1 The Extrathermodynamic Structure-Activity
Downloaded via 5.62.159.64 on July 7, 2018 at 07:08:48 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
Correlations Background of the Hansch Approach
TOSHIO FUJITA Department of Agricultural Chemistry, Kyoto University, Kyoto, Japan
The
background
approach proach
supporting
the
versatility
of the
Hansch
is that it is in fact an extrathermodynamic to drug
action.
-activity relationship as equations
which
tive
with
studies
elucidate
the
microscopic
The
information
of various provide simpler
mechanism knowledge
kinds
of drugs is
a convenient and of
similar overall
of complex
on the way for model
drug
expressed compara-
reactions
action
processes
ap-
structure-
to
without in
occurring
vivo.
T n order for a d r u g to e x h i b i t a c e r t a i n b i o l o g i c a l effect, i t m u s t interact w i t h a c e r t a i n c e l l u l a r c o m p o n e n t at the site of action. T h i s c o m p o n e n t is often c a l l e d a receptor.
H o w e v e r , b i o l o g i c a l systems are c o m p o s e d of
a n u m b e r of heterogeneous phases, a n d the site at w h i c h a d r u g is a d m i n i s t e r e d is u s u a l l y separated f r o m the site of a c t i o n . T h u s , the d r u g m u s t b e t r a n s p o r t e d t h r o u g h phase b o u n d a r i e s a n d u n d e r g o
adsorption
a n d d e s o r p t i o n processes w i t h proteins a n d m e m b r a n e s , as w e l l as p a r titioning between
different l i q u i d phases, before it reaches the site of
a c t i o n . M o r e o v e r , the d r u g - r e c e p t o r i n t e r a c t i o n at this site does not o c c u r w i t h o u t p e r t u r b a t i o n b y s u r r o u n d i n g heterogeneous components
s u c h as
w a t e r , s e r u m p r o t e i n , l i p i d p a r t i c l e s , etc. A l t h o u g h the transport processes a n d the d r u g - r e c e p t o r i n t e r a c t i o n are essentially p h y s i c o c h e m i c a l , t h e y are far m o r e c o m p l e x t h a n the h o m o g e n e o u s e q u i l i b r i a a n d rate processes of u s u a l o r g a n i c reactions.
I n this s i t u a t i o n , it w o u l d r a r e l y b e possible
to e l u c i d a t e the m e c h a n i s m of d r u g a c t i o n i f w e w e r e to insist u p o n o n l y d e t e r m i n i s t i c as w e l l as m i c r o s c o p i c models of i n d i v i d u a l stages of the transport a n d i n t e r a c t i o n processes. 1 Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
2
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
R e c e n t l y , o u r H a n s c h a p p r o a c h has b e e n w i d e l y a c c e p t e d a n d r e c o g n i z e d as a versatile w a y to u n d e r s t a n d d r u g a c t i o n b y a n a l y z i n g the s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p i n v a r i o u s b i o l o g i c a l systems
( I , 2,
3).
T h i s a p p r o a c h assumes that the p h y s i c o c h e m i c a l factors g o v e r n i n g the transport a n d d r u g - r e c e p t o r i n t e r a c t i o n c a n be f a c t o r e d into e l e c t r o n i c , h y d r o p h o b i c , a n d steric components.
I n g e n e r a l , one c a n consider that
the v a r i a t i o n s i n b i o l o g i c a l a c t i v i t y a r i s i n g f r o m s t r u c t u r a l modifications in congeneric drugs depend p h y s i c o c h e m i c a l factors.
u p o n the c o n c o m i t a n t
changes i n
these
T h e a s s u m p t i o n is s u m m a r i z e d as E q u a t i o n 1
w i t h parameters for the f a c t o r e d p h y s i c o c h e m i c a l p r o p e r t i e s , Ε, H, a n d S, respectively.
I n a series of congeners, t h e b i o l o g i c a l a c t i v i t y , B A , for a ΔΒΑ = / ( Δ # , Δ # , Δ δ ) Β Α = f(AE,
reference c o m p o u n d
(1)
AH, AS) + constant
(2)
is a constant . T h u s , E q u a t i o n 2 holds for
m e m b e r of the series.
each
U s u a l l y , the v a l u e of B A is t a k e n to be r e c i p r o
c a l l y p r o p o r t i o n a l to the d r u g c o n c e n t r a t i o n , C , w h i c h causes a s t a n d a r d b i o l o g i c a l response s u c h as E C
5 0
, I50, m i n i m u m i n h i b i t o r y c o n c e n t r a t i o n ,
etc. o n a m o l a r basis. M o r e p r a c t i c a l l y , the free-energy r e l a t e d parameters are u s e d s u c h as l o g 1 / C for Β Α, π or l o g F for AH, σ, σ*, σ', or Δ ^ for AE a n d E
8
or E
8
C
for Δ 5 .
K
A
π is the h y d r o p h o b i c substituent constant
d e r i v e d f r o m the p a r t i t i o n coefficient,
F , w h i c h is u s u a l l y d e t e r m i n e d
w i t h the use of 1 - o c t a n o l / w a t e r system (4, 5 ) , σ is the H a m m e t t constant ( 6 ) , σ' is a n electronic p a r a m e t e r for r a d i c a l reactions ( 7 ) , σ* a n d E
are
s
the Taft's p o l a r a n d steric constants for a l i p h a t i c systems ( 8 ) , a n d E
C
8
the H a n c o c k c o r r e c t e d steric constant ( 9 ) .
is
T h e most w i d e l y u s e d e q u a
t i o n i n this a p p r o a c h is f o r m u l a t e d as E q u a t i o n 3, w h e r e a ( ^ 0 ) , b, ρ, δ, a n d c are constants w h i c h are d e t e r m i n e d b y the regression analysis u s i n g the least-squares m e t h o d . log 1/C — -a
(log P )
2
+ b log Ρ + σ + SE + c Ρ
(3)
8
I n this w a y it is possible to a n a l y z e h o w each of the p h y s i c o c h e m i c a l properties of the m o l e c u l e
is c o n c e r n e d
examples are s h o w n i n E q u a t i o n s 4 - 1 1 .
w i t h the d r u g a c t i o n .
Some
I n these equations, η is the
n u m b e r of points u s e d i n the regression, s is the s t a n d a r d d e v i a t i o n , a n d r is the c o r r e l a t i o n coefficient. NADH
Oxidation,
Inhibition
by Barbiturates
(3)
0 R
X
n
χ K 2
pleo — 1 . 1 1
C-NH
log Ρ +
1.24
6
s 0.261
r 0.921
>=° C-NH
// Ο
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(4)
1.
Extrathermodynamic
FUJITA
Chymotrypsin, Miscellaneous
Inhibition Neutral
Structure-Activity
by Compounds p2£/ =
3
Correlations
(2)
1.00 log Ρ — 2.60
n s 8 0.139
r 0.995
(5)
0.971
(6)
0.930
(7)
Cat, Inhibition of Salivary Secretion, Benzilic Acid Choline Esters (10,11)
( C H ) C (OH) C O O C H C H — N 5 I 6
5
2
2
2
2
log Β Α — - 3 . 3 1 3 σ * -
0.552π +
2.30
13 0.159 Alfalfa, Growth Inhibition, Benzyl Quaternary Ammonium
Ions (11, 12)
pl HO
CH.,
CH
=
5 0
- 1 . 0 2 σ + 0.64π +
^
:{
/]—Λ/Χ N _ C H CH
2
- ^
1.50
'
9 0.119
^
3
S. Aureus, Bacteriostatic Activity, Kojic Acid Analogs (pH 7) (13) 1 log β-
_
0.97 A l o g K
A
+ 1.49π(Χ) + 9
6
0.511
0.956
(8)
0.938
(9)
0.945
(10)
CH X 2
Carbonic Anhydrase, Benzenesulfonamides, SO NH 2
2
Inhibition, (14) pK
r
=
0.77
Alog K
A
+
0.38π +
0.52
16 0.216
Tobacco Pith, Cytokinin Diphenylureas (15, 16) /
1.71
0
^ ^ - N H C N H C H .
Activity,
l o g 1/C =
Ι.ΙΟσ + 0.36π +
5.68 9
0.178
X
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4
BIOLOGICAL CORRELATIONS
Wheat Coleoptile Auxin Activity, I
„
Cylinder, cis-Cinnamic
Acids
(15,
17)
log 1 / C = - 0 . 5 0 (log P)
2
w
T H E HANSCH A P P R O A C H
+ 2.45 log Ρ 8
0.290 0.815
(11)
I n E q u a t i o n s 10 a n d 11 the σ values are those to the o r t h o p o s i t i o n of the side c h a i n . I n c l a s s i c a l s t r u c t u r e - a c t i v i t y studies, most of the attempts c o n c e n t r a t e d o n c o r r e l a t i n g the a c t i v i t y w i t h one of the m o l e c u l a r p r o p e r t i e s — e.g.,
the c a r c i n o g e n i c a c t i v i t y of p o l y n u c l e a r a r o m a t i c c o m p o u n d s w i t h
t h e i r e l e c t r o n i c structure (18, 19),
the n a r c o t i c a c t i v i t y w i t h l i p o p h i l i c i t y
the i n s e c t i c i d a l a c t i v i t y of c y c l o d i e n e s w i t h t h e i r t h r e e - d i m e n
(20, 21),
s i o n a l m o l e c u l a r silhouette (22),
etc.
Sometimes the a c t i v i t y c o r r e l a t e d
w e l l w i t h o n l y one of the m o l e c u a r parameters.
I n o u r a p p r o a c h these
are s p e c i a l cases w h e r e other p h y s i c o c h e m i c a l properties d o n o t p l a y c r i t i c a l roles i n d e t e r m i n i n g the v a r i a t i o n i n the a c t i v i t y w i t h i n a set of congeners so that the coefficients d e f i n i n g these other properties are zero. T h e p a r a m e t e r i z a t i o n of the h y d r o p h o b i c most i m p o r t a n t aspects of this a p p r o a c h . stituent or a p a r t of a m o l e c u l e molecules
character is one of
the
T h e π v a l u e of a c e r t a i n sub
is n e a r l y constant i n closely r e l a t e d
a n d m a y b e s u m m e d w i t h other π values to c a l c u l a t e a n d
p r e d i c t u n k n o w n l o g F values of a n u m b e r of m o l e c u l e s (3, 4, 5).
Thus,
the analyses c a n often be p e r f o r m e d w i t h the c a l c u l a t e d l o g F values. O n e e x a m p l e for s u c h a n a d d i t i v e p r i n c i p l e is the l - o c t a n o l / H 0 p a r t i t i o n 2
coefficient of β - B H C ( le, le, 3e, 4e, 5e, 6e-hexachlorocyclohexane ) w h i c h has b e e n d e t e r m i n e d r e c e n t l y b y K u r i h a r a (23).
T h e l o g F v a l u e , 3.78,
is d i v i d e d b y 6 to estimate the π v a l u e of a > C H — C I u n i t . T h e v a l u e , log P ( C H C l ) / 6 = 6
6
e
7r
0.63,
c a l c
.(>CH—CI)
=0.60
0.63, agrees v e r y w e l l w i t h t h a t c a l c u l a t e d as 2π, 0.60, u s i n g 0.41 for a r i n g c a r b o n a t o m , 0.39 for a n a l i p h a t i c c h l o r i n e a t o m , a n d - 0.20 for a b r a n c h i n g structure. S i n c e t h e π v a l u e is c o n s t i t u t i v e , the stereospecific n a t u r e of h y d r o phobic
bonding
for
drug-receptor
interactions c a n b e
delineated
by
regression analyses w i t h the π values of substituents separately f o r e a c h p o s i t i o n of the congeners.
T h u s , the substituent effect o n the e m u l s i n
h y d r o l y s i s of s u b s t i t u t e d p h e n y l g l u c o s i d e s has b e e n n i c e l y d e l i n e a t e d b y a n a l y z i n g k i n e t i c constants separately for m e t a a n d p a r a isomers. m e t a substituents p l a y n o h y d r o p h o b i c complex formation
r o l e i n the
The
enzyme-substrate
(24).
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
FUJITA
Extrathermodynamic
Structure-Activity
5
Correlations
A n o t h e r e x a m p l e is the case of bacteriostatic a c t i v i t y of k o j i c a c i d analogs w h i c h is a n a l y z e d i n E q u a t i o n 8 ( 1 3 ) .
I n this e q u a t i o n , C
n
the m i n i m u m i n h i b i t o r y c o n c e n t r a t i o n for t h e n e u t r a l m o l e c u l e infra),
a n d π(Χ)
is
(vide
is the p a r a m e t e r for substituents at the 7 p o s i t i o n .
N e i t h e r the use of π ( Χ +
Y ) n o r the a d d i t i o n of ττ(Υ) t e r m i m p r o v e the
c o r r e l a t i o n . T h e substituents, Y , at the 2 p o s i t i o n , s a n d w i c h e d
between
h y d r o x y l a n d ether o x y g e n , m i g h t b e s u r r o u n d e d b y t i g h t l y h y d r a t e d w a t e r molecules so that t h e y are u n a b l e to p a r t i c i p a t e i n the b i n d i n g of the m o l e c u l e w i t h a h y d r o p h o b i c surface of the receptor. T h e a s s u m p t i o n that the n o n l i n e a r d e p e n d e n c e of d r u g a c t i v i t y o n the h y d r o p h o b i c c h a r a c t e r of the m o l e c u l e is expressed b y the q u a d r a t i c terms of l o g F or π has b e e n e x e m p l i f i e d b y a n u m b e r of congeners w h e r e the l o g F values c o v e r a sufficiently large range (2, 3, 2 5 ) .
R e c e n t l y this
has b e e n p r o v e d t h e o r e t i c a l l y w i t h a k i n e t i c m o d e l s i m i l a r to those u s e d i n the m u l t i c o m p a r t m e n t a l analyses (26) b a s e d o n p r o b a b i l i t y concepts (27).
as w e l l as b y a s i m p l e m o d e l
T h e o p t i m u m v a l u e of l o g P, l o g F , 0
o b t a i n e d b y setting the d e r i v a t i v e dlog 1 / C / d l o g F e q u a l to zero, is a u s e f u l p a r a m e t e r for d e s i g n i n g the most potent d r u g i n a set of congeners as w e l l as for i l l u s t r a t i n g the character of b a r r i e r s t h r o u g h w h i c h drugs h a v e to t r a v e l (25,
28).
F r o m E q u a t i o n 11 the l o g F
0
v a l u e for the g r o w t h p r o m o t i o n
of
w h e a t coleoptile segments w i t h c i n n a m i c acids is c a l c u l a t e d as 2.45. T h i s v a l u e is v e r y close to those o b t a i n e d for the g r o w t h p r o m o t i o n of a v e n a coleoptile
segments
with
substituted phenoxyacetic
acids, the l o g P values b e i n g a r o u n d 2 — 2.5 (29, 30). 0
and
phenylacetic
T h u s , the p h y s i c o -
c h e m i c a l c h a r a c t e r of b a r r i e r s to r e a c h the site of a u x i n a c t i o n i n p l a n t tissues w o u l d b e s i m i l a r for different sets of c o m p o u n d s . tions have b e e n o b s e r v e d for the l o g F
0
Similar situa
values of various sets of d r u g s
i n h i b i t i n g g r o w t h of g r a m - n e g a t i v e a n d g r a m - p o s i t i v e b a c t e r i a
(25).
O n e q u e s t i o n sometimes a s k e d b y biologists is w h y the d r u g a c t i o n o n s u c h v a r i o u s levels of b i o l o g i c a l systems as e n z y m e p r e p a r a t i o n s a n d s u b c e l l u l a r organelles as w e l l as w h o l e plants a n d a n i m a l s c a n be a n a lyzed by a common procedure.
F o r instance, the e n z y m e - i n h i b i t o r r e a c
t i o n seems a m u c h s i m p l e r p h e n o m e n o n t h a n the a c t i o n of c y t o k i n i n s o n p l a n t tissues a n d , yet, t h e y are i l l u s t r a t e d i n a s i m i l a r m a n n e r as s h o w n i n E q u a t i o n s 9 a n d 10. I n fact, the e n z y m e - i n h i b i t o r i n t e r a c t i o n i n itself is a c h a i n of c o m p l e x processes for the i n h i b i t o r m o l e c u l e , i n c l u d i n g a n u m b e r of desolvations, collisions w i t h nonspecific sites o n the e n z y m e p r o t e i n , a n d resolvations before r e a c h i n g the specific i n h i b i t i o n site. T h e c o m p l e x i t y is not at a l l less t h a n those c o n s i d e r e d for the transport a n d drug—receptor i n t e r a c t i o n processes of c y t o k i n i n s . T h e s i t u a t i o n is analogous to that a set of every rational number
between
zero
a n d one
corresponds
in a
one-to-one
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
f a s h i o n a n d thus is e q u i v a l e n t to a set of e v e r y integer b e t w e e n zero a n d i n f i n i t y — i . e . , a "set" of b a r r i e r s w h i c h i n h i b i t o r molecules m u s t traverse to r e a c h the i n h i b i t i o n site of the e n z y m e w o u l d be e q u i v a l e n t to a "set" of those for the c y t o k i n i n a c t i v i t y . T h e e n z y m e - i n h i b i t o r i n t e r a c t i o n p r o c esses c o u l d b e a m i n i a t u r e m o d e l of the d r u g a c t i o n i n b i o l o g i c a l systems of the h i g h e r l e v e l . T h u s , w h i c h e v e r m a y be the l e v e l of b i o l o g i c a l sys tems, essentially the same p r o c e d u r e c a n b e a p p l i e d for the d r u g a c t i o n . A n o t h e r q u e s t i o n w h i c h often arises is w h y s u c h diverse b i o l o g i c a l effects of different p h y s i o l o g i c a l significance are r a t i o n a l i z e d b y
essen
t i a l l y the same t y p e of e q u a t i o n w h e r e o n l y p h y s i c o c h e m i c a l properties of drugs are c o n s i d e r e d .
A s a suitable approximation, any biological
effect c a n b e defined b y t w o aspects. c h a r a c t e r s u c h as p h o t o s y n t h e t i c
O n e is its specific p h y s i o l o g i c a l
inhibition, parasympatholytic action,
bacteriostatic a c t i o n , etc., w h i c h is d e t e r m i n e d b y the b i o l o g i c a l test object a n d the specificity of the receptor.
T h e other aspect is t h e m a g n i
t u d e of the effect w h i c h c a n b e m e a s u r e d q u a n t i a t i v e l y . It c a n b e f u r t h e r d i v i d e d into sub-elements s u c h as affinity a n d i n t r i n s i c a c t i v i t y as d i s cussed b y A r i e n s ( 3 1 ) . It is g e n e r a l l y a c c e p t e d t h a t a d r u g initiates a c h a i n of events w h i c h e v e n t u a l l y leads to a specific b i o l o g i c a l effect b u t w h i c h does n o t i n v o l v e the d r u g after it triggers the m e c h a n i s m t h r o u g h a d r u g - r e c e p t o r i n t e r a c t i o n . F o r e x a m p l e , sucrose tastes sweet, b u t the r o l e of sucrose m o l e cules is to s t i m u l a t e the taste b u d s , a n d t h e y d o not p a r t i c i p a t e i n the process of sensory c o n d u c t i o n as s u c h . T h e m a g n i t u d e of the observable b i o l o g i c a l response is a d i r e c t r e flection
of the i n t e n s i t y of the c h a i n of p h y s i o l o g i c a l events w h i c h , i n
t u r n , is d e t e r m i n e d b y the degree of d r u g - r e c e p t o r
interaction.
The
degree of drug—receptor i n t e r a c t i o n is c o n t r o l l e d b y the p h y s i c o c h e m i c a l properties of the partners a n d the d r u g c o n c e n t r a t i o n at the site of a c t i o n , w h i c h , i n t u r n , is g o v e r n e d
b y the p h y s i c o c h e m i c a l transport
process.
T h u s , as far as a specific b i o l o g i c a l effect is c o n c e r n e d , i t is reasonable to consider that the m a g n i t u d e of the response is expressed b y a f u n c t i o n of the p h y s i c o c h e m i c a l properties of the d r u g m o l e c u l e .
It is the m a g n i
t u d e of the b i o l o g i c a l effect w h i c h is u s e d for the s t r u c t u r e - a c t i v i t y analyses. A n i n t e r e s t i n g e x a m p l e w h i c h w o u l d i l l u s t r a t e the a b o v e s i t u a t i o n is the case of D D T a n d its analogs a l t h o u g h t h e i r s t r u c t u r e - a c t i v i t y r e l a t i o n s h i p has not b e e n successfully a n a l y z e d b y E q u a t i o n 3. D D T is w e l l k n o w n as a n i n s e c t i c i d e w h i c h k i l l s b y d i s r u p t i n g nerve c o n d u c t i o n (32).
D D T analogs w h e r e the ρ,ρ'-substituents o n the benzene rings are
c h a n g e d are k n o w n to e x h i b i t v a r i o u s degrees of a c t i v i t y ( 3 3 ) .
DDE,
w h i c h is f o r m e d b y d e h y d r o c h l o r i n a t i o n of D D T , is not i n s e c t i c i d a l . A
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
Extrathermodynamic
FUJITA
Structure-Activity
7
Correlations
s i m i l a r p a t t e r n of a c t i v i t y for this class of c o m p o u n d s has b e e n o b s e r v e d for the i n h i b i t i o n of the c y c l i c p h o t o p h o s p h o r y l a t i o n of b a r l e y
(34).
T h u s , e v e n i f the o b s e r v e d p h y s i o l o g i c a l effect is d i s t i n c t l y different, the m a g n i t u d e of a c t i v i t y seems to f o l l o w the same p r i n c i p l e . F o r D D T a n d its analogs the m a i n c o n c e r n is to find a w a y to the i n t e r a c t i o n w i t h receptor sites w h i c h is c a p a b l e of m a t c h i n g t h e i r p h y s i c o c h e m i c a l p r o p erties regardless of w h e t h e r the sites are l o c a t e d o n the insect n e r v e o r o n the chloroplasts. E v e n i f the i m p o r t a n t r o l e of p h y s i c o c h e m i c a l factors g o v e r n i n g the m a g n i t u d e of d r u g a c t i v i t y w o u l d b e c o m e clearer, one m i g h t s t i l l
be
r e l u c t a n t to accept this a p p r o a c h since the p r o c e d u r e is e m p i r i c a l r a t h e r t h a n t h e o r e t i c a l . W i t h the use of regression analysis, i t is p o s s i b l e to separate the relative significance of p h y s i c o c h e m i c a l factors i n the o v e r a l l a c t i o n of a d r u g . O f course, one or a f e w of the o v e r a l l processes c o u l d be e x p e c t e d to be c r i t i c a l i n d e t e r m i n i n g the d r u g a c t i v i t y . w e cannot i d e n t i f y these p a r t i c u l a r processes,
However,
e s p e c i a l l y w h e n for
a m p l e the w h o l e a n i m a l b o d y is u s e d to evaluate d r u g a c t i o n .
ex
Thus,
even i f a n e q u a t i o n w h i c h shows a significant role of the electronic factor is o b t a i n e d for c o n g e n e r i c d r u g s , p h y s i c a l o r g a n i c chemists m a y b e d i s t r u s t f u l of u s i n g the H a m m e t t σ or the T a f t σ* constant for a r e a c t i o n w h i c h cannot b e i d e n t i f i e d . E v e n so, the separation of p h y s i c o c h e m i c a l factors p l a y i n g roles i n the o v e r a l l d r u g a c t i v i t y is a n i m p o r t a n t p o i n t f r o m w h i c h to start a search for e l u c i d a t i n g the m e c h a n i s m of the d r u g a c t i o n . Some examples are c o n s i d e r e d i n the f o l l o w i n g sets of c o m p a r a tive correlations. Substituted
Phenyl
Diethyl
Phosphates
R a t e of a l k a l i n e h y d r o l y s i s in vitro log fc . == 1.35σ~ hyd
(35)
5.09
n s r 7 0.238 0.955
(12)
6
0.297 0.985
(13)
8
0.206 0.990
(14)
I n h i b i t i o n against flyhead acetylcholinesterase (35, 36) pl
5 0
= 2.37σ" + 4.38
T o x i c i t y against house fly (1, 35) -logLD
5 0
= 0 . 3 6 1 o g P + 2.65a- + 2.44
T h e p o s i t i v e ρ values of these correlations for reactions of s u b s t i t u t e d p h e n y l phosphates m a y i n d i c a t e a c o m m o n
feature i n these reactions
w h e r e a n u c l e o p h i l i c attack o n p h o s p h o r u s is a c r i t i c a l step. T h e m a g n i tudes of the ρ values of E q u a t i o n s 13 a n d 14 are v e r y close to each other b u t s i g n i f i c a n t l y l a r g e r t h a n that of E q u a t i o n 12. T h u s , the e l e c t r o n i c effect of the substituents o n the insect m o r t a l i t y c a n b e r e l a t e d m o s t l y to an effect o n the e n z y m e i n h i b i t i o n a n d p l a y s o n l y a m i n o r r o l e i n the
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8
BIOLOGICAL CORRELATIONS
transport step.
T H E HANSCH A P P R O A C H
H o w e v e r , besides the u s u a l n u c l e o p h i l i c attack o n p h o s
p h o r u s w h i c h occurs in vitro,
other steroelectronic
factors
should
be
c o n s i d e r e d for the in vivo e n z y m a t i c reactions. Substituted
Phenyl
N-Methyl
Carbamates
R a t e of a l k a l i n e h y d r o l y s i s in vitro log fc H-] = 2.48σ" +
(37)
3.03
[0
F l y h e a d acetylcholinesterase i n h i b i t i o n (38, pl
5 0
_
ο.69π -
0.95σ' + 1.19X +
n 6
s 0.156
r 0.977
(15)
53
0.415
0.913
(16)
39)
3.50
A m o r e c o m p l e x s i t u a t i o n is o b s e r v e d w i t h carbamate
insecticides.
H e r e , the s i g n of the ρ v a l u e o n E q u a t i o n 16 for the e n z y m e i n h i b i t i o n is opposite that i n E q u a t i o n 15 for the in vitro
alkaline hydrolysis.
In
E q u a t i o n 16, X is a p o s i t i o n p a r a m e t e r w h i c h takes a v a l u e of 1 for m e t a substituents a n d 0 for p a r a substituents. T h e e n z y m e i n h i b i t i o n has b e e n c o n s i d e r e d to o c c u r b y c a r b a m y l a t i o n at the serine O H i n the a c t i v e site of acetylcholinesterase, a n d thus the m e c h a n i s m s h o u l d i n c l u d e a step for the n u c l e o p h i l i c attack of the serine O H o n the c a r b a m y l g r o u p .
The
negative s i g n of ρ a n d the significance of the X t e r m i n E q u a t i o n 16 s h o u l d i n d i c a t e that, at least, the c a r b a m y l a t i o n of the e n z y m e is not the c r i t i c a l step, a n d q u i t e different stereoelectronic
conditions are r e q u i r e d
for this series of c o m p o u n d s f r o m those for the in vitro
nucleophilic
h y d r o l y s i s a n d also f r o m those for the enzyme—inhibitor i n t e r a c t i o n of the p h o s p h a t e
insecticides.
A l t h o u g h the difference
i n the
electronic
effect of substituents o n the e n z y m e i n h i b i t i o n has b e e n r e c o g n i z e d exist b e t w e e n
to
carbamates a n d phosphates, o n l y b y s e p a r a t i n g p h y s i c o -
c h e m i c a l effects w o u l d w e k n o w to w h a t degree t h e y are different a n d w h e t h e r or not other effects m a y p l a y roles. 2-Bromoethylthiobenzenes H y d r o l y s i s in vitro
(40)
log k ( 3 0 ° ) — - 1 . 2 3 σ R a t e of a l k y l a t i o n in vitro Û
n 8
6.59
(17)
(41) S—CH2CH2R
^V-S—CH CH Br 2
s r 0.048 0.984
2
X
logk(30°)
1.98σ
-4.10
12
0.073 0.994
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(18)
1.
Extrathermodynamic
FUJITA
T o x i c i t y against eggs of Tetranychus telanus ( L . )
-log LC As
5 0
Structure-Activity
9
Corrections
(42)
— - 2 . 1 8 π + 1.69ττ -
1.45σ + 4.38
2
n
s
r
8
0.164
0.968
(19)
s h o w n i n E q u a t i o n 19, the s u b s t i t u e n t effects o n the o v i c i d a l
a c t i v i t y c a n be s e p a r a t e d i n t o h y d r o p h o b i c a n d e l e c t r o n i c factors.
There
is a n o p t i m a l v a l u e for h y d r o p h o b i c i t y f o r the o v i c i d a l a c t i o n of this set of c o m p o u n d s .
T h a t the σ v a l u e i n E q u a t i o n 19 is s i m i l a r to those o b
t a i n e d for in vitro reactions w o u l d suggest t h a t a c o m m o n step is c r i t i c a l i n b i o l o g i c a l as w e l l as in vitro reactions.
F o r the in vitro reactions, the
r a t e - d e t e r m i n i n g step is c o n s i d e r e d to b e the f o r m a t i o n of c y c l i c s u f o n i u m ions (40,
41).
Fenamic
Acids
COOH
Uncoupling activity with rat h e a r t m i t o c h o n d r i a
(43)
log l / C i = 0.78π + 0.36 A\ogK
+ 4.32
A
n 11
s 0.200
r 0.939
(20)
12
0.106
0.867
(21)
A n t i - i n f l a m m a t o r y a c t i v i t y against a n t i s e r u m i n d u c e d r a t edema (43) log B A , = 0.39TT + 0.37 A l o g K
A
+
1.55
A s s h o w n i n E q u a t i o n s 20 a n d 2 1 , the u n c o u p l i n g a c t i v i t y a n d a n t i i n f l a m m a t o r y a c t i v i t y of f e n a m i c a c i d analogs, i n c l u d i n g mefenamic
flufenamic
acids, are v e r y s i m i l a r i n t h e i r d e p e n d e n c e o n b o t h
and
hydro
p h o b i c a n d e l e c t r o n i c effects of substituents. I n these equations, the s u b s c r i p t , i, means t h a t the d r u g a c t i v i t i e s are c a l c u l a t e d o n the basis c o n c e n t r a t i o n of the i o n i z e d f o r m .
b i o l o g i c a l effects, w h i c h are also o b s e r v e d inflammatory drugs, have i n t e r a c t i o n w i t h receptors Alkyl
i n m a n y other a c i d i c a n t i
similar physicochemical
mechanisms
x^^^X^sOzNHz
Mouse, antistrychnine activity
8
i n the
(44).
2-Sulfamoylbenzoates
l o g 1/C = 0.21 E (R)
of
I t has b e e n suggested t h a t these t w o
(45)
COOR
— 0.24 log Ρ — 3.87 σ* (R)
+3.05 n 9
s 0.058
r 0.959
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(22)
10
BIOLOGICAL CORRELATIONS
M o u s e , antielectroshock a c t i v i t y
T H E HANSCH A P P R O A C H
(45)
log 1 / C = 0.40 E (R) - 0.92 log F - 6.34 σ* (R) - 0 . 5 3 Χσ(Χ,Υ) +2.91
n 12
8
s r 0.224 0.860
(23)
H a m o r a n d L i e n h a v e a n a l y z e d a n t i c o n v u l s a n t activities of s u l f a m o y l benzoates.
F o r the test of a n t i s t r y c h n i n e a c t i v i t y , c o m p o u n d s h a v i n g the
same a r o m a t i c substituents are u s e d so that no 2 σ ( Χ , Υ ) t e r m appears i n E q u a t i o n 22.
T h e y h a v e suggested that the s i m i l a r i t y of equations i n
terms of steric, h y d r o p h o b i c , indicates a common
a n d e l e c t r o n i c p r o p e r t i e s of
substituents
a n t i c o n v u l s a n t m e c h a n i s m for t h e t w o
effects of this set of c o m p o u n d s .
biological
T h e y h a v e also suggested
that the
m e c h a n i s m of a c t i o n of these drugs was q u i t e different f r o m those
of
b a r b i t u r a t e s a n d other h y p n o t i c s w h e r e q u i t e different s t r u c t u r e - a c t i v i t y correlations of p h y s i c o c h e m i c a l significance h a v e b e e n o b t a i n e d . MAO
Inhibitors
R a t liver M A O , phenoxyethylcyclo p r o p y l a m i n e s (46)
pl
5 0
= 0.70 E
mm
8
+
1.64σ + 0.20ττ +
4.15
n 18
s r 0.330 0.945
(24)
Beef liver M A O , substituted β-carbolines (47, 48)
pl
5 0
= 0.61 Ε >* + 0 . 7 2 a 6
8
4b
+ 0.52ττ + 3.03
8 0.124
0.985
(25)
0.273 0.942
(26)
R a t l i v e r Μ Α Ο , p a r g y l i n e d e r i v a t i v e s (47, 49) f y—
pl
5 0
= 0.79 E
4
8
CH
CH —Ν—CH2—C=CH
+ 1.02σ + 0.44ττ + 2
3
2
5.49
10
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
FUJITA
Extrathermodynamic
Structure-Activity
11
Correlations
K u t t e r a n d H a n s c h h a v e a n a l y z e d the m o n o a m i n e oxidase i n h i b i t i o n of p h e n o x y e t h y l c y c l o p r o p y l a m i n e s (46).
E q u a t i o n 24 shows that specific
steric effects as w e l l as e l e c t r o n - a t t r a c t i n g a n d h y d r o p h o b i c p r o p e r t i e s of substituents are responsible to the a c t i v i t y . R e c e n t l y , i t has b e e n s h o w n that the E v a l u e c a n b e u s e d as a n i n d e x for i n t e r m o l e c u l a r steric effects 8
(46).
I n E q u a t i o n 24, E
mm
8
is the s u m of E values of substituents at the 8
t w o m e t a positions. T h e p o s i t i v e s i g n of the coefficient of this t e r m means that the c o r r e s p o n d i n g positions o n the r e c e p t o r site cannot a c c o m m o d a t e l a r g e r substituents because of steric restraint. S i m i l a r substituent effects are o b s e r v e d for t h e a n t i - M A O a c t i v i t y of β-carbolines a n d p a r g y l i n e d e r i v a t i v e s (47).
I n E q u a t i o n 25, E
s
6
'
8
is the
s u m of values of the 6 a n d 8 substituents, a n d a b is the σ v a l u e of s u b 4
stituents to the 4 b p o s i t i o n . I n E q u a t i o n 26, E
e
4
corresponds to the p a r a
substituent a n d σ to the ortho p o s i t i o n of the side c h a i n . T h e c o i n c i d e n c e 2
i n the stereoelectronic effects of substituents o n the M A O i n h i b i t i o n is s u r p r i s i n g l y g o o d f o r these three classes of i n h i b i t o r s . O n the s t r u c t u r a l f o r m u l a s s h o w n a b o v e , the arrows i n d i c a t e positions w h e r e the σ values are d i r e c t e d , a n d the s h a d e d circles s h o w s t e r i c a l l y l i m i t e d positions. T h u s , the i n d i v i d u a l correlations are s u b s t a n t i a t e d , a n d p h y s i c o c h e m i c a l significance is p r o v e d b y s i m i l a r b i o l o g i c a l correlations. T h e examples a b o v e are o n l y a f e w of n u m e r o u s instances w h i c h h a v e b e e n f o u n d so far.
I n m a n y cases i t is possible to find clues to
d e v e l o p the studies o n the m e c h a n i s m of d r u g a c t i o n b y e x a m i n i n g d i f ferences or c o m m o n
features a m o n g s t r u c t u r e - a c t i v i t y a n d s t r u c t u r e -
r e a c t i v i t y r e l a t i o n s h i p s . E v e n i f d e t a i l e d m i c r o s c o p i c m e c h a n i s m s o n the o v e r a l l processes of d r u g a c t i o n are not i d e n t i f i e d e x p l i c i t l y , explanations of substituent effects a n d sometimes i n f o r m a t i o n a b o u t c r i t i c a l process ( es ) d e t e r m i n i n g the a c t i v i t y c a n b e o b t a i n e d b y c o m p a r i s o n w i t h those of s i m p l e r a n d s i m i l a r m o d e l reactions a n d / o r d r u g actions w i t h the use of free-energy r e l a t e d parameters.
T h u s , our procedure can be called an
e x t r a t h e r m o d y n a m i c a p p r o a c h (50)
to d r u g a c t i o n .
E v e n m o r e i m p o r t a n t , the equations are a c o n v e n i e n t w a y to store a n d r e t r i e v e i n f o r m a t i o n o n s t r u c t u r e - a c t i v i t y relationships w h e n b i n e d w i t h the use of a l a r g e c o m p u t e r .
I f the enormous
com
a m o u n t of
i n f o r m a t i o n a c c u m u l a t e d so far is stored i n the c o m p u t e r , one c a n sort out a set of equations a c c o r d i n g to t h e i r c h a r a c t e r i s t i c features s u c h as the m a g n i t u d e a n d s i g n of the coefficient of e a c h terms a n d intercept. I n this w a y the s t r u c t u r e - a c t i v i t y correlations o b t a i n e d for a c e r t a i n series of c o n g e n e r i c d r u g s o n v a r i o u s b i o l o g i c a l systems a n d for v a r i o u s series of drugs o n a c e r t a i n b i o l o g i c a l system or for v a r i o u s series of drugs o n v a r i o u s b i o l o g i c a l systems c a n b e classified a n d c o m p a r e d i n terms of t h e i r p h y s i c o c h e m i c a l significance. A s i l l u s t r a t e d e l e g a n t l y b y C o r w i n
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
12
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
H a n s c h ( C h a p . 2 ) , the c o m p u t e r i z e d a p p r o a c h s h o u l d b e a serious step toward quantitative comparative
pharmacodynamics.
W h i l e the v e r s a t i l i t y is w e l l a c c e p t e d , p r a c t i c i n g this a p p r o a c h .
one s h o u l d b e cautious i n
T h e l a c k of a d d i t i v i t y of ττ a n d l o g Ρ values
has b e e n f o u n d i n molecules w h e r e i n t r a m o l e c u l a r interactions are n o t n e g l i g i b l e (51, 52, 53).
T h e l o g Ρ values of ^ - p y r i d y l m e t h y l d i a l k y l a m i n e s
h a v e b e e n d e t e r m i n e d as s h o w n i n T a b l e I ( 5 2 ) . T h e values c a l c u l a t e d o n the basis of STT, π ( p y r i d i n e ) = =
0.65, ir(-CH^)
=
0.5 a n d 7 r [ N ( C H ) ] 3
2
—0.35, are q u i t e different f r o m the c o r r e s p o n d i n g e x p e r i m e n t a l values.
T h e l a c k of a d d i t i v i t y s h o u l d i n d i c a t e p e c u l i a r i n t r a m o l e c u l a r interactions d e p e n d i n g u p o n the side c h a i n structure. I n s u c h cases, i t is essential to use t h e e x p e r i m e n t a l l o g Ρ values f o r s t r u c t u r e - a c t i v i t y correlations. Log Ρ Values of β-Pyridylmethyldialkylamines
Table I.
r ^ N - C H r - Ν
-CH
R log Ρ
-C2H5
S
obsd. calcd.
-iso-C H
-C H 3
3
7
7
0.49 0.80
1.01 1.80
1.46 2.30
2.27 1.90
1.47 2.80
0.31
0.79
0.84
0.37
1.33
A l t h o u g h the l a c k of a d d i t i v i t y is, i n a w a y , a d r a w b a c k to the s i m p l i c i t y a n d v e r s a t i l i t y of this a p p r o a c h , the difference b e t w e e n c a l c u l a t e d a n d e x p e r i m e n t a l l o g Ρ values c a n sometimes give i m p o r t a n t i n f o r m a t i o n o n t h e c o n f o r m a t i o n of the m o l e c u l e i n the aqueous phase ( 5 1 , 54).
The
ττ values of p o l a r substituents o b t a i n e d i n the a l k y l d e r i v a t i v e s are h i g h e r t h a n c o r r e s p o n d i n g values c a l c u l a t e d f r o m the a r y l a l k y l d e r i v a t i v e s . T h e differences
( n e a r l y constant a r o u n d 0.6) are t h o u g h t to arise f r o m i n t r a
m o l e c u l a r h y d r o p h o b i c b o n d i n g of the side c h a i n w i t h the a r o m a t i c r i n g i n a r y l a l k y l c o m p o u n d s w h i c h causes a b e n d i n g c o n f o r m a t i o n i n the a q u e ous phase. D e t a i l e d studies o n the n a t u r e of l o g Ρ a n d π parameters are discussed b y several authors i n subsequent chapters. It is i m p o r t a n t to d e t e r m i n e w h e t h e r or not e a c h substituent p a r a m e ter is a n i n d e p e n d e n t v a r i a b l e . If a c o n s i d e r a b l e c o r r e l a t i o n exists b e t w e e n t w o parameters i n a set of c o m p o u n d s , evaluate
the
q u a l i t y of
i t is often difficult to
s t r u c t u r e - a c t i v i t y correlations.
T a b l e I I are for the m u s c a r i n e - l i k e a c t i v i t y of m e a s u r e d b y the b l o o d pressure descent of cats
The
acetylcholine (55).
data i n analogs
T h e effect of
c a t i o n i c h e a d structure has b e e n a n a l y z e d u s i n g p h y s i c o c h e m i c a l p a r a m e ters of the Ν substituents
(11).
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
Extrathermodynamic
FUJITA
Structure-Activity
13
Correlations n s r 7 0.490 0.954 7 0.490 0.954 7 0.490 0.954
log Β Α = - 5 . 1 8 Χσ* + 4.22 %Ε° - 0.063 log Β Α = 26.62 2ττ + 37.89 XE - 0.063 log Β Α = - 5 . 8 3 2σ* - 3.34 2π - 0.063 C
8
(27) (28) (29)
E q u a t i o n s 2 7 - 2 9 w i t h t w o parameters seem to s h o w reasonable c o r r e l a t i o n . A l t h o u g h E q u a t i o n 28 w o u l d b e u n a c c e p t a b l e because of u n u s u a l l y large p a r a m e t e r coefficients, the correlations are c o m p l e t e l y
equivalent
statistically. A s far as c o m p o u n d s
concerned,
u s e d for the analyses are
it is i m p o s s i b l e to choose the t w o significant parameters.
I n this case,
besides a significant c o r r e l a t i o n b e t w e e n parameters π a n d E
8y
m u t u a l relationships a m o n g three parameters.
there are
E a c h p a r a m e t e r is ex
pressed as a l i n e a r c o m b i n a t i o n of the other t w o a n d is not separated f r o m others. T o o b t a i n m e a n i n g f u l correlations, substituents m u s t be selected so that the substituent parameters i n c l u d e d i n a set of congeners are as separated as possible.
I n this e x a m p l e , not o n l y the h y d r o g e n , m e t h y l ,
a n d e t h y l , w h o s e parameters v a r y i n p a r a l l e l , b u t groups s u c h as i s o p r o p y l ( *
=
σ
-0.19, π =
1.60, E
C
8
=
1.20, E ° = 8
-0.47),
teri-butyl
- 1 . 5 4 ) , or t r i f l u o r o e t h y l ( σ * =
(σ* =
- 0 . 3 0 , ττ
0.92, π — 1.48, E ° =
c o u l d b e u s e d as the Ν substituents. T h e s i t u a t i o n has b e e n recently b y C r a i g
reviewed
(56).
Sometimes the use of q u a n t u m c h e m i c a l l y d e t e r m i n e d i n d i c e s (1, or o x i d a t i o n - r e d u c t i o n potentials (58)
57)
=
-0.79)
8
24,
i n s t e a d of the H a m m e t t - T a f t
constants, the use of c h r o m a t o g r a p h i c a l l y o b t a i n e d h y d r o p h o b i c i t y p a rameter, AR , m
(5, 59)
i n s t e a d of π or l o g P , or the a d d i t i o n of
variables s u c h as those for h y d r o g e n b o n d i n g (60), Table II.
I
+
CH COOCH CH N—R 3
Substituents
Me Me Me Η Me Me Et α
(61),
Muscarine-like A c t i v i t y of Acetylcholine Analogs Ri 2
2
2
Parameters
R
R
Me Me H H Me Et Et
Me H H H Et Et Et
2
other
d i p o l e moments
3
2σ*
2ττ
0.00 0.49 0.98 1.47 -0.10 -0.20 -0.30
0.00 -0.50 -1.00 -1.50 0.50 1.00 1.50
log ΒΑ 0.00 0.32 0.64 0.96 -0.38 -0.76 -1.14
0.00 -1.70 -2.70 -3.30 -0.48 -2.60 -3.30
Β Α is the activity relative to acetylcholine.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
14
BIOLOGICAL CORRELATIONS
b o n d polarizations
(62),
T H E HANSCH A P P R O A C H
a n d p o s i t i o n parameters
(39)
in Equation 3
c a n b e justified for the i m p r o v e d c o r r e l a t i o n . I n a n y case, it is a d v i s a b l e not to use too m a n y parameters i n E q u a t i o n 3.
U n l e s s the n u m b e r of c o m p o u n d s u s e d i n the regression is l a r g e
so that the degrees of f r e e d o m are sufficient, a statistically significant c o r r e l a t i o n w o u l d not be o b t a i n e d . F o r e x a m p l e , the d e p o l a r i z i n g a c t i v i t y of five q u a t e r n a r y a m m o n i u m ions against e l e c t r i c eel electroplax
(63)
is expressed b y E q u a t i o n 30 w i t h the s u m of the substituent constants of four N-substituents
(11).
log A = The
correlation
- 4 . 5 1 2 σ * + 4.212ΤΓ + 6.56 XE ° + 3.14 η = 5 s = 0.162 r = 0.992 a
coefficient
seems r a t h e r l o w .
is v e r y
high, and
the
(30)
standard
deviation
H o w e v e r , a n F test reveals that the c o r r e l a t i o n is not
justified at the 0.90 l e v e l of p r o b a b i l i t y .
I n E q u a t i o n 30, the n u m b e r
of
degrees of f r e e d o m , e q u a l to one, is so l o w that the F v a l u e , w h i c h is a f u n c t i o n of the n u m b e r , b e c o m e s r a t h e r s m a l l . 53.6 )
(F
3 t
i =
26.6, F , i , i o 3
0 l
=
I n g e n e r a l , the l a r g e r the n u m b e r of degrees of f r e e d o m , the m o r e
s i g n i f i c a n t l y r e d u c e d is the v a r i a n c e i n the a c t i v i t y d a t a . W h e n a statisti c a l l y s i g n i f i c a n t c o r r e l a t i o n is o b t a i n e d w i t h f e w e r parameters a n d
yet
a n i m p r o v e d c o r r e l a t i o n is e x p l o r e d b y a d d i n g another p a r a m e t e r ,
the
l e v e l of confidence at w h i c h the a d d i t i o n a l p a r a m e t e r is justified s h o u l d be e x a m i n e d w i t h F tests. It is not e n o u g h for a m u l t i p l e p a r a m e t e r e q u a t i o n just to
"work"
a n d to g i v e a n i m p r o v e d c o r r e l a t i o n as H i g u c h i a n d D a v i s h a v e
empha
sized recently nificance.
(64).
T h e correlation must have a physicochemical
sig
R e c e n t l y , E q u a t i o n 31 has b e e n p r e s e n t e d b y B u c h e l a n d his
co-workers herbicides
for the i n h i b i t i o n of the H i l l r e a c t i o n w i t h
1,2,4-triazinone
(65). ο
2 pl
5 0
=
5.23 -
16.57 δ + 45.04 δ + 2.11 AR (3) - 3.36 AR (3) + 2.22AR (6) -0.50Δ/Μ6) η = 28 s = 0.418 r = 0.938 (31) 2
M
M
2
2
M
I n this e q u a t i o n , δ is a d i f f e r e n t i a l p a r a m e t e r d e v e l o p e d f r o m a n d p o l y a m i d e t h i n - l a y e r c h r o m a t o g r a p h y , a n d AR (3) M
Sephadex
a n d AR (6) M
the values for the substituents at the 3 a n d 6 positions, r e s p e c t i v e l y . n u m b e r of c o m p o u n d s is sufficiently l a r g e so t h a t the c o r r e l a t i o n
are The could
b e a c c e p t e d statistically. A l t h o u g h E q u a t i o n 31 c a n b e u s e d to p r e d i c t
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
Extrathermodynamic
FUJITA
Structure-Activity
activities of untested c o m p o u n d s
15
Corrections
i n this p a r t i c u l a r set of c o m p o u n d s , i t
is difficult to accept its p h y s i c o c h e m i c a l significance o n a g e n e r a l m o d e of a c t i o n of H i l l r e a c t i o n i n h i b i t o r s . T h e m o r e parameters u s e d for c o r r e l a t i o n , the m o r e
difficult i t w o u l d b e to d e t e r m i n e
the
comparative
correlations a n d the less attractive w i l l be the p h y s i c o c h e m i c a l e l u c i d a t i o n . F o r a set of i o n i z a b l e drugs w h e r e large changes i n the degrees of i o n i z a t i o n are o b s e r v e d , the a p p a r e n t a c t i v i t y e x h i b i t e d b y a d r u g is not a s u i t a b l e i n d e x to b e a n a l y z e d . U n l e s s the effect of i o n i z a t i o n is sepa r a t e d f r o m other p h y s i c o c h e m i c a l effects, the c o r r e l a t i o n w o u l d not have a p h y s i c o c h e m i c a l significance. fact, l o g l / ( C
i o n
+
T h e apparent activity, log 1 / C
is, i n
e n t r a i ) , w h i c h is not a free-energy r e l a t e d i n d e x for
the m a g n i t u d e of a c t i v i t y either of the n e u t r a l or i o n i z e d m o l e c u l e both.
W i t h a r e l a t i v i s t i c a p p r o a c h to this p r o b l e m , w e
E q u a t i o n 32 a n d 33 for the i o n i z a b l e drugs (66,
p l a n to
67).
log 1/C + log (K + [ H ] ) / [ H ] = -a (log P) + b log Ρ + σ + SE s + c +
A
+
2
log
1/C
+
Ρ
-\- [ H ] ) / K = —a (log Ρ ) + b log Ρ + 'σ + SE + c'
log (KA
or use
+
(32)
A
2
Ρ
8
(33)
F r o m the bacteriostatic a c t i v i t y d a t a of k o j i c a c i d d e r i v a t i v e s deter m i n e d at p H 6, 7, a n d 8 w i t h s. aureus, equations
w e have d e r i v e d the f o l l o w i n g
(13).
F o r the a p p a r e n t a c t i v i t y : p H 6:
log 1/C — 0.863 A l o g K + 1.587 π(Χ) η = 9 s = 0.585
+ 1.571 r = 0.946
(34)
log 1/C = 0.568 A l o g K + 1.456 π(Χ) n = 9 s = 0.516
+ 1.632 r = 0.944
(35)
log 1/C = 0.358 A l o g K + 1.205 *(X) n = 9 s = 0.476
+ 1.600 r = 0.930
(36)
A
p H 7:
A
p H 8:
A
F o r the n e u t r a l molecule : pH 6:
1/C
+ [H+] ) / [ H ] = 0.959 A l o g K + 1.601 π(Χ) + 1.580 n = 9 s = 0.586 r = 0.949
(37)
+ [H ] ) / [H ] = 0.970 A l o g # + 1.487 π ( Χ ) + 1.708 η = 9 s = 0.511 r = 0.956
(8)
log 1/C + log (K + [ H ] ) / [ H ] = 1.132 A\ogK + 1.235 π(Χ) + 1.974 n = 9 s = 0.460 r = 0.960
(38)
log
+
log (KA
+
A
pH 7:
log
1/C
+
log (KA
+
+
A
p H 8:
A
+
+
A
F o r the i o n i z e d f o r m : p H 6:
log
1/C
+
log (KA
+ [ H ] )/K = 1.606 *(X) + 3.517 η = 9 s = 0.544 r = 0.938 +
A
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(39)
16
BIOLOGICAL CORRELATIONS
p H 7:
log 1 / C + log (K
p H 8:
+ [ H ] )/K = 1.491 π(Χ) + 2.651 η = 9 s = 0.474 r = 0.944
(40)
+ [ H ] )/K = 1.215 *{X) + 2.009 n = 9 s = 0.449 r = 0.927
(41)
+
A
l o g 1/C + log (K
A
+
A
T H E HANSCH A P P R O A C H
A
C o m b i n e d equations, p H 6, 7, a n d 8: l o g 1 / C + l o g (K
A
+
[H ] ) / [H ] = n = 27 +
log 1 / C + log {K
+
A
1.020 A l o g K + 1.439π + s = 0.509 r = 0.943
1.754 (42)
A
+ [ H ] ) /K = 1.437π + 2.726 n = 27 s = 0.832 r = 0.823 +
A
(43)
I n these equations, the 7 r ( X ) is that of the substituents, s u c h as h y d r o g e n , h a l o g e n , a n d h y d r o x y l , at the 7-position.
N e i t h e r the use of
TT(X + Y ) n o r the a d d i t i o n of ? r ( Y ) t e r m i m p r o v e the correlations as d e s c r i b e d before for E q u a t i o n 8. T h e correlations are almost e q u i v a l e n t , q u a l i t a t i v e l y s p e a k i n g , a l t h o u g h those for the a c t i v i t y of i o n i z e d f o r m are s l i g h t l y better t h a n the others as far as t h e y are c o n s i d e r e d separately. T h u s , it m i g h t seem of n o great v a l u e to consider the effect of i o n i z a t i o n . H o w e v e r , i f w e c o m b i n e E q u a t i o n s 8, 37, a n d 38, E q u a t i o n 42 is o b t a i n e d for the a c t i v i t y of the n e u t r a l m o l e c u l e at three different p H ' s w i t h the use of 27 d a t a points. E q u a t i o n 42 shows m u c h better c o r r e l a t i o n t h a n E q u a t i o n 43, w h i c h is d e r i v e d i n a s i m i l a r m a n n e r for the a c t i v i t y of the ionized form.
Since the b a c t e r i a l g r o w t h is not affected m u c h b y p H
changes f r o m 6 to 8, the f o r m of the k o j i c a c i d d e r i v a t i v e s responsible for the bacteriostatic a c t i v i t y is l i k e l y to be the n e u t r a l m o l e c u l e , a n d the i o n i z e d f o r m seems to p l a y o n l y a m i n o r role i n the a c t i v i t y , i f any. E q u a t i o n s s u c h as 34, 35, a n d 36, w h i c h m i g h t be o n l y of use to i n d i c a t e a g e n e r a l t r e n d , are, i n effect, u n a b l e to e l u c i d a t e t h e p H d e p e n d e n c e of a c t i v i t y a n d to g i v e a n y i n f o r m a t i o n a b o u t the a c t i v e f o r m . It s h o u l d be n o t i c e d that f r o m the a c t i v i t y d a t a m e a s u r e d at a c e r t a i n fixed
p H , the correlations of e q u i v a l e n t q u a l i t y are o b t a i n e d b o t h
the n e u t r a l a n d i o n i z e d forms.
T h e r e are interrelations a priori
E q u a t i o n s 32 a n d 33 s u c h as ρ — ρ = where p
p
and c — & =
A
for
between
p H — pKA > std
is the H a m m e t t r e a c t i o n constant for the i o n i z a t i o n e q u i l i b r i u m
A
and p K A
s t d
is the v a l u e of a s t a n d a r d c o m p o u n d .
T h u s , it is o n l y possible
to p r e d i c t the m o l e c u l a r f o r m responsible for the a c t i v i t y b y c o m p a r i n g E q u a t i o n s 32 a n d 33 d e r i v e d f r o m data o b t a i n e d at various p H . over, the o p t i m u m v a l u e of l o g K , A
l o g K °, A
More
for the a p p a r e n t a c t i v i t y of
i o n i z a b l e congeners c a n b e d e r i v e d b y setting the d e r i v a t i v e of either E q u a t i o n 32 or 33 e q u a l to zero as s h o w n i n E q u a t i o n s 44 a n d 45. a w 1/C
K
A
,
[H ] +
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
FUJITA
Extrathermodynamic
Structure-Activity
Correlations
l o g i ^ ° = l o g ( - i ^ - p H
17
(45)
S i m i l a r situations h a v e b e e n discussed f o r s u b s t i t u t e d p h e n o l s (66) a n d sulfa d r u g s (67) i n d e t a i l . W h e n s t r u c t u r a l modifications are m a d e at v a r i o u s positions i n a set of
complex
d r u g molecules,
this a p p r o a c h
combined
with
the Free-
W i l s o n m a t h e m a t i c a l m o d e l w o u l d b e a s u i t a b l e t o o l (68). I f the m a t h e m a t i c a l c o n t r i b u t i o n s of substituents a n d parts of molecules are a d d i t i v e for a c e r t a i n b i o l o g i c a l effect o f a series of d r u g s , the c o n t r i b u t i o n values of substituents a t e a c h p o s i t i o n c a n b e a n a l y z e d f u r t h e r w i t h o u r a p p r o a c h . E x a m p l e s are discussed b y P a u l C r a i g i n C h a p t e r 8. W h e n d r u g biotransformations a n d excretions o c c u r before r e a c h i n g the site o f action a n d c o m m o n m e c h a n i s m s are c o n s i d e r e d f o r a set o f drugs, the rate constants d e t e r m i n e d b y the m u l t i c o m p a r t m e n t a l analysis or its counterparts c o u l d b e a n a l y z e d so t h a t the m o d e s o f m e t a b o l i s m , d i s t r i b u t i o n , a n d excretion are e l u c i d a t e d p h y s i c o c h e m i c a l l y ( 69, 70, 71 ). H o w e v e r , f o r t h e cases w h e r e specific
biotransformations
for certain
m e m b e r s o r each m e m b e r of c o n g e n e r i c drugs are involved—e.g., for the plant-growth
r e g u l a t i n g a c t i v i t y of g i b b e r e l l i n s
(72)—the
structure-
a c t i v i t y r e l a t i o n s h i p c o u l d n o t b e successfully a n a l y z e d b y E q u a t i o n 3 o r its modifications. F r o m the l i n e o f r e a s o n i n g that a n y b i o l o g i c a l effect o f drugs s h o u l d be a result o f c h e m i c a l a n d / o r p h y s i c o c h e m i c a l p e r t u r b a t i o n o n the b i o l o g i c a l system, the r e l a t i o n s h i p b e t w e e n s t r u c t u r e a n d a c t i v i t y o b s e r v e d for a n y k i n d of d r u g s h o u l d b e a n a l y z a b l e o n the basis o f p h y s i c o c h e m i c a l parameters. A l t h o u g h there are examples w h e r e E q u a t i o n 3 o r its m o d i fication
fails i n a n a l y z i n g the c o r r e l a t i o n , this does not o b v i a t e the p h y s i -
c o c h e m i c a l m e c h a n i s m b e h i n d the d r u g a c t i o n . W e h o p e that this a p p r o a c h , w h i c h is s t i l l i n a n e a r l y stage, w i l l achieve f u r t h e r d e v e l o p m e n t s a n d s t i m u l a t e other r e l a t e d fields o f science so that the m e c h a n i s m s of the d r u g a c t i o n c a n b e u n d e r s t o o d
comprehensively.
Acknowledgment T h e a u t h o r thanks C o r w i n H a n s c h f o r i n v a l u a b l e discussions since our first project o n this a p p r o a c h b e g a n i n 1961.
Literature Cited 1. Hansch, C., Fujita, T., J. Amer. Chem. Soc. (1964) 86, 1616. 2. Hansch, C., Accounts Chem. Res. (1969) 2, 232. 3. Hansch, "Drug Design," E. J. Ariëns, Ε., Vol. 1, p. 271, Academic, New York, 1971.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
18
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
4. Fujita, T., Iwasa, J., Hansch,C.,J. Amer. Chem. Soc. (1964) 86, 5175. 5. Iwasa, J., Fujita, T., Hansch,C.,J. Med. Chem. (1965) 8, 150. 6. Hammett, L. P., "Physical Organic Chemistry," 2nd ed., p. 347, McGraw Hill, New York, 1970. 7. Hansch,C.,J. Med. Chem. (1968) 11, 920. 8. Taft, R. W., Jr., "Steric Effects in Organic Chemistry," p. 556, M. S. New man, Ed., Wiley, New York, 1956. 9. Hancock, C. K., Meyers, Ε. Α., Yager, B. J., J. Amer. Chem. Soc. (1961) 83, 4211. 10. Ford-Moore, A. H., Ing, H. R., J. Chem. Soc. 1947, 55. 11. Fujita, T., Nishioka, T., Takayama,C.,Nakajima, M., unpublished data. 12. Newhall, F. W., J. Agr. Food Chem. (1971) 19, 294. 13. Ichimoto, I., Kotani, T., Tatsumi, C., Fujita, T., "Abstracts of Papers," Annual National Meeting, Agricultural Chemical Society of Japan, Fukuoka, 1970, p. 110. 14. Kakeya, N., Yata, N., Kamada, Α., Aoki, M., Chem. Pharm. Bull. (1969) 17, 2558. 15. Fujita, T., Chem. Regulation Plants (Tokyo) (1970) 5, 124. 16. Bruce, M. I., Zwar, J. Α., Proc. Roy. Soc. (1966) B165, 245. 17. Ugochukwu, Ε. N., Wain, R. L., Ann. Appl. Biol. (1968) 61, 121. 18. Nagata,C.,Yonezawa, T., Fukui, K., Tgashira, Y., Cancer Res. (1955) 15, 233. 19. Pullman, Α., Pullman, B., Adv. Cancer Res. (1955) 3, 117. 20. Meyer, K. H., Hemmi, H., Biochem. Z. (1935) 277, 39. 21. Overton, Ε., Z. Physiol. Chem. (1897) 22, 189. 22. Soloway, S. B., Adv. Pest Control Res. (1965) 6, 85. 23. Kurihara, N., private communication (1971). 24. Hansch,C.,Deutsch, E. W., Smith, R. N., J. Amer. Chem. Soc. (1965) 87, 2738. 25. Lien, E. J., Hansch,C.,Anderson, S. M., J. Med. Chem. (1968) 11, 430. 26. Penniston, J. T., Beckett, L., Bentley, D. L., Hansch,C.,Mol. Pharmacol. (1969) 5, 333. 27. McFarland, J.M.,J. Med. Chem. (1970) 13, 1192. 28. Hansch,C.,IlFarmaco (1968) 23, 293. 29. Hansch,C.,Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F., Streich, M., J. Amer. Chem. Soc. (1963) 85, 2817. 30. Muir, R. M., Fujita, T., Hansch,C.,Plant Physiol. (1967) 42, 1519. 31. Ariens, Ε. J., "Molecular Pharmacology," Vol. 1, p. 176, Academic, New York, 1964. 32. Yamasaki, T., Narahashi, T., Botyu-Kagaku (1957) 22, 296. 33. Metcalf, R. L., "Organic Insecticides," p. 135, Wiley, New York, 1955. 34. Upshall, D. G., Goodwin, T. W., J. Sci. Food Agr. (1964) 15, 846. 35. Fukuto, T. R., Metcalf, R. L., J. Agr. Food Chem. (1956) 4, 930. 36. Hansch, C., Deutsch, E. W., Biochim. Biophys. Acta (1966) 112, 381. 37. O'Brien, R. D., Hilton, B. D., Gilmour, L., Mol. Pharmacol. (1966) 2, 593. 38. Metcalf, R. L., Fukuto, T. R., J. Agr. Food Chem. (1965) 13, 220. 39. Hansch, C., "Biochemical Toxicology of Insecticides," R. D. O'Brien and I. Yamamoto, Eds., p. 33, Academic, New York, 1970. 40. Ishida, S., Ida, M., Agr. Biol. Chem. (Tokyo) (1967) 31, 410. 41. Ishida, S., Yamada, O., Agr. Biol. Chem. (Tokyo) (1967) 31, 417. 42. Ishida, S., Agr. Biol. Chem. (Tokyo) (1966) 30, 800. 43. Muraoka, S., Terada, H., Fujita, T., "Abstracts of Papers," 91st National Meeting, Pharmaceutical Society of Japan, Fukuoka, 1971, p. 412. 44. Whitehouse, M. W., "Pharmaceutical Chemistry—2," p. 39, Butterworth, London, 1969. 45. Hamor, G. H., Lien, E. J., Il Farmaco (1969) 24, 704. 46. Kutter, E., Hansch, C., J. Med. Chem. (1969) 12, 647.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
FUJITA
Extrathermodynamic
Structure-Activity
Correlations
19
47. Fujita, T., Ban, T., unpublished data. 48. Ho, B. T., Li, Ko-Chin, Walker, K. E., Tansey, L. W., Kralik, P. M., McIsaac, W. M., J. Pharm. Sci. (1970) 59, 1445. 49. Swett, L. R., Martin, W. B., Taylor, J. D., Everett, G. M., Wykes, Α. Α., Gladish, Y. G., Ann. N.Y. Acad. Sci. (1963) 107, 891. 50. Leffler, J. E., Grunwald, E., "Rates and Equilibria of Organic Reactions," p. 128, Wiley, New York, 1963. 51. Hansch, C., Anderson, S. M., J. Org. Chem. (1967) 32, 2583. 52. Fujita, T., Nakajima, M., Soeda, Y., Yamamoto, I., Pesticide Biochem. Physiol. (1971) 1, 151. 53. Currie, D. J., Lough, C. E., Silver, R. F., Holmes, H. L., Can. J. Chem. (1966) 44, 1035. 54. Leo, Α., Hansch, C., J. Org. Chem. (1971) 36, 1539. 55. Holton, P., Ing, H. R., Brit. J. Pharmacol. (1949) 4, 190. 56. Craig, P. N., J. Med. Chem. (1971) 14, 680. 57. Neely, W. B., White, H. C., Rudzik, Α., J. Pharm. Sci. (1968) 57, 1176. 58. Kutter, E., Machleidt, H., Reuter, W., Wildfeuer, Α., 161st National Meet ing, ACS, Los Angeles, Calif., 1971. 59. Boyce, C. B. C., Milborrow, Β. V., Nature (1967) 208, 2275. 60. Hansch, C., Lien, E. J., Biochem. Pharmacol. (1968) 17, 709. 61. Clayton, J. M., Purcell, W. P., J. Med. Chem. (1969) 12, 1087. 62. Hansch, C., Coats, E., J. Pharm. Sci. (1970) 59, 731. 63. Podleski, T. R., Biochem. Pharmacol. (1969) 18, 211. 64. Higuchi, T., Davis, S. S., J. Pharm. Sci. (1970) 59, 1376. 65. Draber, W., Buchel, K. H., Dickore, K., 2nd International Congress of Pesticide Chemistry, Israel, 1971. 66. Fujita, T., J. Med. Chem. (1966) 9, 797. 67. Fujita, T., Hansch, C., J. Med. Chem. (1967) 10, 991. 68. Fujita, T., Ban, T., J. Med. Chem. (1971) 14, 148. 69. Lien, E. J., Hansch, C., J. Pharm. Sci. (1968) 57, 1027. 70. Lien, E. J., Drug Intelligence Clin. Pharm. (1970) 4, 7. 71. Lien, E. J., Koda, R. T., Tong, G. L., Drug Intelligence Clin. Pharm. (1971) 5, 38. 72. Crozier, Α., Kuo, C. C., Durley, R. C., Pharis, R. P., Can. J. Bot. (1970) 48, 867. RECEIVED
June 17, 1971.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.