric reagents for Cu(I1) and Pd(I1) (129). Representative azo compounds, triphenylmethane dyes, anthracene and 8-quinolino derivatives, and flavones in the presence of cetyltrimethylammonium bromide, cetylpyridinium bromide, or Triton X-lo0have been investigated for their ability to produce color reactions with Ti(1V) and Ta(V) (130). Pyrogallol red, bromopyrogallol red, and Alizarine Red S showed the greatest promise for Ti while fluorones and pyrogallol red appeared to be effective for Ta. Co(I1) chelates (2,4-dinitrophenyl)azo-8-quinolinolcan be extracted with MIBK and spectrophotometrically analyzed a t 538 nm with a molar absorptivity of 125000 (131). Four Schaffer acid am dyes have been found to be potentially useful color reagents for Co exhibiting wavelength maxima, upper limit of Beer's law adherence, and molar absorptivities as follows: 580 nm, 5.90 ppm, 6082; 570 nm, 8.85 ppm, 3856; 570 nm, 11.80 ppm, 4265; and 580 nm, 7.40 ppm, 3641 (132). As little as 0.40 fig of Fe can be determined in ethanolic solutions by employing Schiff bases derived from 2,2-dipyridyl ketone (133). Spectrophotometric studies of complex formation between Ni(I1) (134) and Zn(I1) (135) and substituted 3hydroxy-4H-pyran-4-oneshave been reported to he potentially useful as photometric reagents. In a study of nine hydroxamic acids N-@-methoxyphenyl)-2-furylacrylohydroxamic and 5-(diethylamino)-2-(2-pyridylazo)phenolwere found to be effective as reagents for the extraction and spectrophotometric determination of Pd(I1) a t 560 nm (c = 51000) (136). A spectrophotometric study of Ru(II1) complexes with substituted benzeneditbiocarboxylic acids reveals the possible utility of these reagents for developing extraction-photometric methods for determining microgram amounts of Ru (137). There have been a few reportes dealing with specific reagents and complexes in attempts to gain greater insight into their potential application to the spectrophotometric determination of specific metals. A spectraphotometric method for determining A1 in copper-based alloys is based on measuring the 21 AI complex with Xylenol Orange a t 536 nm in an acetate buffer of pH 3.0 (138). Theoretical criteria have been used to develop equations for estimating the feasibility of selective extraction and photometric determination of various elements (139). The criteria were successfully applied for developing methods for Co, Cu, In, and Fe as complexes with pyridylazonaphthol in the presence of one another in sample solutions containing chloride, nitrate, thiocyanate, sodium pyrophosphate, cadmium, zinc, and manganese. The nature of the complexes of In and 4-(2-pyridylazo)resorcinol in aqueous and organic phases has been characterized in an attempt to determine the conditions for maximum extraction efficiency (140). The In complex 6-(2-quinolylazo)-4-cyclopentylresorcinol has been spectrophotometrically studied and found to exhibit a molar absorptivity of 44 570 and adherence to Beer's law at concentrations up to 1.2 ppm (141). The reaction of U(VI) with 1,4bis(4'-methylanilino)anthraquinone in water-DMF mixtures has been studied in an effort to determine metal to ligand ratios and the optimum conditions for the spectrophotometric determination of U(V1) (142). A number of new photometric reagents for metals have been reported over the past two years and include some bromophosphonohis(azo) derivatives of chromatropic acid for V a t 730 nm (0.3-1.2 ppm) (143) anti-2-furaldehyde 2-pyridylhydrazone in 50% (v/v) aqueous-ethanol for Co (0.025-1.0 ppm) (144), 2.2'-dipyridyl-4-amino-3-hydrazino-5-mercapto1,2,4-triazolehydrazone also for Co (145), 2-[[bis(carboxymethyl)amino]methyl]phenolfor Fe(II1) at 601 nm ( 6 = 9650) and Cu(I1) a t 565 nm (t = 1010) (146), 2'-thienylmethyleneANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15. 1988

133R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I. Spectrophotometric Methods for Inorganic Substances constituent

material

method or reagent [wavelength, nm; molar absorptivity; concentration range, pg/mL4]

arsenazo-DBS [630; 1.2 X lo6; 0-0.81 dibromochloroarsenazo [630; 1.3 X lo6; 0-0.71 C10- (indirect) [290] CNl-(2-methylindole-3-acetyl)-4-arylthiosemicarb~ide in aq ethanol [0-121 co potassium tetrahydrofurfurylxanthate(CHCl,) [ 1.7 X lo4;0-31 alloys 4-(5-chloro-2-pyridylazo)-1,3-diaminobenzene [527; 4.2 X lo'] cu chrome azurol S + 1,lO-phenanthroline [615; 7.5 X lo3; 2.0-3.21 l-(2-methylindole-3-acetyl)-4-arylthiosemicarb~idein aq ethanol [0-71 14-member tetraazomacrocycle in NH3 [515; 0-501 alloys 14-member tetraazomacrocycle + metanil yellow [410; 5 X lo4; 0.5-41 alloys 2,6-diacetylpyridine bis(2-hydroxybenzoylhydrazone)in 1:l DMF-H20 [366; 2.8 X lo4] Fe 1,lO-phenanthroline + picric acid (CHC13) [510; 1.3 X lo6; 0.01-0.361 2-hydroxy-1-naphthaldehydeguanylhydrazone (isoamyl alc.) [575; 5.2 X lo6] portland cement l-(2-methylindole-3-acetyl)-4-arylthiosemicarbazide in aq ethanol [0-121 Hg potassium tetrahydrofurfurylxanthate (CHCl,] [5.0 X lo3;3.5-231 Ir alloys 1,2,4-trihydroxyanthraquinone+ Mg2+(MIBK) [570; 6.1 X lo4] La 2- (0-chloropheny1)-1,1,3,34etraacetylpropanein MeOH [ 374; 0-701 Nb potassium tetraiodomercurate after digestion [415] 3" biological fluids (2-thiazolylazo)-2-naphthol (CHC13) [0.12-0.8] Ni potassium tetrahydrofurfurylxanthate (CHCl,) [3.2 X lo3; 1-81 alloys NOc pickling salt direct measurement [355; 400-8001 4-amino-1-naphthalenesulfonic acid + 1-naphthol [530; 3.1 X lo4;0.17-4.91 water EDTA + 4-methoxybenzenedithiocarboxylic acid (CHC13) [425] Pd 4-salicylamido-1-diacetyl monoxime 3-thiosemicarbazone [0.09-3.61 ammonium molybdate + malachite green (1:2 C6H6/4-Me-2-pentanone) via flow injection Po?river water [630; 0-11 chlorophosphonazo I11 [5 X lo5] rare earths dibromochloroarsenazo alloys tribromoarsenazo + ascorbic acid [630] bone, liver tribromoarsenazo [635] grains human hair tribromoarsenazo [630; 1.7-10.51 p-iodochlorophosphonazo [672-682; (6.6-10.6 X lo4] iron, steel antipyrine A + diphenylguanidine (BuOH) [630] minerals p-acetylarsenazo [670; 0-1.21 minerals, rocks EDTA + 4-methoxybenzenedithiocarboxylicacid + diphenylguanidine (3:7 isopentyl Ru alc/CHC13) [498; 8.4 X lo3] rhodamine 6G + HCl 1530; 1.1 X lo5;0-0.61 elemental S extracted into CHC1, [264] S sulfuric acid tetrabromopyrocatechol + brilliant green (CHC1,) [635; 1.0 X lo6] Sb water Ti ceramics, enamel, glass diantipyrylmethane [390; 1.5 X lo4; 0.006-2.61 phenylfluorone + Triton X-305 + emulsifier OP [540; 0-0.21 grain, soil ores, portland cement 1,2-cyclohexanedione bis(benzoy1hydrazone) [477; 1.1 X lo4] a-ethylamino-o-hydroxybenzylphosphonicacid monoethyl ether [ 17-1691 U N-rn-tolyl-p-methoxybenzohydroxamic acid (CHCl,) [370; 10-1001 2,6-diacetylpyridine bis(benzoy1hydrazone) in 1:4 DMF/H20 [335; 2.7 X lo4] v phenylfluorone [520; 2.1 X lo4;0.2-1.51 tannic acid [332; 8.5 X lo3; 0.2-101 biological fluids l-(2-methylindole-3-acetyl)-4-arylthiosemicarbazide in aq ethanol [0-71 Zn methylglyoxal bis(4-phenyl-3-thiosemicarbazone)in aq DMF [455; 0.2-41 insulin, water Ce

alloys water

ref 43 1 432 433 434 435 436 437 434 438 438 439 440 441 434 435 442 443 444 445 435 446 447 448 449 450 451 432 452 453 454 455 456 457 448 458 459 460 461 462 463 464 465 439 466 467 434 468

Unless otherwise specified. 2-iminobenzohydroxamic acid extracted into chloroform for Fe(II1) (147),5-(methoxycarbonyl-2-pyridinehydroxamic acid with trioctylmethylammonium chloride for V(V) at 525 n m (0.5-4 ppm) (148), trihydroxyfluorone and o-nitrophenylfluorone i n dilute HC1 for group IV-VI transition metals at 520-540 n m (e = 32000-193000) (149),and bromophosphonazo-PN for rare earths at 690 n m (e(Ce) = 75 300;0-0.8 p p m rare-earth metal) (150). A multicomponent mixed reagent incorporating TritonX100, phenanthroline, Chrome Azurol s, a n d cetyltrimethylammonium bromide has been proposed for determining Y subgroup rare earths i n the presence of Ce subgroup rare earths (151). A preconcentration technique has been reported which employs anion exchange chromatography in t h e thiocyanate form followed by reaction with 4-(2-pyridylazo)resorcinol for V and Co, and diethyldithiocarbamate, zincon, and dithizone for Cu, Zn, a n d Cd, respectively (152). New crown ethers with pendent phenolic chromophores have been studied a n d structural characteristics have been chosen t o provide reasonable selectivity for Li, Na, a n d K ions (153). Nonmetals. As was earlier indicated, only a limited number of papers in t h e area of spectrophotometric and colorimetric analysis of nonmetals have appeared. Sulfonazo ox134R = ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

idation has been m a d e t h e basis for the determination of nitrite ion at 660 nm (0.6-9.2ppm) (122). A comparative study of t h e determination of nitrate ion in groundwaters involving procedures for correcting for interference due t o nitrite and detergents has been reported (154). T h e results of an in-depth study of the standard methods version for t h e determination of phosphate by ascorbic acid reduction have been published (155). Another study of the phosphate photometric method with molybdate dealt the elimination of interferences from thiol compounds by their removal with iodoacetate (156). o-Phenylenediamine has been proposed as a reagent for t h e toluene extraction and photometric determination of Se at 335 n m (157). An indirect method for determinin chloride ion has been proposed based on the diminution of aisorbance by choride o n t h e silver complex of 1,5-bis(6-methyl-4-pyrimidy1)carbazone at 530 n m (158). Beer's law was found t o be obeyed from 10 t o 100 MMchloride. Another method for determining chloride has been reported which is based on measuring t h e absorbance of t h e FeC12+ complex at 333 n m (5-200 ppm) formed in a medium of dilute perchloric acid and ethanol (159). T h e reaction between furohydroxamic acid with V and oxalate ion t o form a mixed ligand complex has been proposed as t h e basis for t h e spectrophotometric determi-

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

nation of the oxalate ion at 633 nm (e = 4300) (160).The photometric determination of sulfide ion in aqueous environmental samples by preconcentrating the samples on a Cd-exchan ed zeolite sorbent, followed by conversion to methylene h u e , has been reported (161). Organic Constituents. A method for the colorimetric determination of free fatty acids has been proposed which involves the activation of the free fatty acids b acyl-CoA synthetase in the presence of ATP, CoA, and Mgy‘ followed by further oxidation with acyl-CoA oxidase and the production of HzOzwhich subsequently reacts with 4-aminoantipyrene in the presence of phenol or 2,4-dichlorophenol producing a red quinoneimine which absorbs at 500 nm with a detection limit of 35 mM of free fatty acids (162).A number of aromatic amines which have been spectrophotometrically determined following their diazotization and coupling with 8-amino-lhydroxynaphthalene-3,6-disulfonicacid or N-(1-naphthyl)ethylenediamine are as follows: 2,4-diaminotoluene, 2aminobenzotrifluoride, 4-benzoxyaniline, 2,4-dimethyl-62-amino-g-fluorenone, nitroaniline, 4,5-dimethyl-2-nitroaniline, naphthionic acid (Na salt), 3-aminonaphthalene-2,7-disulfonic acid (Na salt), 2-aminonaphthalene-1-sulfonicacid, 4aminonaphthalene-1-sulfonicacid, 2,4-dibromoaniline, 5aminosalicylic acid, 2-amino-4-nitropheno1, 4-amino-2,6-dichlorophenol hydrochloride, 2,5-dimethoxyaniline, 4-aminothiophenol, 4,4’-diaminodiphenylmethane,1-naphth lamine, 4,4’-diamin0bipheny1-2,2~-disulfonic acid, and 4,4‘-dYiamino~tilbine-2,2’-disulfonicacid (163). A spectrophotometric method for the antimalarials chloroquine, primaquine, amodiaquine, and pyrimethamine is based on the formation of molecular complexes with iodine as an acceptor and the basic drug in chloroform solution (164).Absorption at 292 nm by the charge transfer complexes of iodine in chloroform has also been used to determine the tranquilizers and antidepressants chlorpromazine, promethazine, promazine, thioridazine, imipramine, and amitriptyline (165).Chlorprothixene was also similarly determined at 275 nm (165,166). The formation of charge transfer complexes between tetracyanoethylene in acetonitrile with phenelzine (395 nm; 20-80 ppm), isonicotinic acid hydrazide (380 nm, 1-10 ppm), hydralazine (410 nm, 2-40 ppm), amidopyrine (420 nm, 10-60 ppm), and antipyrine (440 nm, 30-80 ppm) has been proposed as a method for determining the indicated hydrazines and pyrazolones (167). Sulfanilamide drugs have been determined with 3-a,B-dicarboxyethylrhodanine (506 nm, 20-120 ppm) (168). 2,6Dichlorophenolindophenolhas been proposed as a reagent for the spectrophotometric analysis of certain alkaloids including strychnine, brucine, atropine, and quinine (169).The spectrophotometric determination of urinary glycosaminoglycan sulfate excretion has been effected by precipitation with cetylpyridinium chloride, resuspention in water, and mixing with 1,9-dimethylmethylene blue to produce an absorption maximum at 535 nm (0-12 pg) (170).A carboxylic acid analyzer has been developed based on ion-exchange chromatography, postcolumn derivatization with l-ethyl-3-(3-dimethylaminopropy1)carbodiimide hydrochloride and 2-nitrophenylhydrazine, and monitoring the absorbance at 530 nm with a detection sensitivity of 0.6 ppm (171).Various cephalosporins (50-300 ppm) in pharmaceuticals have been determined colorimetricallybased on the Ni(II)-catalyzed reaction between the cephalosporin and hydroxylamine producing hydroxamic acid which then reacts with ferric ammonium sulfate to form the colored iron(II1)-hydroxamic acid complex (172).Another ro osed spectrophotometric method for cephalosporins uses g 1)-imidazole reagent to determine cephacetrile at 325 nm and cephalothin, cefamandol nafate, and cefoperazone at 345 nm with detection limits of 8 ppm for cephalothin and 25.4 ppm for the others (173).Four imidazoline derivatives, antazoline, tolazoline, xylometazoline, and naphazoline, have been analyzed by a method based on the reaction of the corresponding drug base with 2,6-dichlorophenolindophenol in chloroform to produce a blue product with an absorption maximum at 588-603 nm (174).Traces of phenols in the range of 8-160 ppb phenol have been spectrophotometrically determined in natural and wastewaters by reaction with IBr followed by extraction with cyclohexane (175). Eosine has been used as a photometric reagent for biologically active quaternary ammonium compounds by measuring the absorbance of the complex formed at 540 nm (176). Cortisone, hydrocortisone, hydrocortisone acetate, norethisterone, nor-

€3

ethisterone acetate, norgestrel, and methyltestosterone have been determined in bulk, tablets, and ointments by utilizing the condensation reaction with the semicarbazide and photometric measurement at 269 nm (2-14 ppm of steroid) (177). 1,3,5-Trinitrobenzene with ethyl acetate has been proposed as a reagent for the spectrophotometric determination of four tertiary amine dru s, atropine, carbetapentane citrate, strychnine, and clim azole, by measuring the absorbance at 460 nm (2-20 pg) (178).A recent paper describes a method for the photometric analysis of several adrenergic drugs, e.g. adrenaline, noradrenaline, isoxsuprine, and oxymetazoline, which is based on the formation of a colored oxidative coupling product between 2,bdichloroquinone chlorimide with sensitivities of 4 ppm, 12 ppm, 1.2 ppm, and 1ppm of the respective adrenergic drugs (179).It has been suggested that primary and aromatic amines may be determined spectrophotometrically by reaction with syringaldehyde in an HC1-methanol medium (180). Only a limited number of papers describe comparative studies of various reagents for specific organic compounds or families of organic compounds. One such paper however has compared a phenyl and a 2-benzoxazolyl derivative of 7hydroxycoumarin for determining alkaline phosphatase and found the latter compound to be the better of the two reagents studied (181).Another investigation studied 70 types of dyes for the determination of amines and determined that xylene cyano1 was superior and could be applied for the photometric analysis of benactyzine and benethtropine in the concentration range of 0-10 ppm (182),2,5-Dihydroxy-3-undecyl-1,4benzoquinone (520 nm), 2,5-dihydroxy-1,4-benzoquinone (500 nm), and chloranilic acid (540 nm) have been studied to determine their applicability to the analysis of the antimalarials amodiaquine, chloroquine, primaquine, trimethoprim, and pyriomethamine (183).A study of three total protein spectrophotometric assay procedures, Coomassie Brilliant Blue, biuret, and Folin-Ciocaltleau,were made in order to determine the extent of deviation encountered when a constant reagent blank is compared to a continuously decreasing true reagent blank (184).It was found that while the two former procedures produced variable true reagent blanks, the latter procedure did not. A colorimetric procedure for determining tannic acids from plants by using a sodium potassium tartrate-ferrous sulfate solution (540 nm, 90-0.06 mg/mL) was compared with a direct ultraviolet method (276 nm, 0-14 ppm) and found the latter method to be preferred (185).An investigation of a procedure for determining uronic acids with 3-hydroxydiphenyl found that the cheaper reagent, 2hydroxydiphenyl (475 nm), could be successfully substituted (186). A number of previously published methods have been studied for the purpose of making improvements in either sensitivity, selectivity, or analysis time. Globulin interference with the Du Pont discrete clinical analyzer for serum albumin has been minimized by utilization of bromocresol purple, an albumin-selectivedye (187).Sulfonazo (111)has been studied for its potential as a reagent for the spectrophotometric analysis of ascorbic acid (580 nm, 6.8-136 ppm) (122).The molar absorptivity of unconjugated bilirubin in a caffeine reagent has been reported to be independent of the protein matrix (188)while another study found that &bilirubin isolated from serum exhibits an absorption maximum at 440 nm with a molar absorptivity of 72 000 in either Tris-HC1 (pH 8.5) or phosphate (pH 7.4) buffer which exceeds by 50-59% that of unconjugated bilirubin and could lead to substantial errors in the direct spectrophotometric determination of bilirubins in serum (189).Carbon disulfide in ambient air has been determined by ultraviolet spectrophotometry of the chloroform-extracted Ni(I1)-xanthate complex (190).Cephalosporins and penicillins have been found to give reproducible yields of ammonia upon degradation with 0.5 M NaOH and can be quantitatively distilled and collected in dilute HCl with subsequent determination of the ammonia by the indophenol reaction (191).A study of the kinetics of horseradish peroxidase with Hz02and 3,3’,5,5’-tetramethylbenzidinehas been studied to determine the optimum reaction parameters and subsequently develop a method for determining 0-200 ng/L of the enzyme and additional methods for the two substrates (192).An investigation of the indooxine method for determining oxime has led to the optimization of parameters and resulted in improvements in reproducibility and sensitivity

%

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

135R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table 11. Spectrophotometric Methods for Organic Substances constituent acemetacin acetaminophen albumin alkoxy compounds amino sugars amoxycillin antimalarials ascorbic acid atropine benzalkonium salts benzodiazepines benzoic acid benzothiadiazines bile acids catecholamines cephalosporins chlorpromazine codeine corticosteroids cortisone acetate cyanates diethyldithiophosphate 4,4’-dinitrostilbene 1,2-diphenols dixanthogens emetine ephedrine epicillin epoxides 17a-ethinyl steroids glycosylated hemoglobins hemoglobin hydrazineHC1 ibuprofen imidazolines isonicotinic acid derivatives isonitrosine isoprenaline isoxsuprine mefenamic acid methamphetamine methyl dopa methylephedrine nicotine noradrenaline oxa zep am oxymetazoline oxytetracycline penicillins phenol phenothiazines

phenylephrine phospholipids pilocarpine polychlorinated biphenyls procainamide procaine 138R

material

method or reagent [wavelength, nm; molar absorptivity; concentration range, wg/mLaj

pharmaceut tablets serum

direct in CHCl, [255; (1.2-9.5) X mol/L] direct in aq NaOH [282, 256.5, 235.51 chromazural S A1 chelate [630; 1.3-251 HI (cyclohexane) [257] lipopolysaccharides p-(dimethy1amino)benzaldehyde [467] eye drops N,N-dimethyl-p-phenylenediammonium dichloride + K,Fe(CN), (CHC1,) [596; 20-1001 chloranilic acid [522; 40-2001 tablets 2,3-dichloro-5,6-dicyano-p-benzoquinone [460; 10-401 tablets direct in 0.1 M HCl [241] pharmaceut bromothymol blue [435] pharmaceut tetraiodofluorescein + quinine (dichloroethane) 1545; 5.8 X lo4; (2-40) X mol/L] pharmaceut HCl hydrolysis + p-(dimethy1amino)cinnamaldehyde[530; 0.5-101 jams, juices H3PO4 (isooctane) [229] pharmaceut alkaline hydrolysis + ethyl acetoacetate [425-430; 2-48] diethylchlorophosphite + 2-nitrophenylhydrazine in 7:3 MeCN/THF [550] pharmaceut chloranilic acid in CHCl,/iso-PrOH [325; 4 X lo3; 2-30] pharmaceut resazurine [485; 3-25 fig] pharmaceut ammonium molybdate [670; 25-30] injections direct multiple wavelength [292-3181 2,3-dichloro-5,6-dicyano-p-benzoquinone [460] pharmaceut oxime formation + I, or chloranil [300 or 435; (2.0-6.0) X lo3; 10-50 or 20-801 tablets direct in EtOH [238] eye drops pyridine + 1,3-dimethylbarbituric acid [588; 1.6 X lo5] Pb(C104)2(CHCl,) [293; 0-401 flotation liquors

ref 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492

tablets blood

direct using absorbance ratio [345/298] phenylfluorone + Fe(1II) [630; 1.7 X IO5] direct (isooctane) [241; 1.8 X lo4; 0-81 2,3-dichloro-5,6-dicyano-p-benzoquinone 14601 NaI04 + NaHCO, (cyclohexane) [241] tetrabromophenolphthalein ethyl ester (dichloroethane) [555] direct after acidic hydrolysis 4-acetylpyridine-2-benzothiazolylhydrazone in methyl cellusolve [ZO-125 nmol/mL] Na tert-butoxide + 1,3,5-trinitrobenzene [5-501 oxalic acid hydrolysis + 2-thiobarbituric acid [443]

493 494 495 488 496 497 498 499 500 501

plasma tablets pharmaceut eye & nose drops pharmaceut

leucocrystal violet + H,Oz 15901 diazotization with nitrite [274; 4-40] hydroxylamine perchlorate + dicyclohexylcarbodiimide + Fe3+ [538] rose bengal (CHClJ [540-555; 0.5-81 Naz[Fe(CN)5NO] [440; 4.6-481

502 503 504 505 506

tablets injections pharmaceut eye drops pharmaceut urine

pharmaceut pharmaceut pharmaceut pharmaceut pharmaceut pharmaceut eye drops amniotic fluids pharmaceut wastewater

ammonium molybdate [630] direct measurement [228; (1-10) X mol/L] Na tungstate [299; 0.5-381 Nfl-dimethyl-p-phenylenediammonium dichloride + K,Fe(CN), (CHCl,) [590; 4-28] hydroxylamine perchlorate + dicyclohexylcarbodiimide + Fe3+ [SO81 tetrabromophenolphthalein ethyl ester (dichloroethane) [570] p-methoxybenzaldehyde [0.24-1.68 mg] Na tungstate [299; 0.5-381 tetrabromophenolphthalein ethyl ester (dichloroethane) [550] eriochrome blue black R (dichloromethane) [530; 0-281 p-methoxybenzaldehyde [0.17-1.35 mg] direct measurement [229 or 318; 0.2-0.8 mg % or 2-12 mg % ] N,N-dimethyl-p-phenylenediammonium dichloride + K,Fe(CN), (CHC1,) [490; 4-20] dioctyl sulfonsuccinate [270; 3.5-451 dioctyl sulfonsuccinate [270-272; 40-4001 1,2,4-triazole + HgClz 1323-3461 ninhydrin + SnClz [570] direct 3-wavelength measurement (BuOAc) PdC1, automatic analyzer [490] N-chlorosuccinimide [502-6501 dapsone [570; 2-20] diazotized p-nitroaniline [2-301 KIO3 [510-640; 2-50] morpholine + N-bromosuccinimide [660] nitroso-R salt [381-3951 N,N-dimethyl-p-phenylenediammonium dichloride + K,Fe(CN), (CHCl,) [500; 4-24] enzymic generation Hz02 + 4-aminoantipyrine [510] 2,3-dichloro-5,6-dicyano-p-benzoquinone [460] NaOEt hydrolysis + Hg(SCN), [0.04-0.81

507 508 509 474 504 495 510 509 495 511 510 512 474 513 513 514 515 516 517 518 519 520 521 522 523 474 524 488 525

tablets injections

direct measurement I2791 direct measurement [279 or 2911

526 526

pharmaceut floatation liquors pharmaceut tablets urine plasma

pharmaceut urine tobacco tablets eye drops

pharmaceut water

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

Table I1 (Continued) constituent

material

psychopharmaceuticals purine nucleosides pyrazinamide quaternary ammonium ions

tablets pharmaceut tablets hair rinses pharmaceut

quinuclidine derivatives resorcinol scopolamine sialic acid sodium valproate sorbic acid sulfonamides thiolactams thiourea dioxide thioxanthenes thymol tranquilizers tribenoside vitamin C

vitamin K analogs vitamin K4

method or reagent [wavelength, nm; molar absorptivity; concentration range, gg/mLn]

ref

chromazurol S (CHC13)[457-5141 phloroglucinol [558;2-15] direct measurement [268;4-12]

527 528 529 o-hydroxyhydroquinonephthalein+ Mn2+[575;3.8 X lo4; 1-12] 530 531 quinine + bromochlorophenol (1,2-dichloroethane)[ 5 X lo6] 532 bromothymol blue (CHCl,) [400-434 or 400-5601 N,N-dimethyl-p-phenylenediammonium dichloride + K3Fe(CN)6(CHCl,) [580;1.2-7.21 474 eye drops 478 pharmaceut bromothymol blue [425] 533 serum acid hydrolysis + Ehrlich’s reagent [525] 504 pharmaceut hydroxylamine perchlorate + dicyclohexylcarbodiimide + Fe3+[538] 481 jams, juices H3P04(isooctane) [254] 534 chloramine T eriochrome cyanine R + Pd2+(CHCl,) [480-510;20-1601 535 536 direct measurement [269;10-2001 537 tablets tetracyanoethylene [390-415;5-1001 NJ-dimethyl-p-phenylenediammoniumdichloride + K,Fe(CN), (CHCI,) [585;1.2-7.21 474 eye drops 538 2,3-dichloro-5,6-dicyano-p-benzoquinone [460] tablets cysteine-HC1 [414] 539 tablets 540 NazW04+ NazMo04+ H3P04[730] 541 indirect I- to Iz, metol + sulfanilimide [520] 542 tablets direct measurement in EtOH [285]

Unless otherwise specified. (193). The results of a collaborative study of the UV spectrophotometric determination of piperine a t 342-345 nm in pepper preparations has been reported and the method has subsequently been adopted as an official method of the American Spice Trade Association and as an official first action method by AOAC (194). A number of studies which have focused on methods for determining protein are the Cu catalyzed oxidation of peptides and proteins by phosphomolybdic-phosphotungstic acid (195),the determination of Sepharose-boundprotein with Coomassie Brilliit Blue G-250 (196,197), and the determination of urinary protein by the pyrogallol red-molybdate procedure (198,199). A modification of an older method for determining active sulfonamide concentrations has been proposed which employs p(dimethy1amin0)benzaldehyde in the presence of p-toluenesulfonic acid and gives a sensitivity of about 3.0 ppm (200). A direct UV method for the enzymic determination of uric acid in serum, plasma, or urine without deproteinization of sera and plasma has been evaluated with respect to the use of equilibrium and nonlinear curve-fitting kinetic options (201). New methods and reagents appearing since the last review include a paper describing ~-(2-chloro-4-nitrophenyl)maltopentaoside as a new substrate for determining a-amylase in biological fluids (202) and another describing an assay for nanogram quantities of biotin and avidin based on the fact that biotinylated glucose 6-phosphate dehydrogenase becomes inactivated when complexed with avidin (203). Other papers have dealt with the determination of blood hemoglobin levels by conversion to cyanometHb with potassium ferricyanide (540 nm) (204), imidazoline salts in pharmaceutical formulations based on drug complexation with Ni(I1) diethyldithiophosphate (455 or 460 nm, 20-600 ppm) (205), and phenothiazine drugs using morpholine and iodine-KI reagents (620-640 or 662-690 nm) (206). Several 3-ketosteroids (progesterone, testosterone propionate, and nandrolone phenylpropionate) have been determined based on their oximation, separation, cleavage, and subsequent photometric measurement of the liberated hydroxylamine which has been oxidized or diazotized (207). Another paper describes two spectrophotometric procedures for the analysis of progesterone based on forming charge transfer complexes of the oximes with either iodine or chloranil (208). Other papers have described the photometric analysis of spermidine and spermine in urine and blood by enzymic differential assay with polyamine oxidase and putrescine oxidase (209),serum triglycerides and cholesterol by means of a series of enzymic reactions and subsequent measurement at 510 nm (210),and vitamin E in tablets by means of a differential measurement (AA = [(Arn- Aw) + (Aza - Azsz)]) (211). An enzymic assay of serum cholinesterase (3000 units/L) involving several enzyme couple reactions has been described (212).

Simultaneous and Dual Wavelength Analysis. The simultaneous determinations of the following constituents have been described: L-DOPA and benserazide in the presence of GeOz (238 and 292.5 nm) (213),amobarbital and theophylline (285.5 and 240 nm) (214),mixtures of analgin and paracetamol (250 and 264 nm) and of analgin-oxyphenbutazone (268 and 299 nm) (215). Mixtures of diethyl phthalate (280.7 and 300.0 nm) and triphenyl phosphate (261.8 and 284.1 nm) in heptane (216), and mixtures of diiodohydroxyquinoline or iodochlorohydroxyquinoline with metronidazole (267 and 320 nm) (217). p-Aminobenzoic acid concentrations in procaine hydrochloride have been found to be inversely proportional to a ratio of absorbance (AzTe- A261,5)/A291 (218). Simultaneous two- and three-component determinations of mixtures of amines and quaternary ammonium salts have been effected by solvent extraction of ion association complexes with the ethyl ester tetrabromophenolphthalein and the time dependence of the thermochromism effect on the absorbance (219). In a recent procedure erythrocyte porphyrins in blood are determined as the sum of Zn protoporphyrins and free protoporphyrins after extraction and measurement of the extract at 380,407, and 430 nm (220,221). The simultaneous photometric determination of multicomponent mixtures of rare earths by using lanthanide-PAR-tetraphenylborate-butyl acetate-water and lanthanide-Alizarine Complexonfluoride-water phases has been described (222). Nitrate in soil extracts has been determined by direct UV absorbance at 210 nm with a correction factor based on the absorbance of the sample at 270 nm (223). Derivative Spectrophotometry. Derivative techniques have continued their popularity over the past two years and likely will maintain this trend for some time in the future. Papers dealing with derivative methods for metals include the following: Pb and Bi in tin (both at 1-24 ppm) (fourth order) (224); Gd in concentrated solutions of nitrate salts (first and second order) with a discrimination limit of 0.071 g/L for the first-derivative method (225); and mixed rare earths (second order) Pr (442 nm), Nd (738 nm), Sm (399 nm), Eu (393 nm), Dy (324 nm), Ho (635 nm), Er (377 nm), and Tm (681 nm) without separation and obtained results on a mixed oxide sample which compared favorably with results obtained by extraction-chromatographic and by X-ray fluorescence methods (226). The presence of accelerants which have been extracted from fire debris with cyclohexane in arson investigations has been determined (second order) (227). The degrees of acetylation of chitosans have been determined by using derivative spectra (first order) (228). Other substances which have been analyzed by using derivative spectra are acetaminophen in tablet formulations (second order) (229), naphthalene (311 nm) and its homologues a-methyl (314 nm), &methyl (319 nm), dimethyl (322 nm), and trimethyl (324 nm)

ANALYTICAL CHEMISTRY, VOL. 80,

NO. 12, JUNE 15,

1988

137R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

in petroleum fractions (second order) (BO), phenol and aniline in wastewater (fourth order) (231),atropine sulfate in the presence of sodium metabisulfate and tropic acid (second order) (232) and also in injections, eye drops, and emulsions (second-order) (233),bilirubin and hemoglobin in biological samples (first and second order) (234);chlorpromazine and its sulfoxide in pharmaceutical dosage forms (259 and 350 nm, third order) (235),Coenzyme Qlo injections (262 and 287 nm, first order) (236),andd methemoglobin in heparinized blood (650 nm) (first order) (237). Other applications of derivative spectroscopy have been developed for determining the following: oxazepam or phenobarbitone in the presence of dipyridamole (first and second order) (238);identification of purines and pyrimidines (first and second order) (239);quinine-quinidine in Cinchona liquid extract (335 and 294 nm) (first order) (240); A9-tetrahydrocannabinol-cannabinol mixtures (second order) (241);a-,/3-, y-, and &tocopherols in their mixtures (second order) (242);and vitamin A in the presence of its degradation product (288-236 nm, 0.01-0.018 ppm) (first order) (243). Derivative spectrophotometry has been employed to effect the analysis of binary mixtures of some corticosteroids: dexamethasone (first order at 248 nm) and chlorpheniramine maleate (second order at 278 nm); prednisolone (first order at 248 nm) and chlorpheniramine maleate (second order at 278 nm); and prednisolone and salicylic acid (second order at 272 and 314 nm) (244). Other papers have reported the application of derivative techniques to the analysis of the following: caffeine (245);estradiol valerate, estradiol dipropionate, estradiol benzoate, testosterone propionate, and progesterone in oily injections (246); hemoglobin in plasma (247,248);porphyrins in urine (249); and pseudoephedrin, triprolidine, and dextromethorphan in tablets (250). Reaction-Rate Analysis. Kinetic spectrophotometric methods for determining single amino acids as well as twoand three-component amino acid mixtures have been carried out based on their reaction with ninhydrin (10-50 pM) (251, 252). Another kinetic method has been developed for the determination off hemoglobin and methemoglobin based on the reaction of cyanide with the latter (253). A stopped-flow method has been developed to permit the monitoring of tryptophan and its derivatives (280 nm with isosbestic points at 252 and 298 nm) and tyrosine (260 nm with an isosbestic point a t 235 nm) based on their reaction with N-bromosuccinimide (254). A kinetic-spectrophotometric study has been made of the catalytic effect of Co on the H202-Pyrogallol Red reaction and indicates zero-order dependence on Pyrogallol Red and first-order dependence with respect to H202 and Co (252). A sequential automated method has been described for kinetic assay of serum triglyceride and cholesterol with the former assayed first with ATP and NADH and the latter with cholesterol oxidase and peroxidase in the presence of pyruvate or glycerol which produced linear calibration plots for both analytes up to 8.0 g/L (255). Flow-InjectionAnalysis. The popularity of flow-injection methodology employing ultraviolet and visible spectrophotometric measurement has increased to the point that this important technique warrants its own subheading in this review. Two reviews of flow-injection methods have appeared in the past two years (256,257). Flow-injection methods have been reported for a number of inorganic substances including: Fe(II1) based on its reaction with sodium sulfosalicylate (200 samples/h) (258);simultaneous determination of phosphate, silicate, and arsenate (detection limits of 3.1,0.55, and 3.0 ng for P, Si, and As, respectively) incorporating anion-exchange and color development of heteropoly blue with ascorbic acid (810 nm) (259);Br- and ita salta in drugs with phenol red (1-10 ppm, 120 measurements/h) (260);and IO - (10-60 pM)or I(2-8 mM) based on the production of iodine by reaction of iodate and iodide ions in acid solution (100 injections h) (261). Both inorganic and organic reducing agents have e determined with a flow-injection system employing a Au powder working electrode designed to generate a flowing stream of Mn(II1) (mqnitored a t 490 nm) which then reacts with the injected reducing agents (262). Several flow-injectionsystems have been developed for organic compounds including aliphatic aldehydes and ketones as their 2,4-dinitrophenylhydrazones (0.058-18 pg for both derivatives) by means of a reaction coil and an upstream and down stream monitor (both 440 nm) (263),ascorbic acid and sulfite (both 1-140 ppm) in

c,

138R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

soft drinks based on their reaction with chloramine-?' (264), binary mixtures of 1-and 2-naphthol as well as binary and ternary mixtures of o-, m-, and p-cresol by employing a coupling reaction with a diazonium salt and incorporation of a diode array detector (265), and phenothiazine derivatives (10-250 ppm, 120/h) based on their oxidation with iron(II1) perchlorate in 10 M perchloric acid (266). A few systems which have been reported have dealt with the analysis of compounds of biological interest: bovine serum albumin and hepatitis B surface antigen with an automated system employing the Lowry method for quantitation (267); triglycerides (0.050-0.250 ppm) with lipase based on the rate of formation of NADH (340 nm), and glycerol (0.46-920 ppm) based its reaction rate with glycerol dehydrogenase and NAD employing an automated stopped flow system (268);and nucleotides based on their reaction with a Mo(V)-Mo(V1) reagent at 150' to form heteropoly blue (830 nm) (269).

PHYSICS Topics primarily related to the principles of measuring radiant energy, treatment of data, and instrumentation used in acquiring data are included in this section of the review. Optimization. Two papers have dealth with the problems in characterizing and evaluating spectrophotometric methods. The approach in one was to classify characteristics into three groups, e.g. (1) characterization of the reagent (purity, spectral properties, stability of reagent in solution, etc.; (2) optimal conditions for the procedure (pH, buffer used, recommended wavelength, conditional molar absorptivity, etc.); and (3) characteristic parameters of the procedure (working range, equation of the calibration plot, sensitivity, precision, interferences, etc.) (270). In the other paper an attempt was made to quantify the selectivity of the method by developing an algorithm for calculating a selectivity index which considers the interaction between the analyte and the interference (271). The determination of the optimum operating parameters influencing spectrophotometric analysis was the subject of a paper where error propagation was used as a criterion to optimize pH and solvent and to simultaneously minimize spectral interferences for a two-component mixture (272). Wavelength selection of multicomponent analysis has been the subject of a number of investigations wherein various approaches taken have included a computerized least-squares method using a posteriori wavenumber fitting function for up to four-component mixtures having strongly overlapping spectra (273),implementation of a full factorial experiment for optimization and subsequent application to the simultaneous determination of complexes of Mn(II), Cu(II), and Ni(I1) with PAN (274),a simple procedure based on band linearization which allows the precise determination of the position and intensity of UV-visible bands which was applied the determination of mixtures of acetone, 2-butanone, and cyclohexanone (275),a new computer algorithm for selecting the optimal set of wavelengths for mixtures which is based on the criterion of the minimum mean square error between the concentration of the components and their estimates (276), and a study designed to evaluate the effects of selected wavelength ranges to improve the accuracy of the simultaneous determination of polynuclear aromatic hydrocarbons (277). Data processing techniques developed for optimizing spectrophotometric analysis were the subject of the following investigations: a new simplex optimization technique for curve fitting (278);multivariate calibration and data reduction with the partial least-squares method and by application of fractional factorial designs the number of calibrating solutions was minimized to four for determining caffeine, propylphenazone, and phenacetin in their mixtures (279);a new calculation method in three wavelength spectrophotometry was applied to the determination of Mo(VI) (0.1-0.4 ppm, 516, 528, and 544 nm) in the presence of an interfering W(V1) species with phenylfluorone and cetylpyridinium chloride (280);and a statistical procedure designed as a rejection test for a single data point in a linear regression analysis (281). A comparison of simultaneous equations, multivariate least squares, and a new iterative coefficient weighted least-squares approach was made and applied to optoacoustic analysis of gas mixtures (282). Errors. The results and recommendations growing out of a study of methods of appropriate storage and stabilities of different kinds of standard solutions in spectrophotometry

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

have been reported (283). Conformity with the additivity principle for spectra of mixtures has been treated by using coefficients of mutual correlation and their statistical estimates thereby permitting the degree of nonadditivity to be used as a correction term in the analysis of mixtures with nonadditive spectra (284). Inverse Beer’s law and its applicability in treating real-world systems containing unknown components has been discussed (285). Statistical studies of errors encountered in differential spectrophotometric techniques, e.g. high absorbance, low absorbance, and maximum precision methods, have been made (286,287). Precision and Accuracy. A review which discusses spectrometer evaluation with standard tests has appeared (288).Measurement services, instrumentation, standards, and measurement techniques available at the National Bureau of Standards have been described in the past year (289). Many papers which have focused on various aspects of wavelength and transmittance calibration standards have dealt with the following topics: the long-term stability and other performance characteristics of NBS glass and metal-on-quartz transmittance standards (290);the methods and procedures used to determine the wavelengths of minimum transmittance of H0303 in solution (NBS SRM 2034) from 240 to 640 nm (291);the utilization of the difference in absorbance between equimolar acid and alkaline solutions of methyl red a t a wavelength near the isosbestic point of the indicator as a means of monitoring wavelength calibration of spectrophotometers (292);a description of 36 solution standards for spectrophotometric methods as well as a wavelength standard (293);a report of an interlaboratory survey regarding the simultaneous spectrophotometric calibration of wavelen th and absorbance by using holmium oxide in perchloric acif as a reference as compared to p-nitrophenol and cobaltous sulfate solutions (294);the utilization of aqueous solutions of neodymium and samarium nitrate as wavelength calibration standards and sodium nitrate solution for the calibration of absorbance measurements (295);and the estimation of uncertainty at eight wavelengths of the apparent molar absorptivities in the UV region obtained for acidic KzCr207 solutions at pH 2.21-2.25 (296). A commercially prepared control sera has been suggested as a quality-control material for spectrophotometric bilirubin determinations in amniotic fluid (297). A statistical study of the precision of a typical diode-array spectrophotometer indicated that the variance is independent of the integration time and also that significant error can be introduced by employing standards data stored on a disk as opposed to measuring standards and sample concurrently (298). In another study it was found that the precision of determination using a single wavelength spectrophotometer is better for the dual wavelength method than for the single wavelen h method (299). In another study a selectivity index has een developed which quantifies the selectivity of spectrophotometric’methods with nonlinear response (300). The transfer of errors from the absorbance values to the concentration values has been examined for simple theoretical models of band shapes by using both the least-squares and the moments method (301). Two methods utilizing orthogonal polynoms in spectrophotometric analysis have been studied in an attempt to increase the selectivity of determination of a substance in mixtures or under background conditions (302). Stoichiometry and Physical Constants. The molar-ratio and the Asmus methods for determining the stoichiometry of complexes have been adapted to flow techniques and tested with the La(II1)-Arsenazo I, Fe(I1)-1,lO-phenanthroline, Th(IV)-Thorin, Th(1V)-Alizarin S, and the Ce(II1)-Arsenazo I1 systems (303). A new mathematical treatment of spectrophotometric data has been developed for differentiating mononuclear and polynuclear complexes (the number of units in the complex is obtained directly from the mathematical equation) as well as determining the stability constant of any A,B, complex (304). A number papers have dealt with various topics related to methods for determining formation and stability constants including the influence of the accuracy of spectrophotometric measurements, concentration data, and the numbers of absorbing species on the calculation of equilibrium constants (305),a new concept of theoretical molar absorptivity for the molybdenum-maleonitrile dithiolate species and free ligand concentrations for determining the stepwise stability constants of the complex (306),a new me-

f

thod for determining formation constants by measuring the absorbance of all forms of the colored complexes in the absence and presence of an auxiliary ligand, which forms a colorless complex MY, with a known formation constant (307),and the application of multidimensional spectral detection for reliably determining both high and low metal-ligand association constants (308). Acid dissociation constants have been determined for diprotic acids with overlapping constants by employing a numerical method and was applied to bis(biacety1monoxime)-o-phenylenediimine(309) and using a three equation method for single equilibrium systems such as methylglyoxal bis(4-phenyl-3-thiosemicarbazone)(310). Protein absorption coefficients for 25 chromatographically purified proteins have been measured and reported (311). The results of a study of the protonation of nitrilotriacetic acid and iminodiacetic acid have been presented (312). The stability constants of the &ali metal ions (Li, Na, K, Rb, and Cs) with nitrilotriacetic acid have been measured (313). Instrumental Techniques. The use of dual wavelength-adsorbance ratio and UV-visible spectrum scanning techniques have been applied to the identification and purity check of flavonoid compounds separated by HPLC (314). Dual wavelength techniques are gaining popularity in the determination of food additives in applications to the analysis of two- and three-component mixtures of synthetic dyes (315) and preservatives (316). In the area of UV-visible derivative spectroscopy, theoretical principles have been discussed (317) and the basic features and potential areas of application of higher order derivatives have been reviewed (318). Various studies conducted for the purpose of gaining a better understanding of parameter selection and data processing of derivative spectra have included an evaluation of the calibration matrix condition number as a criterion for optimal derivative order selection in multicomponent quantitation (319),employing ratios of first-derivative maxima to correct for interferences by producing compensated derivative absorption curves (320), methods for the reduction of high-frequency noise (321),and temperature dependence of ultraviolet derivative absorption spectra (322). Derivative spectroscopy has been applied to the problem of determining chromatographic peak purity (323) and also to the determination of dyes in food by utilizing higher order derivatives (324). A discussion of the various aspects of the quantitative applications of differential spectrophotometric methods has appeared and its application to the determination of fluoride ion has been demonstrated (325). In another development, high pass digital filtering has been found to be a novel method of data treatment for quantitative UV-visible spectrophotometry in the presence of broad interfering bands (326). A flow-injection system employing a closed flow loop and incorporating a single spectrophotometric detector which permits detection by passage of the reacting plug various numbers of times through the same detector has been described with the results of its application to the simultaneousdetermination of Fe(II1) and Co(I1) by the EGTA/PAR ligand displacement reaction and its kinetic characteristics (327). Activity in the area of photoacoustic spectroscopy has focused on gains in sensitivity in supercritical fluids, e.g. COz vs. CC1 (328),and in another investigation, the technique of polarized photoacoustic spectroscopy was used to measure the thermal deactivation of excitation of differently oriented groups of chromophores (329). Instrumental Components. A recent paper has evaluated and discussed the phenomenon of ac stabilization of a dc arc lamp and its spectroscopic applications (330). Photodiode and array detectors have been the subject of a number of papers dealing with various aspects of these devices such as: sensitivity and noise (331,332),general performance characteristics of multichannel arrays (333),and misregistry intensity errors (334). Photoacoustic detection has seen several new innovations: the use of two microphones in the same acoustic cavity in order to achieve noise reduction by phase balancing (335);rejection of typical interfering signals such as window and “dry-gas” absorptions, electronic pick-up, etc. by simultaneous modulation of the excitation laser and frequency modulation (Zeeman or Stark) of the desired absorption line (336);and the characterization of a novel nonresonant windowless flow-through optoacoustic cell (337). A number of investigations have focused on the development of new cells, ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

139 R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

such as a variable path flow-through cell (338);a high hydrostatic pressure (up to 1500 atm) cell (339), an “optical guide” total reflection long capillary cell or LCC (340),and a closed-flow thermostatable titration vessel for oxygen, humidity, or light-sensitivesystems (341). A new cell holder and positioner have been designed for test tube type cells (342). In another development a modified cuvette holder has been constructed for measurement of enzyme activity immobilized on a bead (343). A new type of valve for flow-injection analysis has been developed which serves to inject a “plug flow” into the flowing eluant and also provide a passage change-over of eluant flow (344). This system has been applied to stopped-flow spectrophotometric cieterminations of glucose. Spectrophotometers. An interesting two-part series entitled Evolution of Instrumentation of UV-Visible Spectrophotometry discusses developments in instrumentation in detail (345). Several reviews of new UV-visible spectrophotometers exhibited at the 1986 (346,347)and 1987 (348,349) Pittsburgh Conferences have been published in the past two years. In the area of commercial spectrophotometers, no new major innovations in instrumentation have evolved although significant improvements and refinements continue. Beckman Instruments, Inc., have introduced two new series of spectrophotometers, the DU-70 series and the DU-60 series (350). The DU-70 is an entry in the high-cost range which employs a 16-bit processor system, six scanning speeds (from 60 to 2400 nm m), and the ability to calculate concentrations for samples wit up to five components. In the lower cost DU-60 series, two models, the DU-62 and the DU-64 are not programmable but have been designed for convenience and automation of life science and quality control applications. The DU-65 provides optimized wavelength scanning, step-programmable capabilities, and the option to add an lBM PC with Beckman DU series software as well as a wide variety of modular accessories. Chelsea Instruments, Ltd., have announced the availability of their interferometer-based FT500 vacuum UV FT spectrometer designed mainly, but not exclusively, for atomic spectrometry applications (351). In 1987 Gilford Systems (Ciba Corning Diagnostics Corp.) introduced their Response I1 UV/VIS spectrophotometer featuring two disk drives, menu-driven software with applications for wavelength scanning, kinetics, multiwavelength analysis, single wavelength measurements, standard curve, and a large selection of accessories (352). Guided Wave, Inc., has developed two wavelength scanning analyzers which employ fiber-optic devices to conduct light to and from remote locations (353). The Models 150 and 200 are both capable of UV-visible-nearIR, fluorescence, and reflectance measurements. The principal difference between the two units is the greater precision and accuracy of the wavelength drive of the Model 200. The firm also offers a Model lo00 monitoring system which incorporates the Model 200, and an IBM PC computer with color graphics and supporting applications software. The moderately priced H P 8452A diode array spectrophotometer was offered by Hewlett-Packard in 1986 (354). Users may choose from three controller options and a wide range of applications software depending on their needs. Four new spectrophotometers have been introduced by Hitachi Instruments, Inc. The Model U-2000 is a low-cost, double-beam scanning UV-visible instrument with a broad range of quantitative, multicomponent, kinetics, scanning, and postrun processing software, while the Model U-lo00/1100 is a low-cost single-beam instrument. The Model U-3210 is a dual monochromator, double-beam highperformance scanning instrument in the medium price range featuring a built-in graphics printer-plotter, a 3I/*-in. floppy disk drive, and a variety of optional applications software packages. The Model U-3410 is similar but features near-IR capability to 2600 nm and a second floppy disk drive. The UVIKON 860 by Kontron is a high-cost UV-visible doublebeam spectrophotometer with a high signal-to-noise ratio and a large battery buffered memory with space for up to 100 spectra (355). The Ultrospec K developed by LKB Biochrom is a UV-visible spectrophotometer designed to carry out, without the aid of additional hardware or software, end-point assays, enzyme or reaction kinetics, and calibration plots (356). This instrument also features microprocessor control, Peltier temperature control, and an Autofill K accessory for automated sample aspiration. The Milton Roy Co. has brought out several new low-cost spectrophotometers. Three models of the Spectronic 21 are available: an analog model (340-1000

h

140R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

nm), a digital model (340-1000 nm), and digital model with UV capability (200-1000 nm) (357). They have also introduced their Spectronic 301 and 401 models which feature an 8-nm spectral bandwidth and a wavelength range of 325-900 nm (358). The Spectronic 401 also offers built-in microprocessor-controlled tests, operations, and applications including end-point, linear standard c w e , and kinetics. The Spectronic 501 and 502 are single-beam instruments featuring a 5-nm bandwidth, microprocessor control, wavelength ranges of 325-999 and 195-999 nm, respectively, and a wide range of applications software on their APPLIPAK cartridges (359). The French company Secomam has exhibited three low-priced spectrophotometers including the A.B.C.+ which is a moderately priced programmable near-UV-visible instrument intended for clinical-biochemical applications such as immunoenzymology, kinetics studies, and routine colorimetric tests (360). Their Model S 500 is a lower cost spectrophotometer with a wavelength range from 330 to 900 nm and offers a liquid crystal display and a soft keyboard. A somewhat more costly unit is their Model S 1000 which covers the UVvisible range from 195 to 900 nm and also offers thermostatic regulation by means of a Peltier device. Shimadzu has introduced a low-cost UV-visible spectrophotometer in their Model UV-120 which is designed for routihe analysis featuring simplicity of operation, digital display, and low stray light characteristics (361). The Model UV-120-02 has a wavelength range from 190 to 1000 nm. In the moderate price range, Shimadzu’s UV-265 offers high-quality double-beam optics, an advanced microprocessor, and a data system with 2.4 Mbytes of memory (362). Shimadzu has also exhibited their Model UV-3000 which is a dual-wavelength double-beam recording spectrophotometer with six modes of operation and two sample compartments, one for transparent and the other for opaque samples (363). At the 1986 Pittsburgh Conference Tracor Northern exhibited their Model TN-6500 optical multichannel spectrum analyzer as an entry into the growing diode array instrument market (364). A full UV-visible spectrum can be obtained as often as every 2.7 ms, thus making it suitable for stopped-flow measurements. The Varian Instrument Group exhibited a medium-cost UV-visible spectrophotometer with their Model DMS 200 featuring the use of small cassettes called scan application modules which eliminate manual data handling (365). Varian’s DMS 300 UV-visible instrument has dual optical gratings for low stray light characteristics, plug-in application modules, and a soft-key menu (366). Varian has also introduced the Cary 2400 which they proclaim is the highest performance UV-visnear-IR spectrophotometer available (367). A number of noncommercial spectrophotometers have been developed which feature a fast scanning optoacoustic spectrometer for gas chromatography (368),an optical fiber absorption photometer for remote and continuous monitoring (3691,an optimized design for a diode array spectrometer with an optical speed of f/2.3 (370),a computer-controlled dye laser spectrophotometer (3711,an image-dissector-based interference spectrometer as a new type of Fourier transform instrument (373),a spectrometer for measuring spatially resolved matrix isolation visible spectra (374),and an eight-channel fiber optical spectrophotometer for industrial applications (375). Special Application Instruments and Accessories. The principles, design, and characteristics of UV-visible process photometers have been reviewed recently (376). The Seralyzer reflectance photometer/dry reagent strip system for hemoglobin analysis of whole blood gave clinically acceptable results when compared with other hemoglobin methods (377). A photometer system designed around a holographic grating and a photodiode array has been developed which can make the following measurements: absorbance, turbidimetric, fluorescence, and nephelometric (378). In the area of chromatography detectors, the analytical applications of the photodiode array technique in HPLC measurements has been discussed and several examples cited (379). Two commercial detectors which have appeared during the past two years are the LC-235 diode array detector by the Perkin-Elmer Corp., which is a dual beam system with automatic peak purity determination and a wavelength range from 195 to 365 nm (380),and Linear Instruments UVIS-203 variable wavelength HPLC detector featuring a wavelength range from 190 to 800 nm and a 256-kbyte memory (381). Two

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

gas chromatographic detectors have been developed, one employing a diode array device and a detection limit of ca. 0.5 pg for various components (3821, and the other a fixedwavelength UV detector with a detector limit for naphthalene and benzene of 1 ng (383). Diode array detectors have been employed for the fluorescence detection of polycyclic aromatic hydrocarbons (384) and the HPLC-spectrophotometric profiling of carboxylic acids in physiological fluids (385). The role of diode array detectors in flow systems such as stopped-flow and flow-injection analysis has been reviewed (386). Flow-injection analysis continues to gain popularity as indicated by the many recent applications: diode array detection of glucose (387),Ti and Fe in standard rock samples (388),a new flow-cell design which minimizes problems associated with reflected light (389),multicomponent (mixtures of two, three, and four components) determination with normal and derivative spectra (390),and doubly stopped-flow technique as an alternative to simultaneous kinetic multideterminations in unsegmented flow systems (391). The development of a device for stopped-flow studies with a computer-operated diode array spectrophotometer has been reported (392). Ten-nanosecond data collection has been achieved with the introduction of diode-array pulsed spectrometers (DAPS) (393, 394). The principles and applications of fiber-optic devices and sensors have been the subject of numerous reviews (395-399). The limitations of stray light in the analytical applications of fiber-optic probes have been discussed (400). A recent patent application for a fiber-optic probe system has been submitted (401). Whatman has introduced their p-Colorimeter which is designed for measuring absorbance or concentration of samples read directly from microcuvette strips in the wavelength range of 400-700 nm (402). Specialty Medical Industries, Inc., have developed their dual-wavelength Ultrascan photometer which reads and calculates 100 samples per minute by utilizing bar code entry of data and sample tubes or microliter wells in readin racks (403). Beckman Instruments, Inc., have develope% the 50-pL 5-carat cell, cell holder, and preprogrammed Soft-Pac Plug-In Modules as accessories to their DU-20 UV-visible spectrophotometer (404). One paper describes the applicatioh of diode-array spectrometers to microscope photometry (405). An automated sample cell cleaner has been developed, based on one pump and two computercontrolled three-way valves (406). In another development, a spectrophotometer has been developed which features a detector comprised of an integrating sphere and photoelectric detection (407).

APPLICATIONS Computers and Software Development. A review of the role computers have played in spectroscopy outlines the impact of personal computers on spectroscopic instrumentation and applications (408). The applications of FORTH programming language to on-line instrumentation in the area of UV-visible spectrophotometers has been reviewed and a number of routines in FYSFORTH 0.3 are discussed (409). The evolution of new and innovative software for UVvisible spectrophotometry continues, undoubtedly due in part to the wide proliferation of personal computers interfaced to optical instruments. An MS-DOS software package for routine spectrophotometric analysis with Hewlett2Packard's HP 8452A UV-visible diode array spectrophotometer has been described (410) while in another development an IBM PC applications software package called Data Leader for Beckman's Model DU-60 and DU-70 series instruments have been described (411). Other software developments describe programs for the identification of the composition of gas mixtures from absorption spectra (412),the plotting of UV-visible spectra with the H P 8451A diode array spectrophotometer (413),performing library searches in HPLC/UV databases employing integral numerical values as mean absorbance values in selected wavelength ranges (414), and obtaining higher-order derivative spectra by digital differentiation methods (415). A number of papers have described software for applications dual wavelength and simultaneous analysis of mixtures (416-421). Also other programs have been described, one which features a BASIC language program for cubic curve fitting for nolinear calibration curves (422) and an application of a nonlinear multiparameter estimation for

providing least squares optimization (423). Interactive Microware, Inc., has described their data station for IR and UV/VIS spectroscopy which has been designed to control instruments, perform sophisticated data analysis, display spectra, and store spectra in libraries on disk (424). The robotic automation of UV-visible spectrophotometric bioassays has been described utilizing the Perkin-Elmer masterlab system along with an IBM PC and the PerkinElmer Robot Language (PERL) (425). Methods of Analysis. Thermal lens spectrophotometry seems to be evolving at a slow but steady pace. Work in this area during the past two years has seen the development of a thermal lense spectrophotometerwith a minimum detectable absorbance of 0.000 076 (426), the differential dual-beam thermal lensing determination of Nd(II1) and Pr(II1) (427), a pulsed laser thermal lens system for flowing liquid detection which was applied to the determination of as little as 4.8 pM 2-mercaptopyridine (428), and a pulsed photothermal refraction system using an elliptic Gaussian excitation beam which permitted the determination of amaranth in methanol in the concentration range of 9.6 ppb to 4 ppm (429). In another development,a new technique which the authors refer to as the "iso-concentration method" has been described which use$ two series of standards, to one of which has been added an aliquot of the sample (430). The method has been applied to the analysis of Sb with Brilliant Green. LITERATURE CITED

(1) Meiion, M. G. Anal. Chem. 1945, 17, 81; 1949, 2 1 . 3; 1950, 22, 2; 1951, 23, 2; 1952, 24, 2; 1954, 26, 2. (2) Mellon, M. G.; Boitz, D. F. Anal. Chem. 1958, 2 6 , 559R; 1958, 3 0 , 554R; 1980, 3 2 , 194R; 1982, 3 4 , 232R. (3) Boltz, D. F.; Mellon, M. G. Anal. Chem. 1984, 36, 256R; 1988, 36, 317R; 1988, 40. 255R; 1970, 42, 152R; 1972, 4 4 , 300R; 1974, 46, 227R; 1978, 46, 216R. (4) Rosenbaum, E. J. Anal. Chem. 1949, 2 1 , 16; 1950, 2 2 , 14; 1951, 2 3 , 12; 1052, 2 4 , 14; 1954, 26, 20. (5) Hirt, R. C. Anal. Chem. 1958, 2 8 , 579R.; 1958, 30,589R; 1980, 3 2 , 255R; 1982, 3 4 , 276R. (6) Crumrnett. W. B. Anal. Chem. 1988, 38, 404R. (7) Crurnmett, W. 6.; Hummel, R. A. Anal. Chem. 1988, 4 0 , 330R; 1970, 42, 239R. (8) Humrnel, R. A.; Kaufman, D. C. Anal. Chem. 1972, 4 4 , 535R.; 1974, 46, 354R; 1978, 46, 268R. (9) Howell, J. A,; Hargis, L. G. Anal. Chem. 1978, 50, 234R; 1982, 54, 171R-188R; 1088, 56, 108R-124R. (IO) Hargis, L. G.; Howell, J. A. Anal. Chem. 1980, 5 2 , 302R; 1984, 5 6 , 225R-24 1R. (11) Butler, L. R. P.; Laqua, K.; Strasheim, A. Spectrochim. Acta, Part 6 1988, 4 7 6 , 507-44. (12) Sawin, S. B. Usp. Khlm. 1985, 54, 1814-40; Chem Abstr. 1988, 104, 81095~. (13) Medina-Escriche, J.; Sevillano-Cabeza, A,; Llobat-Esteiies, M. Qulm Anal. (Berce&na) 1988, 5 , 229-44; Chem. Abstr. 1987, 106, 206738n. (14) Lopez-Moilnero, A. Qulm. Anal. (Barcelona) 1988, 5 , 105-22; Chem. Abstr. 1987, 106, 226381~. (15) Petrov, B. I.; Godozhnikov, S . I. Organ. ReagentyvAnal. Khimii, Perm 1985, (5),3-36; Chem. Abstr. 1988, 105, 182843~. (16) Hernandez-Hernandez, F.; Medlna-Escriche, J. Qulm. Anal. (Barcelona ) 1988, 5 , 1-35; Chem. Abstr. 1987, 106, 187832s. (17) Liu, Y.; Zheng, Y. Huaxue Shul 1987, 9 , 21-28; Chem. Abstr 1987, 107, 32188m. (18) Viel, C. Janssen Chlm. Acta 1985, 3 , 2-5. (19) Zeng, Y.; Zhang, H. Wuhan Daxue Xuebao, Zlran Kexueban 1985, 4 2 , 93-108; Chem. Abstr. 1988, 104, 1791211. (20) Laufer, D. F.;Perez, C. 0.; Cassir, K. M. Rev. SOC.Quim. Mex. 1988, 30, 26-33; Chem. Abstr. 1987, 106, 2067421. (21) Uchiumi, A. Rinsho Kensa 1988, 30, 1011-15; Chem. Abstr.1987, 106. 9S689m. (22) Makino, T.; Tetsuo, M. DoJn Nyusu 1985, 3 2 , 1-10; Chem. Abstr. 1986. 105. 57142~. (23) Kostka, K.; Zyner, E. Koniakte (Darmstadt) 1985, (3), 30-37: Chem. Abstr. 1986, 104, 236542~. (24) Waterborg, J. H.; Matthews, H. R. Methods Mol. 6iol. 1984, 1 , 1-3. (25) Nakao, T.; Shiba, K. Rinsho Kensa 1988, 30, 877-82; Chem. Abstr. 1987, 106, 63699n. (26) Liu, K.; Yu, R. Fenxi Huaxue 1987, 15, 277-83; Chem. Abstr. 1987, 107. 125953~. . _.... (27) Shlrnlzu, H. Shokuhh Klkal Sochi 1985, 22, 75-79; Chem. Abstr. 1988. 104. 27925h. (28) Haberer,'K. Gewaesserschutz, Wasser, Abwasser 1985, 7 9 , 172-221; Ch8m. Ab&. 1986, 105, 11530k. (29) Dinya, 2 . M.; Sztarlcskai, F. J. Drugs Pharm. S d . 1988, 2 7 , 19-98. (30) Bellkov, V. G.; Molseeva, G. F. farmatslya (Moscow) 1988, 3 5 , 87-90; Chem. Abstr. 1988, 105, 30136~. (31) Madison, B. L. Methods Enzym. Anal. (3rd Ed.) 1985, 8 , 34-39. (32) Naegeie, U.; Wahlefeid, A. W.; Ziegenhorn, J. Methods Enzym. Anal. (3rd Ed.) 1985, 8 , 2-12. (33) Naegele, U.; Wahlefeld, A. W.; Ziegenhorn. J. Methods Enzym. Anal. (3rdEd.)1985, 6, 12-18.

.

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15. 1988

141R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (34) Schiefer, S.;Beutier, H. 0. Methods Enzym. Anal. (3rdEd.) 1985, 8, 117-25. (35) Abe, M.; Okabe, H. Kensa to Gijutsu 1985, 13, 809-14; Chem. Abstr. 1988, 104, 48006~. (36) Ueda, N. Rlnsho Kensa 1985, 29, 1312-15; Chem. Abstr. 1986, 104, 1051933. (37) Schiefer, S.;Beutier, H. 0. Methods Enzym. Anal. (3rdEd.) 1985, 8, 87-104. (38) Assmann, G.; Schriewer, H. Methods fnzym. Anal. (3rdEd.) 1985, 8 , 105-1 1. (39) Campanella, L.; Tomassetti, M. Inquinamento 1988, 28, 74-78; Chem. Abstr. 1986, 105, 1073633. (40) Campanella, L.; Tomassetti, M. Inqulnamento 1988, 28, 76-80; Chem. . Abstr.-l988, 105, 17205e. (41) Fischer, P. GIT Fachz. Lab. 1987, 31, 19-20; Chem. Absfr. 1987, 106, 187914~. (42) Gooijer, C. Nat. Tech. 1985, 53, 10-25; Chem. Abstr. 1985, 103, 226399~. (43) Hiiro, K. Taikabotsu 1986, 38, 669-74; Chem. Abstr. 1987, 106, 8506x. (44) Ratzlaff, K. L. Chem. Anal. (NY) 1986, 84, 1-52. (45) Yamamoto, K. Bunsekl 1987, (l), 40-46; Chem. Abstr. 1987, 106. 167841~. (46) Jimenez, A. M.; Herrador, M. A,; Navas, M. J.; Camean, A. M.; Jimenez-Trilio, J. L.: Asuero, A. G. Aiimentaria (Madrid) 1985, 22, 25-29; Chem. Abstr. 1987, 107, 57496~. (47) Dittrich, K. CRC Crit. Rev. Anal. Chem. 1986, 16, 223-79. (48) Que, L., Jr. J. Chem. Educ. 1985, 62, 938-43. (49) Craver, C. D. ACS Symp. Ser. 1985, 285, 703-38. (50) Lawson, G. Prog. Rubber Plast. Technoi. 1985, 1, 1-17. (51) Bogolltsyn, K. 0.; Khabarov, Yr. G. Khlm. Drev. 1985, (6). 3-29; Chem. Abstr. 1986, 104, 70458~. (52) Alimarin, I.P.; Durnev, V. F.; Runov, V. K. Zh. Anal. Khlm. 1987, 42, 5-28; Chem. Abstr. 1987, 106, 187913~. (53) Blalkowski, S. E. Spectroscopy (Springfield, OR) 1986, 1 , 26-30, 32, 45-46. 48. (54) Bruszia, H. D. Zavod. Lab. 1986, 52, 20-24: Chem. Abstr. 1988, 104. 232992~. (55) Coufal, J. Fresenlus' 2. Anal. Chem. 1986, 324, 456-62. (56) Helander, P. Upsala J. Med. Scl. 1986, 91, 155-58. (57) Morris, M. D.; Peck, K. Anal. Chem. 1986, 58, 811A-812A, 814A, 816A, 818A. 820A-822A. (58)Perkampus, H. Anal.-Taschenb. 1985, 5,93-134; Chem. Abstr. 1986, 104, 26257e. (59) Ponomarev, Yu. N. Spektrosk. Mefody Zondirovaniya Atmos. 1985, 119-40; Chem. Abstr. 1988, 104, 141099s. (60) Shi, B. Huanjln Wuran Yu Fangzhll985. 7, 39-42; Chem. Abstr. 1988, 105, 1963791. (61) Fttch, P.; Gargus, A. G. Am. Lab. (Falrfleid, CT) 1985, 17. 64, 67-68, 70-7 1. (62) Narayanaswamy, R. Anal. R o c . (London) 1985, 22, 204-06. (63) Perez, J. J. Inf. Chim. 1986, 275, 219-25; Chem. Abstr. 1988, 105, 2021801. (64) Sakai. T. Keiso 1984, 27, 56-60: Chem. Abstr. 1986, 104, 53467t. (65) Stuart, A. D. Chem. Aust. 1986, 53, 350-53. (66) Tang, X.; Xu, Y. FenxlHuaxue 1985, 13, 629-36; Chem. Abstr. 1985. 103, 1885272. (67) Cao, Y. Yaoxue Tongbao 1985,20, 224-26; Chem. Abstr. 1985. 103, 220887b. (68) Dixlt, L.: Ram, S. Appl. Spectrosc. Rev. 1985, 21, 311-418. (69) Leviliain, P.; Fompeydie, D. Anaiusls 1986, 14, 1-20; Chem. Abstr, 1986, 104, 141122~. (70) Mllch, G. Acta Pharm. Hung. 1986, 56, 241-54; Chem. Abstr. 1987, 106, 90252. (71) Perfil'ev, V. A.; Mishchenko, V. T.; Poiuektov, N. S. Zh. Anal. Khim. 1985. 40, 1349-63 Chem. Abstr. 1985, 103, 186510~. (72) Nakano, S.;Kawashlma, T. Bunseki 1987, (5),317-24. (73) Hiromi, K.; Kanaya, K.; Uehara-Kunugi, Y. TanpakushitsuKakusan Koso 1986, 31, 230-40; Chem. Absfr. 1986, 104, 164520m. (74) Perutz, R . N. Annu. Rep. Rog. Chem., Sect. C 1985, 82, 157-91. (75) Imasaka, T. Proc. Int. Conf. Lasers 1964 (Pub. 1985), 441-44. (76) Attetemose, I.R. J. Chem. Educ. 1986, 63, A216, A218, A221-23. (77) Nishlkida, K. Suishitsu Odaku Kenkyu 1985. 8, 792-98; Chem. Abstr. 1986, 104, 176702k. (78) Kirschenbaum, D. M. Appi. Biochem. Biotechnol. 1985, 1 1 , 287-316. (79) Alvarez, R. Fresenlus' 2.Anal. Chem. 1988, 324, 376-83. (80) Voigtman, E.; Winefordner, J. D. Prog. Anal. Spectrosc. 1986, 9, 7-143. (81) Liu, S. Sehnyang Yaoxueyuan Xuebao 1965, 2, 242-54; Chem. Abstr. 1985, 103, 220880~. (82) Navas, M. J.; Jlmenez-Trillo, J. L.; Asuero, A. G. Boli. Chim. farm. 1885, 124, 439-50; Chem. Abstr. 1986, 104, 155759~. (83) Park, J.; Shore, J. J. SOC.Dyers Cofour. 1986, 102, 330-35. (84) Mustroph, H. 2. Chem. 1985, 25, 385-92; Chem. Abstr. 1986, 104, 98207m. (85) Potockova. J.: Janak, J.; Binek, B. Chem. Listy 1986. 80, 1157-72; Chem. Abstr. 1987, 106, 7773911. (86) Wei, L. Daxue Huaxue 1986, 1, 1-7; Chem. Abstr. 1987, 106, 167827~. (87) Analyticai Spectroscopy: Theory and Applications ; Kniseley, R. N.. Eds.; Pergamon: Oxford, 1985 (Spectrochlm. Acta, Part B 1985; 408(10-12). (88) NowickaJankowska, T. Comprehensive Analytical Chemistry, Vol. 19: Analytical Vlsible and Ultraviolet Spectrometry; Elsevier: Amsterdam, 1986.

142R

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

(89) Ingle, J. D., Jr. TaLnte 1986, 33, 271-73. (90) Spectrophotometry and Specfrofluorometry : A Practical Approach ; Bashford, C. L., Harrls, D. A., Eds.; IRL Press: Oxford, 1987. (91) Shlmadzu Scientlflc Instruments, Inc. Amer. Lab. 1987, 19, 64. (92) Harrick Scientific Corp. Amer. Lab. 1987, 19, 64. (93) Howell, J. A. "UVIVis Spectroscopy" I n Sample Preparation Technoiogy; Hawk, G. L.. Little, J. N., Eds.; Zymark Corp.: Hopkinton, MA, 1985. (94) Atlas of Spectra of Organic Compounds, No. 32: Absorption Spectra of the Derivatives of 1 2 - and 1,4-Naphttwquinones In Infrared, Ubaviolet, and Visible Regions, Koptyug, V. A., Ed.; Novosibirsk11Institut Organicheskoi Khimii CO Akad. Nauk SSSR: Novosiblrsk, USSR 1985, 117 pp; Chem. Abstr. 1987, 106, 213364r. (95) Sverdiova, 0. V. Nectronic Spectra in Organic Chemistry, 2nd ed.; Khimiya, Leningradskoe Otdeienie: Leningrad, 1985 (Russ). (96) Bershtein, I.Ya.; Kaminskii, Yu. L. Spectrophotometric Analysls in Organic Chemistry, 2nd ed.; Khimiya, Leningradskoe Otdelenie: Leningrad, 1986 (Russ). (97) Bulatov, M. I.; Kalinkin, I.P. Practical &nuai on Photometric Analysis Methods, 5th ed.;Khimiya, Leningradskoe Otd.: Leningrad, 1986; Chem. Abstr. 1987, 107, 88758q. (98) Marcrenko, 2. Separation and Spectrophotometric Determination of Eiements ; Ellis Horwood: Chlchester, UK. 1986. (99) Onishi, H. Photometric Determination of Traces of Metals, Vol. 3, Part 2A , 4th ed.; Wiley: New York, 1986. (100) Anaiyflcal Applications of Lasers; Piepmeier, E. H.. Ed.; Wiiey: New York, 1986. (101) Demchenko, A. P. Ukravlolet Spectroscopy of Protelns ; Springer-Verlag: Berlin, 1986. (102) Constantinescu, G.; Constantinescu, C.; Hutanu, E. Bui. Inst. Politeh. Bucuresfi, Ser . Chim. 1984, 46-47, 150-54; Chem. Abstr. 1987, 106, 188073k. (103) DePablos, F.; Gomez-Ariza, J. L.; Pino, F. Mikrochim. Acta 1985, 1, 41 1-20. (104) Savos'kina, L. N.; Oskotskaya, E. R.; Ivanov, V. M. Zh. Anal. Khim. 1965, 40, 1776-80; Chem. Abstr. 1986, 104, 80945r. (105) Tananaiko, M. M.; Gorenshtein, L. I.Izu. Vyssh. Uchebn. Zaved., Khlm. Khim. Tekhnoi. 1985, 28, 46-50; Chem. Abstr. 1986, 104, 8110b. (108) Xu, 9.; Zhou, 2.; Yin, Z. Fenxi Huaxue 1985, 13, 170-75; Chem. Abstr. 1985, 103, 2049893. (107) Rosaies, D.; Gonzaiez, G.; Gomez-Ariza, J. L. Talanta 1985, 32, 467-74. (108) Nakashima, K.; Nakatsuji, S.;Akiyama, S.;Kaneda, T.; Misumi, S. Chem. Pharm. BUN. 1986, 34, 168-73. (109) Pan, Q.; Wang, D.; Cal, 2.;He, W.; Xiao, 2.; Wu, P.; Huang, Y. Huaxue Sh8i 1985, 7, 321-27; Chem. Abstr. 1988, 104, 179183~. (110) Kiwan, A. M.; Hayder, F.; Hassan, F. Anal. Chim. Acta 1988, 182, 245-50. (111) Kandrac, J.; Szalo, A. Acta Fac. Rerum Net. Unlv. Comenianae, Chim. 1985, 33, 127-35. (112) Yang, G.; Liu, Y. Huaxue Sh(ill985, 7, 261-64; Chem. Abstr. 1966, 104, 1220531. (113) Dai, H.; Guo, M. FenxiHuaxue 1986, 14, 677-78; Chem. Abstr. 1987, 107, 211083~. (114) Fernandez-Pereira, C.; Gasch-Gomez, J. Mlkrochim. Acta 1985, 2, 357-66. (115) Gao, J.; Chen, R.; Hou, J.: Bai, G. Anaiyst (London) 1987, 112. 1177-78. (116) Pilipenko, A. T.; Tuiyupa, M. F. Ukr. Khim. Zh. (Russ. Ed.) 1987, 53, 294-96; Chem. Abstr. 1987, 107. 1463786. (117) Kina, K. Dojin News 1987, 39, 8-10; Chem. Abstr. 1987, 107, 227961r. (118) Chen, Y.; Hu, 2.; Ji, X. Fenxi Huaxue 1987, 15, 153-55; Chem. Abstr. 1987, 107, 2110872. (119) Tsukada, M.; Yamamoto, D. Meiji Daigaku Nogakubu Kenkyu M o k u 1984, (87)- 23-30; Chem. Abstr. 1988, 104, 81097~. (120) Alekseevskii. V. A. TeW. Priki. Khim. Beta-diketonatov Met. 1985, 233-35; Chem. Abstr. 1986, 104, 8 1 0 7 6 ~ . (121) Ishii, H.; Kohata, K. Analyst (London) 1987, 172, 1121-26. (122) Mikhailova, V.; Kuleva, N. God. Sofii. Univ. "Kilment Okhridski", Khim. Fak. 1981 (Pub. 1985), 75, 22-27. (123) El Ansary, A. L.; Issa. Y. M.; Hanna, 2 . F. J. Chim. Chem. SOC. (Taipei) 1986, 33, 309-14. (124) Zhang, F.; Liao, J. Huaxue Shijl 1988, 8, 257-61: Chem. Abstr. 1987, 106, 77835r. (125) Muroi, M.; Hamaguchi, A.; Sekido, E. Anal. Sci. 1986, 2 , 361-66. (126) Wu, B.; Qu, Y.; Liu, H. Fenxi Huaxue 1985, 13, 819-24; Chem. Abstr. 1988, 104, 218184a. (127) Zeng. Y.; Luo, Q . ; Li, X.; Cai, R.; Yu, X.; Zhang, H. New Front. Rare Earth Scl. Appi., Proc. Int. Conf. Rare Earth Dev. Appl. 1985, 1, 573-82. (128) Horiguchi, D.; Saito, M.; Noda, K.; Kina, K. Anal. Sci. 1985, 1, 46 1-65. (129) Katami, T.; Hayakawa. T.; Furukawa, M.; Shibata, S.; Hara, T. Anal. Sci. 1986, 2, 169-74. (130) Blanco-Gonzalez, E.; Sanz-Medei, A. An. Quim., Ser. B 1985, 81, 60-68: Chem. Abstr. 1985, 103, 204938s. (131) Yamamoto, D.; Washio, L. Meiji Daigaku Nogakubu Kenkyu Hokoku 1985, (70). 57-69; Chem. Abstr. 1986, 105, 71683~. (132) Issa, Y. M.; Khater. M. M.; Abdei-Rahman. A. I.Egypt. J. Chem. 1985, 28, 87-92. (133) h e e d , A. A. H.; Abbo, H. S.;Haddad, H. H.; Matti, G. Y. Can. J. Spectrosc. 1985, 30, 63-66. (134) Petrola, R.; Repeal, L. Finn. Chem. Len. 1985, (5),213-18. (135) Petroia, R.; Flnn. Chem. Len. 1965, (5), 219-24.

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY

(136) Abbasi, S. A. Anal. Lett. 1087, 2 0 , 1013-27. (137) Kunbkaya, I.S.; Mezaraups, 0.; Jansons, E. Latv. PSRZlnat. Akad. Vestk, Klm. Ser. 1087, ( l ) ,96-103 Chem. Abstr. 1087, 106,206654g. (138) Tikhonov, V. N. Zh. Anal. Khlm. 1088, 4 1 , 1353-60; Chem. Abstr. 1088, 105, 18298711. Mukhovlkova, N. P. Zh. Anal. Khlm. 1085, 4 0 , 1956(139) Bulatov, M. I.; 61; Chem. Abstr. 1088, 104. 101496n. (140) Cesar, V.; Sirokl, M. Croat. Chem. Acta 1086, 5 9 , 475-82. (141) Ibraimov. C.; Babaev, N. B.; Rakhimova, S. R. Uzb. Khlm. Zh. 1088, (6), 19-22; Chem. Abstr. 1087, 107. 508721. (142) Idriss, K. A,; Selelm, M. M.; Abu-Bakr, M. S.; Sedalra, H. Polyhedron 1085, 4 , 1521-26. (143) Wu, B.; Qu, Y.; Llu. H. New Front. Rare Earth Sci. Appl. Proc. Int. Conf. Rare Earth Dev. Appl. 1085, 1 , 583-88. (144) Sanchez, F. 0.; Lopez, M. H. Taianta 1085, 3 2 , 967-72. (145) Samara, C.; Kouimtlzls, T. A. Mlcrochem. 1088, 33, 252-55. (146) Znarez, J.; Lopez-Mollnero, A. Rev. Acad. Cienc. Exactas, Fls., Quim. Nat. Zaragoza 1085, 4 0 , 63-71; Chem. Abstr. 1088, 105, 163981w. (147) Salinas, F.; Espinosa, A.; Sanchez-Casas, J. Ann. Chlm. (Rome) 1088, 7 6 , 213-19. (148) Cardenas, J.; Forteza, R.; Cerda, V. Qulm. Anal. ( 8 a m b n a ) 1085, 4 , 346-53; Chem. Abstr. 1086, 105, 7 1 6 7 4 ~ . (149) Ganago, L. L. Z h . Anal. Khlm. 1085, 40, 1761-70; Chem. Abstr. 1086. 104. 809440. (150) Yang, L.; Wu, B. Yanshl Kuangwu Jl Ceshl 1085, 4 , 177-76; Chem. Abstr. lg85. 103. 205012~. (151) Shi, H.; h a n g , 0.; Ye, Y. Zhongguo Xku Xuebao 1985, 3 , 69-76; Chem. Abstr. 1088, 104, 28046m. (152) Kirlyama, T.; Kuroda, R. Chromatograph& 1088, 2 1 , 12-15. (153) Katayama, Y.; Nla, K.; Ueda. M.; Nakamura, H.; Takage, M.; Ueno, K. Anal. Chim. Acta 1085, 173, 193-209. (154) Avsec, H.; Janzekovlc, I.; Kosta, L. Vestn. Slov. Kem. Drus. 1088, 33, 413-22. (155) Towns, T. G. Anal. Chem. 1088, 58, 223-29. (156) Yamato, S.; Sahara, I.; Suglhara, H.; Shimada, K. Anal. Blochem. 1086, 158, 268-71. (157) Hou, J.; Cheng, S.; Su, B. Yaowu FenxlZazhl1087, 7 , 37-39; Chem. Abstr. 1087, 106, 1626981. (158) Ichlba, H.; Morlshita, M. Katayanagl, M.; Yajlma, T. Chem. Pharm. Bull. 1088, 34. 739-45. (159) Rojas de Olivares, D. Acta Clent. Venez. 1085, 3 6 , 45-51; Chem. Abstr. 1085, 103, 226520b. (160) Martinez-Vidal, J. L.; Gonzalez-Pradas, E.; Viilafranca, M.; Salinas, F. Bull. SOC. Chlm. 8e/g. 1085, 9 4 , 401-405. (161) DeSahro, D. P.; Street, K. W., Jr. Analyst (London) 1086, 1 1 1 , 1307-10. (162) Shimizu, S.; Yamada, H. Methods Enzym. Anal. (3rd Ed.) 1085, 8 , 19-25. (163) Norwitz. 0.; Keliher, P. N. Tahnta 1088, 33, 311-14. (164) Abdei-Salam, M.; Issa, A. S.;Lymona, H. J. Pharm. Bdg. 1088, 4 1 , 31 4-18. (165) Ibrahim, E. A.; Abdei-Samam, M. A.; Issa, A. S.;Mahrous, M. S. Egypt. J . Pharm. Sci. 1085, 2 6 , 151-56. (166) Ibrahlm, E. A.; Abdei-Salam, M. A.; Issa, A. S.;Mahrous, M. S. Egypt. J . Pharm. Scl. 1084, 2 5 , 27-33. (187) Ibrahim, F. A.; Rlzk, M. S.; Belal, F. Analyst (London) 1088, 1 1 1 , 1285-87. (168) Mynka, A. F.; Shkadova, A. I.; Koplichuk, I. I. Farm. Zh. (Kiev) 1087, ( l ) , 35-40; Chem. Abstr. 1087, 106, 2018142. (169) AbdeCSalam, M.; Mahrous, M. S.; Issa, A. S. J. Pharm. Bels. 1088, 4 1 , 226-30. (170) Panin, G.; Naia, S.; Dali'Amico, R.; Chiandetti, L.; Zacheilo, F.; Catassl, C.; Feiicl, L.; Coppa, G. V. Clln. Chem. (Wlnston-Salem, NC) 1088, 3 2 , 2073-76. (1 7 1 ) Kldouchi, K. Nagoya -shiritsu Daigaku Igakkal Zasshl 1085, 3 6 , 28596; Chem. Abstr. 1086, 104, 84640k. (172) Ulas, K.; Sengun, F. I.Chlm. Acta Turc. 1085, 13, 491-500. (173) Sengun, F. I.; Fedai, I.Chim. Acta Turc. 1085, 13, 204-14. (174) AbdeCSalam, M.; Issa, A. S.; Mahrous, M. S. Anal. Len. 1088, 19, 2207-20. (175) Bosch, F.; Font, G.; Manes, J. Analyst (London) 1087, 112, 1335-37. (176) Zhebentyaev, A. I.; Mchedlov-Petrosyan, N. 0. Zh. Anal. Khim. 1087, 4 2 , 518-24; Chem. Abstr. 1087, 106, 201827f. (177) Waiash, M. I.; Zakharl, N. A.; Rizk, M.; Toubar, S. Farmaco, Ed. R a t . 1087, 4 2 , 81-90, (178) El Shabourl, S. R.; Hussain, S. A.; Taha, A. M.; Imera, K. M. Bull. Pharm. Scl., Asslut Unlv. 1085, 8 , 120-33. (179) Sankar, D. G.; Sastry, C. S.P.; Reddy, M. N.; Prasad, S. N. R . Indlan J . Pharm. Sci. 1087, 4 9 , 69-71. (180) Sashv, C. S. P.; Reo, B. 0.; Sastry, B. S . J. Indian Chem. SOC. 1088, . 63, 1006-1007. (181) Wolfbeis, 0. S.; Koller, E. Mlkrochim. Acta 1085, 1 , 389-95. (182) Yu. Y.; Guo, Q. Yaozue Xuebao 1085, 2 0 , 923-30; Chem. Abstr. 1988, 104, 230578q. (183) Sastry, B. S.; Rao, E. V.; Suryanarayana, M. V.; Sastry, C. S. P. Pharmazie 1088, 41, 739-40. (184) Bozimowski, D.; Artiss, J. D.; Zak, B. J. Clln. Chem. Clln. Blochem. 1085, 2 3 , 883-89. (185) Gu, R.; Xie, C.; Xu, C.; Hong, S.;Wang, C.; Hu, S . ; Luo, X. Linchan Huaxue Yr Gongye 1085, 5 , 12-23; Chem. Abstr. 1088, 104, 221581h. (166) Vlllm, V. Blomed. Blochim. Acta 1985. 4 4 , 1717-20. (187) Lasky, F. D.; LI, 2 . M. C.; Shaver, D. D.; Savory, J.; Savory, M. 0.; Wliley, D. G.; Mlkoiak, B. J.; Lantry, C. L. Clln. Blochem. (Ottawa) 1085, 18. 290-96.

(188) Vlnk. K. L. J.; Schuurman, W.; Van Gansewlnkel, R. Clin. Chem. (Winston-Salem, NC) 1088, 32, 1389-93. (189) Doumas, B. T.; Wu, T. W.; Jendrzejczak, B. Clln. Chem. (Wlnston-Sa/em, NC) 1087, 33, 769-74. (190) Mori, H.; Katami, T.; Hayakawa, T. Gifu-ken Kogai Kenkyusho Nenpo 1088, 14, 40-42; Chem. Abstr. 1087, 107, 182416~. (191) Fogg, A. 0.; Abdalla, M. A. J. Pharm. Biomed. Anal. 1085, 3 , 315-21. (192) Gallate, H.; Pracht, I. J. Clln. Chem. Clin. Biochem. 1085, 23, 45360; Chem. Abstr. 1085, 103, 209409e. (193) Palling, D. J.; Hoilocher, T. C. Mikrochim. Acta 1085, 2 , 137-44. (194) Lupina, T.; Cripps. H. J. Assm. Off. Anal. Chem. 1087, 7 0 , 112-13. (195) Legler, G.; Mueller-Platz, C. M.; Mentges-Hettkamp, M.; Piiieger, G.; Juelich, E. Anal. Blochem. 1985, 5 0 , 278-87. (196) Asryants, R. A.; Duzhenkova, I.V.; Nagradova, N. K. Anal. Biochem. 1085, 151, 571-74. (197) Marshall, T.; Williams, K. M. Clln. Chem. (Winston-Salem, NC) 1087, 3 3 , 577-78. (198) Watanabe, N.; Kamei, S.;Ohkubo, A.; Yamanake, M.; Ohsawa, S.; Maklno, K.; Tokuda, K. Clln. Chem. (Winston-Salem, NC) 1088, 3 2 , 1551-54. (199) Yoshizaki, H.; Osawa. S. €/sei Kensa 1088, 35, 1171-76; Chem. Abstr 1087, 106, 98842f. (200) Klimowicz, A. D&gn. Lab. 1088, 22, 163-67; Chem. Abstr. 1087, 107, 32473a. (201) Dilena, B. A.; Peake. M. J.; Pardue, H. L.; Skoug, J. W. CUn. Chem. (Winston-Salem, NC) 1088, 3 2 . 486-91. (202) Teshlma, S.; Mitsuhida. N.; Ando, M . Clin. Chim. Acta 1085, 150, 165-74. (203) . . Nledbala, R. S.; Waits, F.; Schray, K. J. J. Biochem. Biophys. . . Methods 1088, 13, 205-10.(204) Van Assendelft, 0. W.; Holtz, A. H.; Lewis, S. M. Lab (Milan) 1085, 12, 171-75; Chem. Abstr. 1085, 103, 1925783. (205) Gurkan, T.; Tosunogiu, S . Istanbul Univ. Eczacilik Fak. Mecm. 1085, -21. . , 137-46. - . .-. (206) Youssef, A. F.; El-Shabourl, S.R.; Mohamed, F. A.; Rageh, A. M. I.J. Assoc. Off. Anal. Chem. 1088, 69, 513-18. (207) Ayad, M. M.; Belal, S. F. A.; El Adi, S. M.; El Kheir, A. A. Anal. Lett. 1985, 18, 1419-29. (208) Belal. S.; El Kheir, A. A.; Ayad, M. M.; Ai Adl, S . A. Analyst (London) 1088, 1 1 1 , 1039-43. (209) Isobe, K.; Yamada, H.; Soejima, Y.; Otsuji, S. Blochem. Med. Metab. Biol. 1087, 3 7 , 110-20. (210) Sharma, A.; Artiss. J. D.; Zak, B. Clin. Biochem. (Oftawa) 1087, 2 0 , 167-72. (211) Yan, E.; Fan, H. Yaowu FenxlZazhi 1085, 5 , 295-96; Chem. Abstr. 1088, 104, 5 6 4 9 4 ~ . (212) Tomita, K.; Kamel, S.; Shlraishi, T.; Hashimoto. Y.; Yamanake, M. J. Appl. Biochem. 1085, 7 , 303-10. (213) Davidson. A. G. J. Pharm. Blomed. Anal. 1085, 3 , 235-40. (214) Jiao, K. Yiyao Gongye 1088, 17, 509-12; Chem. Abstr. 1087, 106, 73001t. (215) Bagavant, G.; Rowhanl. V. Indien Drugs 1088, 23, 373-76. (216) Zhao. L. Huaxue ShJ/e 1085, 26, 254-56; Chem. Abstr. 1085, 103, 179071 u. (217) Chatterjee, P. K.; Jaln, C. L.; Sethl, P. D. Indian J. Pharm. Sci. 1088, 48, 195-97. (218) Zhang, X. Yaoxue Tongbao 1085, 2 0 , 278-80; Chem. Abstr. 1088, 104, 56512b. (219) Sakai, T.; Ohno, N. Talanta 1088, 33, 415-19. (220) Toeppich, D.; Heuck, U.; Mueller, R.; Paul, R.; Scholz, R. Pharm. Pharmakother. Laboratorlumsdlagn. 1087, 126, 121-24; Chem. Abstr. 1087, 107, 3610n. (221) Mueller, R.; Paul, R.;Toepplch, D.; Wuenshcer, G. Zentralbl. Pharm., Pharmakother. Laboratorlumsdlagn. 1087, 126, 125-35; Chem. Abstr. 1967. 107. 36110. (22ij -Per'kov, i: G:Chan Van Thanh, D. A. V. Z h , Anal. Khim. 1086, 4 1 , 666-74; Chem. Abstr. 1088. 105, 536892. (223) Norman, R. J.; Edberg, J. C.; Stucki, J. W. Soil Scl. SOC. Am. J. 1085, 4 9 , 1182-85. (224) Li, J.; Luo, Q.;Zeng, Y. Fenzi Huaxue 1088, 1 4 , 597-99; Chem. Abstr. 1085, 105, 237569s. (225) Lepine, L.; Gilbert, R.; Beianger, G. Anal. Chem. 1088, 58, 1152-56. (226) Ren. Y.; Tong, Y. Ylngyong _. - Huaxue 1085, 2 , 12-17; Chem. Abstr. 1088, 104, 8106211 (227) Meal, L. Anal. Chem. 1088, 5 8 , 834-36. (228) Muzzareili, R. A. A,; Rocchetti, R. Carbohydr. Polym. 1085, 5 , 461-72 (229) Y ,o; G. S.; Koh, I. B. Yakhak Hoechi 1088, 3 0 , 100-103; Chem. Abstr. 1088, 105, 852883. (230) Dixit, L.; Ram, S.; Gupta, R. B.; Chandola. H. C.; Kumar, P. Analyst (London) 1086, 1 1 1 , 101-103. (231) Wu, G.; Jin, N.; Yang, S . Nanjing Ylxueyuan Xuebao 1088, 6 , 17-19; Chem. Abstr. 1088, 105, 139282~. (232) Santonl, G.; Gross, G. G. Med. Mil. 1086, 136. 179-82; Chem. Abstr. 1987, 107, 12120%. (233) Bettero, A.; Bollettln, P. Ann. Chlm. (Rome) 1085, 7 5 , 351-58. (234) Merrick, M. F.; Pardue, H. L. Clln. Chem. (Winston-Salem, N C ) 1088, 32, 598-602. (235) Fasanmade, A. A.; Fell, A. F. Ana/yst (London) 1985, 110, 1117-24. (236) Cui, J.; Wang, 0. Nan/lng Yaoxueyuan Xuebao 1085, 16, 60-63; Chem. Abstr. 1088, 104, 116150~. (237) Heaies, S. J. R.; Bennett, J. Clln. Chlm. Acta 1985, 153, 253-57. (238) El Yazbl, F. A.; Korany, M. A.; Bedalr, M. J. Pharm. Belg. 1085, 4 0 , 244-48. (239) Aaron, J. J.; Gnlngue, D. Analusis 1085, 73, 426-29. ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

143R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (240) El Sebakhy, N. A.; Seif El Din, A. A,; Korany, M. A. J . Pharm. Beig. l988#4 1 , 222-25. (241) Lawrence, A. H.: Kovar, J. Analyst (London) 1985, 1 IO, 827-30. (242) Bukovits, G. J.; Lezerovich. A. JAOCS. J . Am. OiiChem. Soc. 1987, 6 4 . 517-20. (243) Abdel-Hamid, M. E.; Barary, J. H.; Hassan, E. M.; Elsayed. M, A. Anal. Lett. 1988. 19. 1053-63. (244) El Yazbi, F. A.; Korany, M. A.; Abdei-Razak, 0.; Elsayed, M. A. J. Assoc. Off. Anal. Chem. 1988, 6 9 , 614-18. (245) Wang, H.; Yin, H.; Wu, Z.; Wang, S. Huaxue Shui 1985,8 , 189-90; Chem. Abstr. 1988, 105, 13922s. (246) Eckerie, K. L.; Hsla, J. J.; Mielenz, K. D.; Weidner, V. R. NBS Spec. Pubi. ( U . S . ) 1987,250-56. (247) Sanderink, G. J. C. M.; Van Rijn, H. J. M. Tijdschr. Ned. Ver, Kiin. Chem. 1985, 10, 232-37; Chem. Abstr. 1988, 104, 105351j. (248) Soloni, F. G.; Cummingham. M. T.; Amazon, K. Am. J . Ciin. Pathoi. 1988,8 5 , 342-47. (249) Notle, K. D.; Gartzke, J. 2 . M e d . Laboratoriumsdiagn.1985,2 6 . 402404; Chem. Abstr. 1986, 104, 17264~. (250) Jones, R.; Orchard, M. J.; Hall, K. J . Pharm. Biomed. Anal. 1985,3 , 335-42. (251) Tahboub, Y. R.; Pardue, H. L. Anal. Chim. Acta 1985, 173, 23-32. (252) Tahboub, Y. R.: Pardue, H. L. Anal. Chim. Acta 1985, 173, 43-49. (253) Cummings, R. H.; Pardue, H. L. Ciin. Chem. (Winston-Salem, NC) 1987. 3 3 , 493-97. (254) Ohnishi, M.; Hlroml, K. Anal. Sci. 1985, 1 , 89-90, (255) Zoppl, F. Ciin. Chem. (Winston-Salem, NC) 1985,3 1 , 2036-39. (256) Yamane, T. J . Now. Injection Anal. 1988,3 , 77-90; Chem. Abstr. 1987, 107, 108216s. (257) Shimizu, H. Ryusan to Kogyo 1988,3 9 , 123-30; Chem. Abstr. 1987, 106, 188013r. (258) Kuznetsov, V. V. Zh. Anal. Khim. 1985,4 0 , 1859-65; Chem. Abstr. 1988, 104, 27983a. (259) Narusawa, Y.; Hashlmoto, T. Chem. Left. 1987,(7), 1367-70. (260) Anagnostopoulou, P. I.; Koupparls, M. A. Anal. Chem. 1985. 58, 322-26. (261) Kamson, 0.F. Anal. Chim. Acta 1988, 179. 475-79. (262) Schothorst, R. C.; Schmitz, 0. 0.; Den Boef, G. Anal. Chim. Acta 1988, 179, 299-305. (263) Suzuki. Y. Bunseki Kagaku 1985 3 4 , 409-13; C h e k . Abstr. 1985, 226737~. (264) Lazaro, F.; Luque de Castro, M. D.; Valcarcel, M. Analusis 1987, 15, 183-87. (265) Bermudez, B.; Lazaro, F.; Luque de Castro, M. D.; Valcercel, M. Analyst (London) 1987, 112, 535-38. (266) Koupparis, M. A.; Barcuchova, A. Ana/yst (London) 1988, 1 1 1 , 3 13- 18. (267) Salerno, R. A.; Odell, C.; Cyanovich, N.; Bubnis. 8. P.; Morges, W.; Cray, A. Anal. Biochem. 1985, 151, 309-14. (268) Masoom, M.; Worsfold, P. J. Anal. Chim. Acta 1988, 188, 281-83. (269) Baba, Y.; Yamamoto, Y.; Yoza, N.; Ohashl, S. BunsekiKagaku 1985, 3 4 , 692-94; Chem. Abstr. 1988, 104, 31194m. (270) Sommer, L.; Ackermann, G. Pure Appi. Chem. 1988,58, 1015-22. (271) Peris-Martlnez, V.; Gimeno-Adebntage, J. V.; Pastor Garcia, A,; Bosch Reig, F. Analysts (London) 1985, 110, 1001-1004. (272) Kaiivas, J. H. Anal. Chem. 1988, 5 8 , 989-92. (273) Horvath, T.; Bllles, F. 2 . Phys. Chem. (Leipzig) 1985,2 6 6 , 1106-15. (274) Per'kov. I.G.; Drozd, A. V.; Artsebashev, G. V. Z h . Anal. Khim. 1987,42,68-77; Chem. Abstr. 1987, 106, 22640%. (275) Ramis-Ramos, G.; Garcla Alvarez-Coque, M. C.; Villaneuva-Camanas, R. M.: Mongay-Fernandez, C. Spectrochim. Acta, Part A 1988, 42A, 771-74. (276) Sasaki, K.; Kawata, S.; Minami, S. Appi. Spectrosc. 1988, 4 0 , 185-90. (277) Rossi, D. T.; Pardue, H. L. Anal. Chim. Acta 1985, 175, 153-61. (278) Bao, Q.; Wang, Y. Guangpuxue Yu Guangpu Fenxi 1987, 7 , 70-71; Chem. Abstr. 1987, 107, 189684t. (279) Otto, M.; Sporrelter, K. Mikrochim. Acta 1985,3 , 167-77. (280) Zhang, Z.; Zheng, J. FenxiHuaxue 1985, 13, 262-65; Chem. Abstr. 1985, 103, 188695~. (281) Schwartz, L. M. Anal. Chim. Acta 1985, 178, 355-59. (282) Tilden, S. B.; Denton, M. B. Appi. Spectrosc. 1985, 3 9 , 1017-22. (283) Xu, 0. FenziHuaxue 1988, 1 4 . 302-304; Chem. Abstr. 1988, 105, 71659~. (284) Sagaidachnyi, S. N.; Soldatov, V. N. Zh. Anal. Khim. 1988, 4 1 , 224-32 Chem. Abstr. 1988, 104, 236555b. (285) Brown, C. W. Spectroscopy (Springfield, Ores.) 1988, 1 , 32, 34-37. (286) Allan, A. L.; Agullo, E.; Fernandez-Band, B. S.Bioi. Soc. Quim. Peru 1985, 51, 50-59: Chem. Abstr. 1986, 104, 141153e. (287) Allan, A. L.; Agulio, E.; Fernandez-band. B. S. Boi. Soc. Quim. Peru 1988,5 1 , 108-16; Chem. Abstr. 1985, 105, 126070~. (288) Saperstein, D. D. SpechoscopV(SpringfeM, OR) 1988, 1 , 46, 48-49. (289) El Yazbl, F. A.; Korany, M. A.; AbdeCRazak, 0.; Elsayed. M. A. Anal. Lett. 1985, 18, 2127-42. (290) Burke, R. W.; Smith, M. V.; Powell, L. J.; Mavrodineanu, R. Am. Lab, (Fairfield, CT) 1988, 18, 67-70, 72, 75-76. (291) Weldner, V. R.; Mavrodineau, R.; Mielenz, K. D.; Velapoldi, R. A,; Eckerle. K. L.; Adams, B. NBS Spec. Pubi. ( U . S . ) 1988, 260-102, 67 pp. (292) Korzun, W. J.: Mlller, W. G. Clin. Chem. (Winston-Salem, NC) 1988, 3 2 , 162-65. (293) Rasberry. S.D. Fresenlus' 2. Anal. Chem. 1987,3 2 6 , 609-12. (294) Jansen, A. P.; Van Kampen, E. J.; Steigstra, H.; Van der Ploeg, P. H. W.; Zwart. A. J . Clh. Chem. Ciin. Biochem. 1988,24 141-46. (295) Szabo, A.; Zajka. 0.; Nagy. L. Hung. Teijes H U 4 0 , 594, 28 Jan 1987, Appl 85/2,2085 Jun 1985: 13 pp; Chem. Abstr. 1987, 107, 69932a.

144R

ANALYTICAL CHEMISTRY, VOL. 60,

NO. 12, JUNE 15,

1988

(296) Gil, M.; Escolar, D.; Iza, N.; Luis-Montero, J. Appi. Spectrosc, 1988, 40, 1156-61. (297) McDonakl, 0.L.; Watts, M. T. Am. J. Ciin. Pathof. 1985,8 4 , 513-17. (298) Hovanec, J. W.; biders, R. P.; Ward, J. R. Comput. Enhanced Spectrosc. 1986,3 , 69-71. (299) Ni, Y.; Yang, Q. FenxiHuaxue 1986. 14, 250-53; Chem. Abstr. 1988, 105. 90208n. (300) &m&-Adelantado, J. V.; Martinez, V. P.; Reig, F. B. J. Mol. Struct. 1988) 143, 481-84. (301) Bugaevskii, A. A.; Mas'ko, A. N. Z h . Anal. Khim. 1985,4 0 , 1557-62; Chem. Abstr. 1985. 103. 188559m. (302) Bershtein. I. Ya:; Lupashevskaya, D. P. Fresenius' 2 . Anal. Chem. 1988,323, 117-22; Chem. Abstr. 1988, 104, 213338n (303) Martinez-Calatayud, J.; Campins-Falco, P.; PascuaCMarti, M. C. Ana lyst (London) 1988, 1 1 1 , 1317-20. (304) Li, Z.;Li, C. Fenxi Huaxue 1988, 14, 661-66; Chem. Abstr. 1987, 103800t. (305) Kaszonyi, A.; Chovancek. M.: Hronec, M.; Ilavsky, J. Proc. Conf. Coord. Chem. 1985, loth, 195-200. (306) Chakrabarti, A. K. Proc. Indian Nati. Sci. Acad., Part A 1987,5 3 , 441-49. (307) Ohyoshi, E. Polyhedron 1988,5 , 2101-2105. (308) Vithanage, R. S.;Dasgupta, P. K. Anal. Chem. 1988, 58, 326-30. (309) Asuero, A. G.; Herrador, M. A.; Jimenez, A. M.; Navas, M. J. Fresenius' Z . Anal. Chem. 1988,3 2 5 , 299-300. (310) Asuero, A. G.; Herrador, M. A.; Jlmenez, A. M. Anal. Left. 1988, 19, 837-43. (311) Van Iersel, J.; Jzn, J. F.; Duine, J. A. Anal. Biochem. 1985, 751, 196-204. (312) Harju, L. Finn. Chem. Left. 1985,(6), 231-34. (313) Harju, L. Finn. Chem. Lett. 1985,(6), 235-38. (314) Law, K. H.; Das, N. P. J. Chromatogr. 1987,3 8 8 , 225-33. (315) Sasaki, H.; Inada, Y. Kaiho-Kagaku PC Kenkyukai 1988,8 , 179-89; Chem. Abstr. 1987, 107, 132726d. (316) Sasaki, H. Kaiho-Kagaku PC Kenkyukai 1988, 8 , 190-98; Chem. Abstr. 1987, 107, 132727e. (317) Bridge, T. P.; Fell, A. F.; Wardman, R . H. J . Soc. Dyers Coiour. 1987, 103, 17-27. (318) Skujlns, S.J . Spectrosc. 1988, 7 , 117-18. (319) Juhl, L. L.; Kalivas, J. H. Anal. Chim. Acta 1986, 187, 347-51. (320) Wahbi, A. A. M.; Abounassif, M. A.; AI-Kahtani, J. M G. Analyst (London) 1988, 1 1 1 , 777-80. (321) Park, M. K.; Cho, J. H. Arch. Pharmacal. Res. 1985, 3 , 329-34. (322) Davidson, A. G. J . Pharm. Biomed. Anal. 1985,3 , 329-34. (323) Grant, A.; Bhattachawa, P. K. J . Chromatogr. 1985,3 4 7 , 219-35. (324) Sasaki. H.; Tanaka, M.; Inada, Y. Kaiho-Kagaku PC Kenkyukai 1985, 7,92-98; Chem. Abstr. 1987, 106, 3 9 0 8 ~ . (325) Allan, A. L.; Agullo, E.; Fernandez-Band, B. S. Boi. SOC.Quim. Peru 1984,5 0 , 331-39; Chem. Abstr. 1986, 104, 27940). (326) Jones. R.: Leadiev. B. S.J . Pharm. Biomed. Anal. 1988. 4 . 309-16. (327) Rlos, A , Luque be Castro, M D ; Valcarcel, M Anal Chim Acta 1988, 179. 463-68 (328) Hardcastle, F. D.; Leach, R. A.; Harris, J. M. Anal. Chem. 1988,5 8 , 490-93. (329) Frackowiak, D.; Hotchandani, S.; Szych, 8.; Leblanc, R. M. Acta Phys. Poi.. A 1988,A69, 121-33. (330) Oldham, P. B.: Patonay, G.; Warner, I.M. Anal. Instrum. (NY) 1987, 16, 263-74. (331) Heisz, 0.GIT Fachz. Lab. 1987, 3 1 , 87-89; Chem. Abstr. 1987, 106, 168104t. (332) Irish, D.; Bonham, S. Chem. N . Z . 1988,5 0 , 53-55. (333) Timothy, J. G. Opt. Eng. 1985,2 4 , 1066-71. (334) Winge, R. K.; Fassel. V. A.; Eckels. D. E. Appi. Spectrosc. 1988, 4 0 , 461-64. (335) Lederman, E. R.; Gerritsen, H. J. Appi. Opt. 1988, 2 5 , 1037. (336) Seaver, M.; Manuccia, T. J.; McDonald, J. R. Chem. Phys. Lett. 1988, 123, 164-68. (337) TiMen, S. B.; Denton, M. B. Appi. Spectrosc. 1985, 3 9 , 1022-29. (338) Choat, T.; Cruywagen, J. J.; Heyns, J. B. B. Anal. Chem. 1988,5 8 , 2570-71. (339) Drachev, V. A.; Chernyak, V. Ya.; Sukhoi, D. P. Prib. Tekh. Eksp. 1985,(4), 222-23; Chem. Abstr. 1985, 103, 191891~. (340) Wei, L.; Fujiwara, K.; Fuwa, K. Guagpuxue Yu Guangpu fenxi 1986,6 , 22-31; Chem. Abstr. 1988, 105, 53603s. (341) Olsson, L. F. Chem. Ser. 1985,25, 194-96. (342) Ingle, J. D., Jr.; Crouch, S. R. SpectrochemicalAnalysis; Prentice Hall: Englewood Cliffs, NJ. 1988. (343) Murthy, V. V.; Freundlich, L.; Karmen. A. Anal. Chem. 1988, 5 8 , 1898-1900. (344) Toei, J.; Baba, N. BunsekiKagaku 1986,3 5 , 411-13; Chem. Abstr 1986, 105, 53836~. (345) Altemose, I.R.; DeLong, L. E.; Locke, L. E. J . Chem. Educ. 1988, 6 3 , A262-A266. (346) Coates, J. P. Spectroscopy (Springlieid, O R ) 1986, 1 ( 5 ) , 16. (347) Worthy, W.: Dagani, R.; Stinson, S.; Kreiger, J. Chem. Eng. News 1988,6 4 , 42. (348) Coates, J. P. Spectroscopy (Springfield, O R ) 1987,2(5),16-18. (349) Krieger, J.; Worthy, W.; Dagani, R.; Stinson, S. Chem. Eng. News 1987,65(12), 46-50. (350) Beckman Instruments, Inc. Chem. Eng. News 1987 65(12), 46-47. (351) Snook, D.; Grillo, A. Am. Lab (FairfieM, C T ) 1988, 18, 28, 30, 32. (352) Giiford Instruments, Inc. Lab. Equip. 1987,24(1), 43. (353) Guided Wave, Inc., Bulletin 8706. (354) Hewiett-Packard, Inc. Chem. Eng. News 1986,64(12), 42. (355) Kontron. Inc. Chem. Eng. News 1988,64(12), 42.

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (356) Liu, Z. Yaowu Fenxi Zazhi 1985, 5 , 227-29 Chem. Abstr. 1988, 104, 10705~. (357) Mllton Roy, Inc. Bulletln 7500-750b. (358) Mllton Roy, Inc. Blomedlcal Products 1987, 12, 16. (359) Altemose, 1. R.; Holmes, R. 6.; Locke. L. E. Am. Lab. (Fairfield, C T ) 1986, 18, 74-80. (360) Secomam. Inc. Chem. Eng. News 1987 65(12), 49. (361) Shimadzu Scientlflc Instruments, Inc. Amer. Lab. 1987, 19, 17. (362) Shimadzu Scientific Instruments, Inc. Chem. Eng. News 1987, 65(12), 49. (363) Shimadzu Scientific Instruments, Inc. Buiietln CA101-984A. (364) Tracor Northern, Inc. Chem. Eng. News 1988, 6 4 , 42. (365) Varian Associates, Inc. Chem. Eng. News 1986,64(12), 47. (366) Varian Associates, Inc. Amer. Lab. 1987, 19, 16. (367) Varian Associates, Inc. Chem. Eng. News 1987,65(12),47-48. (368) Zharov, V. P.; Montanari, S. G. R o c . Int. Conf. Lasers 1984 (Pub. l985),641-47. (369) Takashl, S.; Yoshio, 0.; Ryojl, N.; Takashi, Y.; Norlyoshi, H.; Tetsuhiro, I.; Iwao, 0. Hiroshima-kenritsu Selbu Kogyo G~utsuSenta Hokoku 1984, 2 7 , 5-7; Chem. Abstr. 1985, 103, 226477t. (370) Schlemmer, H. H.; Maechler, M. J . fhys. E: Sci. Instrum. 1985, 18, 9 14-19. (371) Pascu, M. L.; Pascu, A.; Dumbraveanu, G.; Crlstu, D. J . fhys. E: Sci. Instrum. 1986, 19, 54-58. (372) Nevlus, T. A,; Pardue, H. L. J . Autom. Chem. 1986,8 , 12-17. (373) Marechel, A. Opt. Acta 1985,3 2 , 1471-74. (374) Lang, V. L.; Winn, J. S. Rev. Sci. Instrum. 1985. 56, 2209-12. (375) Kopola, H.; Kaijansaari, R.; Myllyla, R. Roc. S f I E - I n t . SOC. Opt. Eng. 1986,5 8 6 , 204-10. (376) Zhao, T. Huagong ZMonghua Jl Yibiao 1987, 14, 73-75; Chem. Abstr. 1987, 107, 167772t. (377) Lott, J. A.; Khabbaza, E. J . Autom. Chem. 1985, 7 , 197-200. (378) Bach, D. T.; Gruenke, R. A.; Levin, H. W.; Robertson, C. W., Jr. Eur. Pat. Appi. EP 201,824, 20 Nov 1986, US Appl. 731,781, 08 May 1985; 33 pp; Chem. Abstr. 1987, 106, 206894k. (379) Hllller, E.; Koehne-Waechter. M. LaborPraxls 1987, 1 1 , 158, 181-82, 164, 166; Chem. Abstr. 1987, 106, 206960d. (380) Perkin-Elmer Corp. Lab. Equip. 1987,24(1), 1. (381) Linear Instruments, Inc., Chromatography 1987,2 , 14. (382) Kube, M.; Tierney, M.; Lubman, D. M. Anal. Chim. Acta 1985, 171, 375-79. (383) Ding, T.; Yan, 2. Fenxi Huaxue 1985, 13. 310-13; Chem. Abstr. 1985, 103, 1887920. (384) Huber, L.; Emmert, J.; Gratzfeld-Huesgen, A.; Duison, W. Staub-Reinhalt. Luff 1987,4 7 , 22-27; Chem. Abstr. 1987, 106, 188224k. (385) Buchanan, D. N.; Thoene, J. G. J . Chromatog. 1985, 344, 23-32. (386) Lazaro, F.; Rios, A.; Luque de Castro, M. D.; Valcarcel, M. Analusis 1986, 14, 378-88. (387) Wolf, K.; Worsfoid, P. J. Anal. f r o c . (London) 1988, 2 3 , 365-66. (386) Lu, Y.; Zhu, Y.; Yan, Z. Fenxi Huaxue 1985, 13, 545-48; Chem. Abstr. 1985, 103, 188594~. (389) Klrie, K. Jpn. Kokai Tokkyo Koho JP 62 15,439 [87 15,4391, 23 Jan 1987, Appl. 85/154,896, 13 Jui 1985; 3pp.; Chem. Abstr. 1987, 107, 108464~. (390) Blanco, M.; Gene, J.; Iturriaga, H.; Maspoch, S. Analyst (London) 1987, 112, 619-22. (391) Lazaro, F.; Luque de Castro, M. D.; Valcarcei, M. Anal. Chem. 1987, 5 9 , 950-54. (392) Wannowius , K. J.; Sattier, F.; Eiias, H. GIT Fachz. Lab. 1985,2 9 , 1138, 1141-42, 1144-46, 1148-49; Chem. Abstr. 1986, 104, 406062. (393) Sedlmalr. J. Dlss. Abstr. Int. 6 1988,4 7 , 894. (394) Sedimair, J.; Baliard, S. G.; Mauzerall, D. C. Rev. Sci. Instrum. 1988, 57. 2995-3003. . , . ... . (395) Angel, S. M. Spectroscopy (Springfield, O R ) 1987,2 , 38-46. (396) Kawabata, Y.; Ishibashi, N. Dojln Nyusu 1988,3 7 , 3-9; Chem. Abstr. 1987. 107. 125936~. (397) Saari, L. A. Trends Anal. Chem. ( f e r s . Ed.) 1987,6 , 85-90. (398) Schirmer, R. E.; Gargus, A. G. Am. Lab. (FalrfieM, C T ) 1988, 30, 32-34, 36, 38-39. (399) Wolfbeis, 0. S. Anal. Proc. (London) 1987,2 4 , 14-15. (400) Skogerboe, K. J.; Yeugn. E. S. Anal. Chem. 1987,5 9 , 1912-15. (401) Costello, D. J. PCT Int. Appl. WO 87 00,920, US Appl. 763,0196 Aug 1985; 22 pp; Chem. Abstr. 1987, 106, 1724612. (402) Whatman Labsales, Inc. J . Chem. Educ. 1987,6 4 , A283. (403) Specialty Medical Industries, Inc. Biomedlcal Products 1987, 12, 1. (404) Beckman Instruments, Inc., Bulletin S862118-19EP10645. (405) Koch, K. P.; Maechler, M.; Glueck, F. Rev. Sci. Instrum. 1985,56, 2243-47. (406) Bautz, D. E.; Ingle, J. D., Jr. Anal. Chem. 1987,5 9 , 2534-35. (407) Akiyama, 0. Eur. Pat. Appl. EP 204.090, 10 Dec 1986, JP Appl. 85/ 64,593, 28 Mar 1985; 21 pp; Chem. Abstr. 1987, 106, 165860a. (408) Coates, J. P. Spectroscopy (SprlngfkM, O R ) 1986, 1(9), 14, 18, 18-19. (409) Dohmen, F. T. M.; Thijssen, P. C. TrAC, Trends Anal. Chem. ( f e r s . Ed.) 1985,4, 167-69. . (410) Owen, T.; Ernrnert, J. LP Spec.: Chromatog./Spektrosk. 1887,14143: Chem. Abstr. lB87. 107. 108484~. (41 1)' Beckman Instruments, Inc. Spectroscopy 1987,2 , 16. (412) Kataev, M. Yu.; Mltsei, A. A. Avtometrlya 1985,(4), 15-20; Chem. Abstr. 1986, 104, 28002s. (413) Nickel, P.; Metzer, M.; Buehrmann-Schulz, J. Phar. Ztg. 1985, 130, 2071-73.; Chem. Abstr. 1986, 104, 24235~. (414) Ebel, S.;Mueck, W.; Werner-Busse, A. Fresenlus' 2.Anal. Chem. 1987,3 2 7 , 794-97; Chem. Abstr. 1987, 107, 167989~. (415) Sasaki, H.; Inada, Y. Kaiho-Kagaku f C Kenkyukal 1988,8 , 51-61; Chem. Abstr. 1986, 105, 202229d.

(416) Borgen, 0. S.; Kowalskl, 8. R. Anal. Chim. Acta 1985, 174, 1-26. (417) Sasaki, H. Kalho-Kagaku f C Kenkyukai 1985, 7 , 99-109; Chem. Abstr. 1988, 105, 217934d. (418) Sasaki, H. Kaiho-Kagaku f C Kenkyukai 1988, 8 , 62-72; Chem. Abstr. 1988, 105, 202228~. (419) Sasaki, H.; Inada, Y. Kalho-Kagaku f C Kenkyukai 1985, 7 , 113-22; Chem. Abstr. 1988, 105, 202231~. (420) Sasakl, H.; Inada, Y.; Yamashita, T. Kaiho-Kagaku f C Kenkyukai 1985, 7 , 99-112; Chem. Abstr. 1988, 105, 202230~. (421) Sasaki. H.; Tanaka, M.; Kobayashi, H.; Tanaka, S.;Watanabe, A.; Itoh, H.; Saekl, T. Kaiho-Kagaku f C Kenkyukai 1985,7 , 185-70; Chem. Abstr. 1988, 105, 2022322. (422) Wang, H. Jisuanji Yu Yhngyong Huaxue 1985, 2 , 222-27; Chem. Abstr. 1988 104, 1989130. (423) Krazrten. J.; De Jazlher. P. C.; DecnoD-Weever, L. G. Anal. Chim. Acta 1988, i 8 0 . 457-72. (424) Interactive Microware, Inc. Amer. Lab. News 1987, Jan/Feb, 40. (425) Williams, J. F.; McGrattan, P. A. Instrum.-Res. 1988,2 , 24-27. (426) Imasaka, T.; Nakanishi, K.; Ishibashi, N. Anal. Chem. 1987, 5 9 , 1554-57. (427j-BeAhoud, T.; Delorme, N. Appl. Spectrosc. 1987,4 7 , 15-19. (428) Nickolaisen, S. L.; Bialkowski, S. E. Anal. Chem. 1986,5 8 , 215-20. (429) Teramae, N.; Voigtman, E.; Lanauze, J.; Winefordner, J. D. Anal. Chem. 1986,5 8 , 761-65. (430) Suzuki, J.; Kambara, T. Bunseki Kagaku 1986,2 5 , 628-28; Chem. Abstr. 1986, 105, 182926~. (431) Chen, Z.; Xiao, W.; Zhu, Y.; Zhao, G. Zhongguo Kexue Jlshu Daxue Xuebao 1988, 16, 396-401; Chem. Abstr. 1987, 106, 168059g. (432) Li, H.; Cai, R.; Yu, X.; Zeng, Y.; Zhu, L. Fenxi Huaxue 1985, 13, 651-56; Chem. Abstr. 1985, 103, 226632q. (433) Aoki, T.; Kamei, M.; Munemorl, M. Chem. Express 1988, 1 , 571-74 Chem. Abstr. 1987, 106, 38095e. (434) Barsourn, B. N.; Kadry, A. M.; Ibrahim, Y. A,; Hanna, H. R.; Sakla, A. B. J . Chin. Chem. SOC.(Taipei) 1985,3 2 , 117-20. (435) Hussain, M. F.; Bansai, R. K.; Puri, B. K.; Satake, M. Analyst (London) 1985, 110, 1131-36. (436) Zhou, 2.; Tang, L. Zhejiang Gongxueyuan Xuebao 1985,2 8 , 71-78; Chem. Abstr. 1988, 104, 967328. (437) Zhang, S.;Bu, X.; Li, W. Fenxi Huaxue 1985, 13, 828-32; Chem. Abstr. 1988, 104, 101546d. (438) Pyatnikskll, I. V.; Nazarenko, A. Yu.; Sichkar, N. E. Z h . Anal. Khim. 1985, 40, 1423-26; Chem. Abstr. 1988, 104, 45030s. (439) Sasaki, Y. Bull. Inst. Chem. Res., Kyoto Univ. 1988, 64, 140-49. (440) Morales, A.; Toral, M. I.Analyst (London) 1985, 110, 1445-49. (441) Salinas, F.; Berzas, J. J.; Esplnosa-Mamilla,A. Bull. SOC. Chim. Belg. 1985,9 4 , 719-25. (442) Ramirez, A. A.; Linares, C. J.; Ales-Barrero, F.; Roman-Ceba. M. Ta/anta 1988,33, 1021-25. (443) Sharrna, R. K.; Shivahare, G. C. Scr. Fac. Scl. Nat. Unlv. Purkynianae Brun. 1985, 15, 529-34. (444) Mehnett, E. Arch. Exp. Veterinaermed. 1988, 4 0 , 438-39; Chem. Abstr. 1988, 105, 38810~. (445) Mallnowska, E.; Kasiura, K. Chem. Anal. (Warsaw) 1988, 3 1 , 797809; Chem. Abstr. 1987, 107, 69825t. (446) Frommberger, R. Lebensmlttelchem. Gerlchtl. Chem. 1985,3 9 , 99101; Chem. Abstr. 1985, 103, 213489~. (447) Flamerz, S.;Bashir, W. S. Analyst (London) 1985, 110, 1513-15. (448) Mezaraups, G.; Kunlcka, I.; Jansons, E. Z h . Anal. Khim. 1988,4 1 , 99-103; Chem. Abstr. 1988, 104, 2363533. (449) Khalifa, M. E.; Brahirn, K. M.; El-Asmy, A. A. Indian J. Chem., Sect. A . 1986,2 5 A , 501-503. (450) Motomizu, S.; Oshlma, M. Analyst (London) 1987, 712, 295-300. (451) Gao, J.; Zhu, X.; Kang, J.; Bai, G. Anal. Lett. 1985, 18, 1507-17. (452) Li, W.; Xiao, Y.; Yu, X. Huaxue Shy/ 1985, 7 , 173-74; Chem. Abstr. 1985. 103. - - 1734671. (453) Li, X.; Xiao, Y.; Yu, X. FenxiCeshi Tongbao 1985,4 , 37-40; Chem. Abstr. 1986. 105. 189563m. (454) Cal, R.; Wang, L.; Yu, X. Gacdeng Xuexlao Huaxue Xuebao 1985,6 , 120-22; Chem. Abstr. 1985, 103, 1734680. (455) Shi, G.; Zhang, H.; Bi, Y.; Zeng, Y. Wuhan Daxue Xuebao, Ziran Kexueban 1985,37-42; Chem. Abstr. 1988, 104, 199013a. (456) Askerov, 0.N.; Guseinov, I.K.; Meiikov, A. A. Azerb. Khim. Z h . 1985,(4), 133-35; Chem. Abstr. 1988, 104, 1990164. (457) Xiao, 2. Huaxue Shy1 1985, 7 , 232-34; Chem. Abstr. 1986 104, 198976e. (458) Balcerzak, M. Chem. Anal. (Warsaw) 1988, 3 1 , 859-67; Chem. Abstr. 1987, 107, 1 8 9 7 8 0 ~ . Kolodko, T. M. Zavod. Lab. (459) Bondarenko, T. G.; Gusarova, Ya. I.; 1988,5 2 , 5-6; Chem. Abstr. 1986, 104, 236479e. (460) Vinarova, L. I.; Stoyanova, I. V.; Ivanova, E. S.; Nazarenko. V. A. Z h . Anal. Khim. 1988, 4 1 , 1212-15; Chem. Abstr. 1986, 105, 145210q. (481) Zhou, D.; Sun, H. Boli Yu Tangci 1987, 15, 8-13; Chem. Abstr. 1987, 107, 139299a. (462) Wu, Q . Huanjing Huaxue 1985,4 , 72-76; Chem. Abstr. 1986, 104, 221562~. (463) Garcla-Vargas, M.; Trevilia, S.; Milia, M. Talanta 1986,33, 209-14. (464) Zuchi. G. Farmacla (Bucharest) 1985, 33, 47-54 Chem. Abstr. 1985, 103, 226521~. (465) Verrna. A. N.; Bhovare. V. K.: Gholse, S. B. J . Indian Chem. SOC. 1988, 6 3 , 784-85. (466) El Shahat, M. F.; Abu El Fadi, A. M.; Tobia, S. K. Microchem. J . 1985, 3 2 . 307-12. (467)'Abdel-gawad, F. M.; Issa, R. M. Egypt. J . fharm. Scl. 1987, 2 8 , 137-47. (468) Herrador, M. A.; Jirnenez, A. M.; Asuero, A. G. Analyst (London) 1987, 112, 1237-46. ~

ANALYTICAL CHEMISTRY, VOL. 60, NO. 12, JUNE 15, 1988

145R

ULTRAVIOLET AND LIGHT ABSORPTION SPECTROMETRY (469) Markovic, S.; Banianin, V. Arh. Farm. 1988, 36, 113-17; Chem. Abstr. 1988. 105,2 3 2 5 4 5 ~ . (470) Wei, C.; Liu, W. Yaowi Fenxi Zazhi 1988, 6,226-27; Chem Abstr . 1988, 105, 197254b. (471) Saito, Y.; Kanetsuna, A.: Okuda, H.; Mifune. M.; Odo, J.; Tanake. Y. Chem. Pharm. Bull. 1988, 34, 746-50. (472) Zuo, Y.; Yue, C.; LI, L.; Wei, F. Fenxi Huaxue 1985, 13. 811-14; Chem. Abstr. 1986, 104, 199244b. (473) Burtseva, T. I.; Cherkasova, S.A.; Ovodov, Yu. S. Khim. Prir. Soedin. 1085, (6), 739-43; Chem. Abstr. 1988, 104, 144933~. (474) Sane, R. T.; Samant, R. S.; Desal. S. V.; Kubal, M. L.: Nayak, V. G.; Nadkarni, A. D. Indian Drugs 1985, 22, 592-96. (475) Mahrous, M. S.; Abdel-Salam, M.; Issa, A. S.; Abdel-Hamid, M. Talanta 1988, 33, 185-86. (476) Issa, A. S.; Mahrous, M. S.; AbdeCSalam, M.; Abdel-Hamid, M. J . Pharm. Be@. 1985, 40,339-42. (477) Luk'yanchikova, G. I.; Tirasopol'skaya, S. G.; Luk'yanchikov, M. S. Farmatsiya (Moscow) 1985, 34, 80-61; Chem. Abstr. 1986, 104, 95589b ....._ (478) Kostennikova, 2 . P. Farmatsiya (Moscow) 1985, 34, 40-43; Chem. Abstr. 1988, 104, 116143~. (479) YaO, s.; Su, W. Yaoxue Xuebao 1985, 20, 759-65; Chem. Abstr. 1088, 104,230567k. (480) El Shabouri, S. R.; Sidhom, M. B. Bull. fharm. Sci., Assiut Univ. 1985, 8 ,156-71. (481) Palller, F. M.; Dumain, J.; Banner, C.; Laussinotte, F. Ann. Falsif. Expert. Chim. Toxicol. 1985, 78, 321-28; Chem. Abstr. 1886, 104, 166982n. (482) Belal, F.; Rizk, M. Ibrahiem. F.; El Din, M. S. Talanta 1988, 33, 170-72. (483) Gorog, S.; Renyei, M. Anal. Chem. Symp. Ser. 1985, 23, 555-61. (484) Zakharl, N. A.; Salem, F. B.; Rizk, M. S. Farmaco. Ed. Prat. 1987, 42, 103-109. (485) Salem, F. B. J . fharm. Be@. 1986, 41,35-38. (466) Morelli, B.; Peluso, P. Anal. Left. 1985, 18, 1113-29. (487) Shen, Y. Yaowu, Fenxi Zazhi 1985, 5,296-98: Chem. Absh. 1986, 104,75143~. (488) Abdel-Hamid, M. E.; Abdel-Salam, M.; Mahrous, M. S.; AbdeCKhalek, M. M. Talanta 1985, 32, 1002-1004. (469) El Khelr. A. A.; Belal. S. F.; Avad, M. M.: El Adi, S. M. Anal. Lett. 1986, 19, 1019-35. (490) Jin, N.; Fu, L. Yaoxue Tongbao 1985, 20, 280-81; Chem. Abstr. 1988, 104, 193282r. (491) Kohn, J.; Albert, E. C.; Wilcheck, M.; Langer, R . Anal. Chem. 1986, 58 - - , 3184 - . - .. (492) Jones, M. H.; Woodcock, J. T. Anal. Chem. 1988, 58, 1845-48. (493) Caraculacu, A.; Bestluc, I.; Idriceanu, S.; Popescu, V. Rev. Chim. (Bucharest) 1985, 36, 1146-49; Chem. Abstr. 1988, 104,179474~. (494) FuJlta, Y.; Mori, I.; Fujka, K.; Kkano, S.; Tanake, T. Chem. Pharm. Bull. lg85, 33,5385-92. (495) Jones, M. H.; Woodcock, J. T. Anal. Chem. 1986, 58, 588-91. (496) Ye, Y.: Zheng, D.: Peng, C. Yaowu Fenxi Zazhi 1988, 6 , 224-26; Chem. Abstr. 1886, 105, 197253a. (497) Sakai, T.; Ohno, N. Anal. Sci. 1988, 2 , 275-79. (496) Nunez-Vergara, L. J.; Roa, A.; Squella, J. A.; Gonzalez-Barbagelata, R. V. J . Assoc. Off. Anal. Chem. 1988, 69, 186-90. (499) Sano, A.; Asabe, Y.; Suzuke, M.; Mlura, S.; Takltani, S. Anal. Left. 1985, 18, 1221-29. (500) Walash. M. I.; Rizk, M.; Zakhari, N. A,; Toubar. S. Anal. Chem. Symp. Ser 1985, 23,563-72. (501) Cui, B.; Chen, X.; Pan, C.; Wang, Y. Zhonghua Yixue Jianyan Zazhi 1985. 8 , 157-59; them. Abstr. lS88, 104,84717r. (502) Takayanagl, M.: Yashiro, T. Rinsho Kagaku (Nippon Rinsho Kagakkai) 1985, 14, 247-52. (503) Mopper, B. J . Assoc. Off. Anal. C h m . 1987, 70,42-46. (504) Matsuda, R.; Takeda, Y.; Ishibashi, M.; Uchiyama, M.; Suzuke, M.; Takbni, S. BunsekiKagaku 1986, 35, 151-56; Chem. Abstr. 1988, 105, 12215~. (505) Anjaneyulu, Y.; Sekhar, K. C.; Anjaneyulu, V.; Sarma, R. N. Indian Drugs 1985, 22, 655-57.

.

146R

ANALYTICAL CHEMISTRY, VOL. 60,

NO. 12, JUNE 15,

1988

(506) Kalashnikov, V. P.; Mynka. A. F. Farm. Z h . (Kiev) 1987, (4), 45-49; Chem. Abstr. 1987 107, 161793d. (507) Kaiashnlkov, V. P.; Mlnka, A. F. Farm. Z h . (Kiev) 1986, (I), 63-64; Chem. Abstr. 193302~. (508) Ershov, Yu. A.; Priezzheva, L. E.; Kurashove, R. I.Farmatsiva (Moscow) 1985, 34,37-38; Chem. Abstr. 1985, 103,200938~. (509) Rao, G. R.: Avadhanulu, A. 8. Indian Drugs 1988, 23, 699-701. (510) Salem, F. B.; Walash, M. I. Anawst (London) 1985, 110, 1125-29. (511) Li. 2.; Zhang, X.; Zhou, H.; Song, H. Fenxi Huaxue 1988, 14,60-62; Chem. Abstr. 1987, 107,74547h. (512) Stefyuk, V. V.; Turkevich, N. M. Farm. Z h . (Kiev) 1985, (4), 43-45; Chem. Absfr. 1988, 104, 10709t. (513) Ottis, M.: Malat, M. Cesk. Farm. 1986, 35, 119-21; Chem. Abstr. 1988, 105,66553a. (514) Haginaka, J.; Wakai, J.; Yasuda, H.; Uno, T. Anal. Sci. 1985, 7 , 73-76. (515) Hiremath. R. C.; Mayanna. S. M. Mikrochim. Acta 1986, 7(3-4), 265-70. (516) Yan, X.; Liu. L.; Zhu, X.; Zhang, 2.; Tang, B.; Zheng, X. Fenxi Ceshi Tongbao 1985, 4 ,28-30; Chem. Abstr. 1988, 104, 115753f. (517) Sawada, M.; Motoyama, I . ; Yamada, S.; Kanaya, Y. BunsekiKagaku 1986, 35,T16-T21; Chem. Abstr. 1988, 105,30157k. (518) Rangaswamy; Yathirajan, H. S.;Nagaraja, P.; Jayarama; Mohan, B. M. Indian J . Pharm. S d . 1984, 46, 172-74. (519) Mangala, D. S.; Sastry, C. S. P. Indian J. fharm. Sci. 1984, 46, 154-56. (520) El Shabouri, S. R. Talanta 1985, 32,999-1001. (521) Ramappa, P. G.; Basavaiah, K. Indian J. Pharm. Sci. 1985, 47, 125-27. (522) EIShabouri, S.R.; Youssef, A. F.; Mohamed, F. A.; Rageh, A. M. I. J . Assoc. Off. Anal. Chem. 1986, 6 9 , 821-24. (523) Jayarama, D'Souza, M. V.; Yathirajan, H. S.; Rangaswamy Talanta 1988. 33. 352-54. (524) Artiss; J. D.; Epstein, E.; Kiechle, F. L.; Zak, 6.Ann. Clin. Lab. S d 1985, 15,488-94. (525) Jenik, F.; Vojtekova, A.; Kopanica, M.; Stara, V. Sb. Ved. f r . , Vys. S k . Chemickotechnol. Pardubice 1988, 49a, 195-21 1; Chem. Abstr. 1987, 107,45923~. (526) Sun, Q. Yaowu Fenxi Zazhi 1985, 5 , 172-74; Chem. Abstr. 1985, 703,200931m. (527) Popelkova-Mala, 2.; Maiat, M. Cesk, Farm. 1985, 34,422-24; Chem. Abstr. 1988, 104. 156080~. (528) Fabregas, J. L.; Casassas, E. Drug Dev. Ind. Pharm. 1985, 1 1 , 2127-35. (529) LKB Biochem Chem. Eng. News 1087, 65(12),49-50. (530) Fujita, Y.; Mori, I.; Kitano, S.; Fujita, K. Anal. Sci. 1985, I , 175-79. (531) Sakai, T.; Ojlima, S.; Saeki. E.; Tanaka, M. Bunseki Kagaku 1988, 35, 177-63; Chem. Abstr. 1988, 105, 12217a. (532) Belikov. V. G.; Lukyanchikova, G. I.; Blinova, T. I. Farmatsiya (Moscow) 1988, 35, 13-16; Chem. Abstr. 1988, 104,213356~. (533) Sydow, G. Biomed. Biochim. Acta 1985, 44, 1721-23. (534) Bosch, F.; Manes, J.; Font, G.; Salmeron, J. Cienc. Ind. Farm. 1084, 3 , 239-42; Chem. Abstr. 1985, 103,183637a. (535) Sikorska-Tomicka, H. Chem. Anal. (Warsaw) 1985, 30, 657-63; Chem. Abstr. 1988, 705,175812. (536) Zou, C. Fenxi Huaxue 1985, 13,719-20; Chem. Abstr. 1986, 704, 199243a. (537) Walash, M. 1.; Rizk, M.; ECBrashy, A. Pharm. Weekbl., Sci. Ed. 1886, 8 ,234-38. (538) Abdel-salam, M.; Issa, A. S.; Mahrous, M. S.; Abdel-Hamid, M. E. Anal. Lett. 1985, 18, 1391-1403. (539) Vachek, J. Cesk. Farm. 1985, 34, 420-21; Chem. Abstr. 1988, 104, 1361522. (540) Zhao, F.; Zhuang, B. Nanjing Yixueyuan Xuebao 1986, 6 , 208-210; Chem. Abstr. 1988, 105,111358d. (541) Reddy, M. N.; Sastry, C. S. P.; Viswanadham. N. J . I n s t . Chem. ( I n dia) 1985, 57, 57-58. (542) Lu, X. Yaowu Fenxi Zazhi 1985, 5 ,305-309; Chem. Abstr. 1988, 104. 56497a.