Compilation, Evaluation, and Selection of Physical ... - ACS Publications

Property Data for Organochlorine Pesticides. Li Shen and Frank Wania*. Department of Chemistry and Department of Physical and Environmental Sciences,...
1 downloads 3 Views 361KB Size
742

J. Chem. Eng. Data 2005, 50, 742-768

Compilation, Evaluation, and Selection of Physical-Chemical Property Data for Organochlorine Pesticides Li Shen and Frank Wania* Department of Chemistry and Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4

Accurate physical-chemical properties (aqueous solubility SW, octanol-water partition coefficient KOW, vapor pressure P, Henry’s law constant H, octanol-air partition coefficient KOA, octanol solubility SO) and their temperature dependence are of fundamental importance for interpreting and simulating the environmental fate and transport of organochlorine pesticides (OCPs). A complete set of property data for 14 organochlorine chemicals is derived by evaluating, averaging, and regressing all measured values reported in the literature. The 14 chemicals are hexachlorobenzene (HCB), pentachlorobenzene (PeCB), cis-chlordane, trans-chlordane, 1,1,1-trichloro-2,2-bis-4-chlorophenyl-ethane (p,p′-DDT) and its metabolites 1,1-dichloro-2,2-bis-4-chlorophenyl-ethene (p,p′-DDE) and 1,1-dichloro-2,2-bis-4-chlorophenyl-ethylene (p,p′-DDD), heptachlor and its metabolite heptachlor epoxide, aldrin, dieldrin, endrin, R-endosulfan, and β-endosulfan. Properties for each individual chemical are adjusted to ensure thermodynamic consistency. That adjustment is sized according to, and is usually smaller than, the measurement uncertainty. Internal energies of phase transfer ∆U could be derived only for HCB and PeCB. The lack of property measurements as a function of temperature for the other chemicals prevents their ∆U values from being derived.

Introduction Organochlorine pesticides (OCPs) were extensively used in agriculture from the 1950s to the 1970s. Some have been used longer than others, and some, such as lindane and endosulfan, are still in use. The OCPs comprise a diverse group of chemicals but tend to share certain characteristics and structural features. They typically have an aliphatic or aromatic cyclical structure, which is heavily substituted with chlorines. As a result, most OCPs are sparingly soluble and semivolatile. Early measurements detected OCPs in a wide range of environmental compartments, even in remote regions far from the original site of application.1,2 Because of their high stability, OCPs can remain unchanged for a long time in the environment. Numerous investigations on OCPs have shown their continued and ubiquitous presence around the world (e.g., refs 3 and 4). Because of this persistence, phase distribution and transport processes tend to play a larger role in controlling their environmental fate and bioaccumulation behavior than for other more readily degradable substances.5 Phase distribution and transport processes of pollutants in the environment are often quantified by using key physical-chemical properties such as the aqueous solubility SW, vapor pressure P, octanol-water partition coefficient KOW, Henry’s law constant H, octanol-air partition coefficient KOA, and solubility in octanol SO. Assessment models predicting the fate and behavior of OCPs in the environment require these properties as input parameters. Several OCPs, including HCB, DDT, chlordane, heptachlor, dieldrin, and endrin, are among the first persistent organic pollutants (POPs) to be subjected to global restrictions in the Stockholm Protocol.6 That global treaty also allows for the nomination of additional chemicals if they * Corresponding author. E-mail: [email protected].

fulfill a number of criteria related to toxicity, bioaccumulation, persistence, and long-range transport potential. Some of these criteria are based on physical-chemical property thresholds, in particular with respect to KOW and vapor pressure. The protocol furthermore allows for the use of models in defining the attributes of candidate substances (e.g., in terms of the long-range transport potential), and physical-chemical properties are key input parameters for such models. Accurate and precise physical-chemical property data for the OCPs are thus required if they are to serve as benchmarks for defining the combination of properties that render a chemical a POP. Considering that the OCPs are among the first detected and most widely studied organic pollutants, one might expect that their partitioning properties are well established. Indeed, a large number of studies have reported physical-chemical properties for the OCPs over the last several decades, and handbooks of property data compile long lists of property values.7 However, the reported values often conflict with each other and may even range over several orders of magnitude. Using the water solubility and KOW of p,p′-DDT and p,p′-DDE as an example, Pontolillo and Eganhouse8 painstakingly documented reporting errors, multilevel referencing, and a common lack of information on precision as well as other problems in both original literature sources and property compilations, which are partly responsible for the intimidating degree of inconsistency. Another reason for the problems in identifying the true value of the partitioning properties of OCPs is the difficulty in reliably measuring SW, H, and KOW of sparingly soluble substances and P, H, and KOA of semivolatile substances.8 Beyer et al.9 suggested that the solution to this dilemma lies in taking advantage of the thermodynamic relationships between the physical-chemical descriptors of an organic chemical. The accuracy of a particular property

10.1021/je049693f CCC: $30.25 © 2005 American Chemical Society Published on Web 03/02/2005

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 743 Table 1. Reported and Selected Physical-Chemical Properties for Hexachlorobenzene (HCB) common name CAS registry no. formula MW/g‚mol-1

hexachlorobenzene 118-74-1 C6Cl6 284.8

tM/°C

228.0 229.7 228.9 228.7 228.0 231.9 44.77 50.16 49.73 48.96 47.23

∆fusS/J‚K-1‚mol-1

23 24 25 26 22 27 23 25 26 22 27

Vapor Pressure t/°C

PS/Pa

PL/Pa

log(PL/Pa)

method

ref

-15 -5 10 25 40 -30 -20 -10 0 10 20 30 15 25 35 45 41.05 50.16 60.3 70.3 80.3 90.4 100.25 10 20 30 40 50 10 20 30 40 50 20 20 40 60 96 105 115 124 114.4 149.3 166.4 185.7 206 219 235.5 258.5 283.5 309.4 -30 0 25 50 75 100 125 LDV at 25 °C FAV at 25 °C

0.0000022 0.000024 0.00026 0.0031 0.012 0.0000026 0.0000073 0.000032 0.00010 0.00036 0.0011 0.0033 0.00053 0.0025 0.0085 0.028 0.021 0.055 0.17 0.45 1.2 2.8 6.3 0.00080 0.0026 0.0081 0.023 0.061 0.00028 0.0011 0.0039 0.013 0.039 0.00046 0.00074 0.0095 0.089 3.4 7.0 15 28 133 667 1333 2666 5333 7999

0.00053 0.0037 0.023 0.16 0.40 0.0012 0.0022 0.0062 0.013 0.032 0.068 0.15 0.039 0.13 0.33 0.80 0.66 1.4 3.1 6.6 13 25 46 0.071 0.16 0.36 0.76 1.5 0.025 0.069 0.18 0.43 0.97 0.029 0.046 0.32 1.7 28 47 82 131 741 1993 3049 4616 7057 9016 13332 26664 53329 101325 0.00024 0.0099 0.12 1.1 6.6 32 130 0.14 0.094

-3.28 -2.43 -1.63 -0.78 -0.40 -2.91 -2.66 -2.20 -1.88 -1.50 -1.17 -0.83 -1.41 -0.87 -0.48 -0.10 -0.18 0.13 0.49 0.82 1.12 1.40 1.67 -1.15 -0.79 -0.44 -0.12 0.18 -1.61 -1.16 -0.76 -0.37 -0.01 -1.54 -1.34 -0.50 0.23 1.44 1.67 1.91 2.12 2.87 3.30 3.48 3.66 3.85 3.96 4.12 4.43 4.73 5.01 -3.62 -2.00 -0.90 0.03 0.82 1.51 2.11 -0.85 -1.03

generator column - GC

28

gas saturation - GC

29

gas saturation - GC

30

gas saturation - GC

31

gas saturation - GC

32

vapor pressure balance

32

relative loss rate evaporation rate

33 34

Rodebush manometer

24

note

calcd from the reported equation log(PS/Torr) ) - 5152.1/(T/K) + 12.237 (20 to 60) °C calcd from the reported equation log(PS/mmHg) ) -4793.6/(T/K) + 11.4 (96 to 124) °C

35

GC - retention time

linear regression

36

calcd from the reported equation log(PL/Pa) ) -3582/(T/K) + 11.11

log(PL/Pa) ) -3530/(T/K) + 10.97 R2 ) 0.974

744

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 1. (Continued) Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

5 15 25 35 45 25 25 20 25 23 22 23 23 25 25 24 23 23 23 LDV at 25 °C FAV at 25 °C

0.0000077 0.000012 0.000019 0.000030 0.000049 0.000018 0.000017 0.000019 0.000017 0.000030 0.000014

0.00082 0.00091 0.0010 0.0012 0.0014 0.00093 0.00087 0.0012 0.00092 0.0017 0.00081 0.0027 0.0010 0.00093 0.0011 0.019 0.0029 0.00090 0.000096 0.00096 0.0014

-3.08 -3.04 -3.00 -2.94 -2.85 -3.03 -3.06 -2.93 -3.04 -2.77 -3.09 -2.57 -2.99 -3.03 -2.95 -1.72 -2.54 -3.05 -4.02 -3.02 -2.84

t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

14.8 20.1 22.1 24.2 34.8 50.5 20 25 23 23 25 26 46 LDV at 25 °C FAV at 25 °C

24 30 47 53 88 217 49 172 133 172 24 26 30 52 65

0.0099 0.012 0.019 0.021 0.034 0.081 0.020 0.069 0.054 0.070 0.0096 0.011 0.011 0.021 0.026

-2.01 -1.91 -1.72 -1.67 -1.46 -1.09 -1.70 -1.16 -1.27 -1.15 -2.02 -1.98 -1.95 -1.68 -1.58

0.000018 0.000018 0.000021 0.00035 0.015 0.0045 0.00048

method

ref

generator column - GC

37

generator column - GC generator column - GC generator column - GC shake flask - UV shake flask - UV shake flask - GC shake flask - GC shake flask - HPLC SPME-GC radioassay nethelometric RP-HPLC

38 39 40 41 42 43 44 45 46 47 48 49 49 49

note

log mean of the values at 25 °C

Henry’s Law Constant method

ref

gas stripping - GC

50

gas stripping - GC gas stripping - GC gas stripping - GC

51 19 20

thermodynamic method EPICS - GC

52 53

note

not used, seawater

log mean of the values at (20 to 26) °C

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

5 15 25 35 45 25 25 25 25 25 25 25 25 25 23 23 22 25 25 25 25 25 25 25 25 23 23 23 LDV at 25 °C FAV at 25 °C

5.5 × 4.0 × 105 2.9 × 105 2.0 × 105 1.5 × 105 3.2 × 105 3.2 × 105 2.1 × 105 5.4 × 105 4.0 × 105 3.2 × 105 3.0 × 105 3.5 × 105 4.0 × 105 1.6 × 105 2.0 × 105 1.0 × 105 1.9 × 106 5.6 × 105 2.6 × 107 8.3 × 106 7.9 × 105 4.0 × 106 3.0 × 106 2.6 × 106 1.7 × 105 3.2 × 106 1.5 × 106 3.3 × 105 4.3 × 105

5.74 5.6 5.46 5.3 5.17 5.5 5.5 5.31 5.73 5.6 5.5 5.47 5.55 5.6 5.2 5.3 5 6.27 5.75 7.42 6.92 5.9 6.6 6.47 6.41 5.23 6.51 6.18 5.52 5.64

105

method

ref

shake flask - GC

54

shake flask - GC shake flask - GC shake flask - GC shake flask - GC slow stirring - GC slow stirring - GC generator column - GC dialysis - HPLC

55 56 57 58 59 60 39 61

radioactive analysis GLC analysis shake flask - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC

62 63 63 64 65 66 59

RP-HPLC RP-HPLC RP-HPLC RP-HPLC

67 68 69 49

log mean of the values at 25 °C

note

without ultrasonic agitation with ultrasonic agitation

100% water 85% methanol + 15% water

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 745 Table 1. (Continued) Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 10 15 20 25 -10 0 10 20 LDV at 25 °C FAV at 25 °C

1.2 × 8.0 × 107 5.3 × 107 3.6 × 107 2.4 × 107 4.2 × 108 1.2 × 108 3.7 × 107 1.3 × 107 2.4 × 107 1.6 × 107

8.09 7.90 7.72 7.55 7.38 8.63 8.08 7.57 7.10 7.38 7.21

108

method

ref

note

generator column - GC

12

calcd from the reported equation log KOA ) 2914/(T/K) - 2.39 (5 to 25) °C

generator column - GC

13

calcd from the reported equation log KOA ) 3928/(T/K) - 6.3 (-10 to 20) °C not used

directly taken from the value at 25 °C Octanol Solubility

t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20 25

8.5 11 14 15

942 884 861 800

2.97 2.95 2.94 2.90

slow stirring - GC

18

not used for the adjustment

shake flask - GC

70

value can be evaluated by relating it to the values of other associated partitioning properties. They proposed a method to adjust literature-derived property values for one chemical such that they conform to the thermodynamic relationships linking them. Li et al.10 further complemented that approach by developing a rigorous and transparent procedure for compiling and evaluating measured data from the literature, selecting literature-derived values through averaging or linear regression and making estimates of the uncertainty of these values. These uncertainty estimates determine the extent of relative adjustment applied in the adjustment algorithm. The procedure was applied to 16 PCB congeners, and the resulting set of data shows consistency not only among the various partitioning properties for one congener but also for one property across various congeners.10 Recently, an internally consistent set of physical-chemical property data for R-, β-, and γ-hexachlorocyclohexane (HCH) was derived on the basis of all experimentally obtained values reported for these isomers in the literature.11 The final adjusted values indicated that the partitioning behavior of R- and γ-HCH differs from that of β-HCH, which may result in substantially different environmental pathways for β-HCH. The present work’s objective was to use this same approach to derive an internally consistent property data set for 14 additonal OCPs, which makes use of all available measured data. These OCPs are HCB, PeCB, cis-chlordane, trans-chlordane, p,p′-DDT and its metabolites p,p′-DDE and p,p′-DDD, and heptachlor and its metabolites heptachlor epoxide, aldrin, dieldrin, endrin, R-endosulfan, and β-endosulfan. Property measurements for several other OCPs, namely, nonachlor, methoxychlor, and mirex, were found to be too limited to allow this procedure to be applied. Beyer et al.9 already adjusted for consistency property values for six of the OCPs (p,p′-DDT, p,p′-DDE, transchlordane, cis-chlordane, PeCB, HCB) but had used starting values, which were not as rigorously selected as in the current study. Methods The principles and steps involved in the evaluation, selection, and adjustment procedure have been described previously9,10 and will not be repeated here in detail. Briefly, the steps are as follows. Deriving Property Values from Measurements Reported in the Literature. The Chemical Abstracts Service

Source Index (CASSI) and other databases7 are used to obtain and identify all of the published literature on measured physical-chemical properties for the chemicals of interest. Despite our efforts at comprehensiveness, it is likely that additional data sources exist that escaped our attention. To avoid multilevel referencing and reporting errors, only original data sources are considered; that is, no quoted values are included.8 Although we may use handbooks to identify property values, we always consult the original sources to determine if the information is correct and available in the original publications. Values that refer to the same set of experiments, differ substantially from a cluster of other reported values, or are highly inconsistent with respect to the other property values for the same chemical are not used in the derivation of literature-derived values (LDVs). Data measured indirectly, such as those derived from chromatographic retention times, are included only if there are no directly measured data or the directly measured data are inconsistent with the other property data. Theoretically estimated values are excluded. The measured data are converted to appropriate and identical units and compiled in spreadsheets. If no exact experimental temperature is provided, then a temperature of 23 °C is assumed to apply. If the data are reported as a linear equation, then discrete values listed in tables are calculated for four or five temperatures that are either experimental temperatures indicated in the reference or temperatures in the environmentally relevant range. In some cases, values at low or high temperatures are calculated from an equation if it aids in the comparison with other measurements. Because the OCPs are solids at environmental temperatures, experimentally determined properties for the solid state were converted to those of the supercooled liquid. This is discussed in more detail below. If measured values for a property exist at several temperatures, then a linear regression equation between the logarithm of all noneliminated data and the reciprocal absolute temperature is derived. The LDVs for the property at 25 °C are obtained from the regression equation, and the LDVs for the corresponding internal energy of phase transfer are calculated from the slope of the regression line. If measurements had been performed within only a fairly small temperature range (e.g., (20 to 25) °C) and measured data at 25 °C are close to each other, then the LDV at 25 °C is the logarithmic mean of the noneliminated values at

746

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 2. Reported and Selected Physical-Chemical Properties for Pentachlorobenzene (PeCB) common name CAS registry no. formula MW/g‚mol-1

pentachlorobenzene 608-93-5 C6HCl5 250.3

tM/°C ∆fusS/J‚K-1‚mol-1

84.6 57.74

23 23

Vapor Pressure t/°C

PS/Pa

PL/Pa

log(PL/Pa)

30 40 50 60 30.3 40.3 50.2 60.2 70.1 80.0 98.7 108.7 118.8 128.9 138.9 149.0 159.1 169.1 179.1 98.6 129.7 144.3 160 178.5 190.1 205.5 227 251.6 276 20 LDV at 25 °C FAV at 25 °C

0.55 1.8 5.3 15 0.39 1.2 3.2 8.5 20 47

1.9 4.7 11 25 1.4 3.1 6.7 14 27 52 168 285 471 756 1189 1821 2731 4010 5751 133 667 1333 2666 5333 7999 13332 26664 53329 101325 0.25 1.2 1.0

0.28 0.68 1.05 1.39 0.13 0.49 0.83 1.15 1.44 1.71 2.22 2.45 2.67 2.88 3.08 3.26 3.44 3.60 3.76 2.12 2.82 3.12 3.43 3.73 3.90 4.12 4.43 4.73 5.01 -0.60 0.07 0.01

0.055

method

ref

note

71

pressure gauge

72

35

relative loss rate linear regression

33

outlier log(PL/Pa) ) -3220/(T/K) + 10.87 R2 ) 0.997

Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

25 22 5 15 25 35 45 25 25 25 25 22 23 23 23 23 23 LDV at 25 °C FAV at 25 °C

0.0033 0.00072 0.00058 0.0010 0.0017 0.0025 0.0034 0.0018 0.0035 0.0022 0.0053 0.0010

0.013 0.0031 0.0042 0.0054 0.0067 0.0075 0.0081 0.0071 0.014 0.0090 0.021 0.0046 0.0066 0.0037 0.058 0.053 0.0015 0.011 0.014

-1.88 -2.50 -2.37 -2.27 -2.17 -2.12 -2.09 -2.15 -1.86 -2.05 -1.67 -2.34 -2.18 -2.43 -1.23 -1.27 -2.82 -1.96 -1.85

0.00088 0.014 0.013 0.00035

method

ref

generator column - GC generator column - GC generator column - GC

39 73 37

shake flask - GC shake flask - GC/MS shake flask - UV shake flask - LSC shake flask - GC shake flask - GC shake flask - HPLC RP-HPLC

37 74 41 75 43 44 45 49

note

not used, indirect

log mean of the values at 25 °C

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

20 14.8 20.1 22.1 24.2 34.8 50.5 LDV at 25 °C FAV at 25 °C

72 37 49 68 67 124 276 74 72

0.030 0.016 0.020 0.028 0.027 0.048 0.10 0.030 0.029

-1.53 -1.81 -1.69 -1.56 -1.57 -1.31 -0.99 -1.52 -1.54

method gas stripping gas stripping

linear regression

ref

note

51 50

log KAW ) -2026/(T/K) + 5.27 R2 ) 0.957

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 747 Table 2. (Continued) Octanol-Water Partition Coefficient t/°C

KOW

log KOW

5 15 25 35 45 25 25 22 25 23 25 25 22 25 23 23 23 18 23 LDV at 25 °C FAV at 25 °C

1.6 × 1.1 × 105 8.7 × 104 6.2 × 104 4.6 × 104 1.5 × 105 1.6 × 105 1.6 × 105 8.7 × 104 8.7 × 104 1.1 × 105 1.5 × 105 7.6 × 104 1.5 × 105 1.1 × 105 4.9 × 105 3.0 × 105 1.3 × 106 5.5 × 105 1.2 × 105 1.6 × 105

5.20 5.06 4.94 4.79 4.66 5.17 5.20 5.20 4.94 4.94 5.03 5.18 4.88 5.18 5.06 5.69 5.47 6.12 5.74 5.08 5.19

105

method

ref

shake flask - GC

54

shake flask - GC shake flask - GC shake flask - GC shake flask - HPLC shake flask - LSC generator column - GC slow stirring - GC shake flask - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC log mean of the values at 25 °C

57 56 44 64 75 39 58 63 64 76 77 78 66 49

note

Octanol-Air Partition Coefficient KOA

log KOA

-10 0 5 10 20 25 25

t/°C

8.8 × 107 2.7 × 107 1.5 × 107 8.8 × 106 3.1 × 106 1.9 × 106 3.3 × 107

7.94 7.43 7.18 6.94 6.50 6.28 7.52

generator column - GC

LDV at 25 °C FAV at 25 °C

8.0 × 106 5.4 × 106

6.90 6.73

log mean of the values at 25 °C

method

GC - retention time

Octanol Solubility

25 °C. If there is an insufficient number of values at 25 °C or if data at 25 °C are scattered, then the LDV at 25 °C has to be derived using the logarithmic mean of the noneliminated values at (20 to 25) °C, assuming that in such cases the temperature dependence is minor compared to the uncertainty of the measurements. The arithmetic mean would give undue weight to higher values. If property values for selected chemicals had been measured by only a single study, then the LDVs for the property and the corresponding internal energy of phase transfer are taken directly from the relevant studies. If there are multiple data sets from the same author or research group, then the latest data take precedence. For example, most of the LDVs for KOA, except those for heptachlor epoxide and β-endosulfan, are taken from the study by Shoeib and Harner.12 Harner and Mackay13 had previously reported KOA values for HCB and p,p′-DDT. The more recent values are higher and more consistent with other properties and are thus considered to be more reliable and served as LDVs. Assigning Uncertainty Estimates to the LiteratureDerived Values. For each LDV value of the six evaluated properties PL, SWL, KOW, H or KAW, KOA, and SOL of a particular chemical, a relative uncertainty estimate, uX, is required to avoid the undue adjustment of a well-established property value to conform to a poorly characterized one.9 To minimize ambiguity in deciding on the value of uX for a property, a uX value between 1 and 5 is assigned by comparing the size of the database, the technique employed in a measurement, the deviations between dif-

ref

note

13

calcd from the reported equation log KOA ) 3722/(T/K) - 6.3 (-10 to 20) °C extrapolated Li, unpublished indirect, used anyhow

not found

ferent literature data, and the general reliability of data reported by a particular research group. For example, a relatively large uX, indicating high uncertainty, is assigned to properties for which few or no directly measured data exist (e.g., KAW for most selected chemicals), whereas properties that had been measured directly several times with accepted techniques yielding comparable values would deserve a low uX (e.g., PL for HCB). Adjusting the Literature-Derived Values to Conform to Thermodynamic Constraints. The LDVs were adjusted on the basis of their assigned uncertainties using the algorithm by Beyer et al.9 This technique adjusts a set of physical-chemical property values in such a way that they conform to thermodynamic constraints yet deviate as little as possible from the original values. The adjusted values are referred to as final adjusted values (FAVs). Missing property values are calculated at the same time. For the selected chemicals, KOW is assumed to be equal to SOL/SWL on the basis of the belief that for the OCPs the uncertainty caused by the effect of the mutual solubility of octanol and water on KOW is less than that of experimentally measured data reported in the literature. Beyer et al.9 provided a detailed account of the thermodynamic basis of the adjustment procedure and the equations on which it is based. A computer program with the algorithm is available from www.usf.uos.de/projects/elpos/download/ adjust.en.html. Conversion of Properties of the Solid to Those of the Supercooled Liquid. As mentioned above, the vapor pressure and solubility values reported for the solid phase

748

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 3. Reported and Selected Physical-Chemical Properties for p,p′-DDT common name CAS registry no. formula MW/g‚mol-1

p,p′-DDT 50-29-3 C14H9Cl5 354.5

tM/°C

∆fusS/J‚K-1‚mol-1

108.7 109.8 108.9 111.7 71.2 68.8 68.8 79.4

79 27 22 16 36 27 22 16

Vapor Pressure t/°C

PS/Pa

PL/Pa

log(PL/Pa)

method

ref

20 25 30 40 50 60 70 80 20 30 40 0 10 20 30 40 50.1 60.1 80.4 88.8 90.2 0 10 20 30 40 50 60 70 80 90 100 20 20 20 50 100 0 25 50 75 100 25 25 LDV at 25 °C FAV at 25 °C

0.000029 0.000057 0.00012 0.00053 0.0020 0.0064 0.020 0.060 0.000020 0.000097 0.00044 0.00000050 0.0000025 0.000017 0.000081 0.00038 0.0020 0.0071 0.078 0.20 0.23 0.00000059 0.0000036 0.000020 0.000096 0.00043 0.0018 0.0067 0.023 0.074 0.22 0.64 0.000043 0.000033 0.000017 0.000063 0.000090

0.00042 0.00067 0.0012 0.0037 0.0099 0.023 0.055 0.12 0.00029 0.00095 0.0031 0.000016 0.000054 0.00024 0.00079 0.0027 0.0099 0.026 0.16 0.33 0.36 0.000019 0.000076 0.00028 0.00094 0.0029 0.0088 0.024 0.063 0.15 0.36 0.80 0.00061 0.00047 0.00024 0.00031 0.00011 0.000016 0.00050 0.0092 0.11 0.96 0.00083 0.00047 0.00056 0.00048

-3.38 -3.17 -2.92 -2.43 -2.00 -1.63 -1.26 -0.90 -3.54 -3.02 -2.52 -4.79 -4.27 -3.61 -3.10 -2.58 -2.00 -1.59 -0.80 -0.48 -0.44 -4.72 -4.12 -3.55 -3.03 -2.53 -2.05 -1.61 -1.20 -0.81 -0.44 -0.10 -3.21 -3.32 -3.61 -3.51 -3.95 -4.79 -3.30 -2.03 -0.95 -0.02 -3.08 -3.33 -3.25 -3.32

gas saturation - HPLC

80

gas saturation - GC

81

gas saturation - GC

29

gas saturation - GC

82

effusion manometer

83

relative loss rate gas saturation - LSC

33 84 85

GC - retention time

36

calcd from the reported equation log(PL/Pa) ) -4865/(T/K) + 13.02

GC - retention time

86

BP-1 column Apolane-87 column log(PL/Pa) ) -4666/(T/K) + 12.40 R2 ) 0.995

linear regression

note

outlier

Aqueous Solubility t/°C 25 23 24 20 24 25 15 25 35 45 15 25 35 45 15

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

0.000014 0.0000088 0.000015 0.00011 0.000011 0.000015 0.000048 0.000071 0.00010 0.00013 0.0000071 0.000017 0.000037 0.000078 0.0000028

0.00017 0.00011 0.00019 0.0016 0.00014 0.00018 0.00083 0.00083 0.00086 0.00074 0.00012 0.00020 0.00030 0.00045 0.000049

-3.77 -3.95 -3.73 -2.79 -3.86 -3.74 -3.08 -3.08 -3.07 -3.13 -3.91 -3.70 -3.52 -3.34 -4.31

generator column - GC shake flask - UV shake flask - GC shake flask - HPLC shake flask - nephelometry centrifuge - GC shake flask - GC

46 42 87 88 48 55 89

particle size, 5 µm

shake flask - GC

89

not used, small particle size, 0.05 µm

shake flask - GC

89

not used, small particle size, 0.01 µm

note

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 749 Table 3. (Continued) Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

25 35 45 25 25 2 25 37.5 23 25 25 25 LDV at 25 °C FAV at 25 °C

0.0000048 0.0000073 0.000011 0.0000048 0.000085 0.0059 0.037 0.045 0.0016 0.0045 0.0023 0.020

0.000056 0.000060 0.000064 0.000056 0.00100 0.00016 0.00044 0.00035 0.000020 0.000053 0.000027 0.00023 0.00027 0.00042

-4.25 -4.22 -4.19 -4.25 -3.00 -3.80 -3.36 -3.45 -4.70 -4.28 -4.57 -3.63 -3.56 -3.37

method

ref

ultracentrigfugation - GC RP-HPLC shake flask - radiometric

90 49 91

shake flask - GC shake flask - LSC generator column RP-HPLC log mean of the values at (20 to 25) °C

92 93 94 94

note

outlier no isomer specified no isomer specified no isomer specified no isomer specified no isomer specified no isomer specified no isomer specified

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

25 25 22-24 23 23 LDV at 25 °C FAV at 25 °C

1.3 0.84 0.86 1.3 1.3 1.1 1.1

0.00052 0.00034 0.00035 0.00052 0.00054 0.00043 0.00043

-3.28 -3.47 -3.46 -3.28 -3.27 -3.37 -3.37

method thermodynamic method wetted-wall column fog chamber (drain) fog chamber (cyclone) log mean of the values at (23 to 25) °C

ref

note

84 52 95

not at 25 °C, used anyhow

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

note

25 25 25 23 23 23 25 25 18 25 17 23 23 23 23 23 LDV at 25 °C FAV at 25 °C

8.7 × 105 2.3 × 106 8.2 × 106 1.6 × 106 2.0 × 106 1.7 × 106 1.0 × 106 4.0 × 105 4.3 × 105 2.4 × 106 1.3 × 105 3.2 × 105 1.6 × 106 2.8 × 105 3.3 × 105 3.9 × 105 1.9 × 106 2.5 × 106

5.94 6.36 6.91 6.20 6.31 6.24 6.00 5.60 5.63 6.38 5.13 5.50 6.21 5.44 5.52 5.59 6.28 6.39

shake flask - GC shake flask - GC slow stirring - GC slow stirring - GC slow stirring - GC slow stirring - GC SPMD - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC log mean of the values at (23 to 25) °C

88 55 58 59

average of four replicates

60 46 65 66 76 96 97 68 67 98 85

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 15 25 35 45 -10 0 10 20 LDV at 25 °C FAV at 25 °C

8.3 × 2.2 × 1010 6.4 × 109 2.0 × 109 6.9 × 108 6.7 × 1011 1.9 × 1011 5.8 × 1010 1.9 × 1010 6.4 × 109 5.4 × 109

10.92 10.34 9.81 9.31 8.84 11.83 11.28 10.76 10.29 9.81 9.73

1010

method

ref

note

generator column - GC

12

calcd from the reported equation log KOA ) 4603/(T/K) - 5.63 (5 to 45) °C

generator column - GC

13

calcd from the reported equation log KOA ) 3954/(T/K) - 3.2 (-10 to 20) °C not used

directly take the value at 25 °C Octanol Solubility

t/°C

SOS/mol‚m-3

SOL/mol‚m-3

4 12 20 20

76 123 162 99

2074 2403 2306 1404

log(SOL/mol‚m-3)

ref

note

slow stirring - GC

method

18

not used for the adjustment

shake flask - HPLC

88

750

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 4. Reported and Selected Physical-Chemical Properties for p,p′-DDE common name CAS registry no. formula MW/g‚mol-1

p,p′-DDE 72-55-9 C14H8Cl4 319

tM/°C

88.6 89.9 87.3 88.5 66.9 65.3 65.4

∆fusS/J‚K-1‚mol-1

79 27 22 16 27 22 16

Vapor Pressure t/°C

PS/Pa

PL/Pa

log(PL/Pa)

method

ref

note

15 25

0.00097 0.0033

-3.01 -2.48

GC - retention time

36

35 45 30 30 30 25 25 LDV at 25 °C FAV at 25 °C

0.010 0.030 0.0040 0.0080 0.0019 0.0027 0.0021 0.0033 0.0034

-1.99 -1.52 -2.40 -2.10 -2.73 -2.57 -2.68 -2.48 -2.47

calcd from the reported equation log(PL/Pa) ) -4554/(T/K) + 12.79 used anyhow

gas saturation - GC gas saturation - GC GC - retention time GC - retention time

81 99 100 86

0.00087 0.0017

BP-1 column Apolane-87 column

directly take the value at 25 °C Aqueous Solubility

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

20 24 25 15 25 35 45 25

0.00013 0.00020 0.000044 0.00017 0.00038 0.00074 0.0014 0.00013

0.00080 0.0011 0.00024 0.0013 0.0020 0.0029 0.0042 0.00068

-3.10 -2.94 -3.62 -2.89 -2.69 -2.54 -2.38 -3.17

shake flask - GC shake flask - nephelometry generator column - GC shake flask - GC

101 48 38 89

25

0.000031

0.00017

-3.77

25 23 23 25 25 LDV at 25 °C

0.0000041 0.0039 0.000074 0.0000034 0.000019

0.000022 0.021 0.00040 0.000018 0.00010 0.00081

-4.66 -1.68 -3.40 -4.74 -4.01 -3.09

0.00079

-3.10

t/°C

FAV at 25 °C

note

shake flask - GC

89

shake flask - LSC RP-HPLC RP-HPLC generator column RP-HPLC log mean of the values at (20 to 25) °C

47 49

used anyhow particle size, 5 µm

not used, small particle size, 0.05 µm not used, small particle size, 0.01 µm outlier

94

no isomer specified no isomer specified

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

25 23 23 LDV at 25 °C FAV at 25 °C

4.2 123 369 4.2 4.2

0.0017 0.05 0.15 0.0017 0.0017

-2.77 -1.30 -0.82 -2.77 -2.77

method thermodynamic method gas stripping - UV

ref

note

52 20 20

not consistent with other properties not used, seawater

directly take the value at 25 °C Octanol-Water Partition Coefficient

t/°C

KOW

log KOW

method

ref

note

25 23 25 18 23 23 23 23 LDV at 25 °C FAV at 25 °C

9.0 × 106 6.8 × 105 7.8 × 105 1.2 × 106 6.0 × 105 1.9 × 106 4.9 × 105 4.3 × 105 9.0 × 106 8.6 × 106

6.96 5.83 5.89 6.09 5.78 6.29 5.69 5.63 6.96 6.93

slow stirring RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC RP-HPLC directly take the value at 25 °C

58 69 65 66 97 49 69 94

no isomer specified

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 15 25 35 LDV at 25 °C FAV at 25 °C

8.4 × 1010 1.9 × 1010 4.9 × 109 1.4 × 109 4.9 × 109 5.0 × 109

10.92 10.28 9.69 9.13 9.69 9.70

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 5116/(T/K) - 7.47 (5 to 35) °C

directly take the value at 25 °C Octanol Solubility

t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

138 138 200

1546 1157 1271

3.19 3.06 3.10

slow stirring - GC

18

not used for the adjustment

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 751 Table 5. Reported and Selected Physical-Chemical Properties for p,p′-DDD common name CAS registry no. formula MW/g‚mol-1

p,p′-DDD 72-54-8 C14H10Cl4 321

tM/°C

109.2 109.0 81.0 71.5

∆fusS/J‚K-1‚mol-1

27 22 27 22

Vapor Pressure t/°C 15 25 35 45 30 25 25 LDV at 25 °C FAV at 25 °C

PS/Pa

PL/Pa

log(PL/Pa)

0.000136

0.00028 0.00097 0.0031 0.0092 0.0015 0.0016 0.00062 0.00097 0.0012

-3.55 -3.01 -2.51 -2.04 -2.83 -2.79 -3.21 -3.01 -2.93

method

ref

note

GC - retention time

36

calcd from the reported equation log(PL/Pa) ) -4622/(T/K) + 12.49

gas saturation - GC GC - retention time

81 86

BP-1 column Apolane-87 column

directly take the value at 25 °C

Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

25 24 15 25 35 45 25 25 LDV at 25 °C

0.000062 0.00050 0.00016 0.00028 0.00047 0.00075 0.000047 0.000016

0.00083 0.0069 0.0031 0.0037 0.0042 0.0047 0.00062 0.00021 0.0028

-3.08 -2.16 -2.51 -2.43 -2.37 -2.32 -3.21 -3.68 -2.56

generator column - GC shake flask - nephelometry shake flask - GC

38 48 89

0.0023

-2.64

FAV at 25 °C

note

particle size, 5 µm

not used, small particle size, 0.05 µm not used, small particle size, 0.01 µm log mean of the values at (24 and 25) °C

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

method

ref

25 LDV at 25 °C FAV at 25 °C

0.67 0.67 0.50

0.00027 0.00027 0.00020

-3.57 -3.57 -3.69

thermodynamic method directly take the value at 25 °C

52

note

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

note

25 25 18 23 23 LDV at 25 °C FAV at 25 °C

1.6 × 106 5.4 × 104 1.0 × 105 6.6 × 104 1.5 × 105 1.6 × 106 2.2 × 106

6.217 4.73 5 4.82 5.19 6.22 6.33

slow stirring RP-HPLC RP-HPLC RP-HPLC RP-HPLC directly take the value at 25 °C

58 65 66 97 49

from regression

Octanol-Air Partition Coefficient t/°C 5 15 25 35 LDV at 25 °C FAV at 25 °C Octanol Solubility

KOA

log KOA

1.3 × 3.8 × 1010 1.2 × 1010 4.4 × 109 1.2 × 1010 1.1 × 1010

11.11 10.58 10.10 9.64 10.10 10.03

1011

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 4185/(T/K) - 3.94 (5 to 35) °C

directly take the value at 25 °C

not found

752

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 6. Reported and Selected Physical-Chemical Properties for cis-Chlordane (CC) common name CAS registry no. formula MW/g‚mol-1

cis-chlordane 5103-71-9 C10 H6 Cl8 409.8

tM/°C ∆fusS/J‚K-1‚mol-1

104.1 106.8 74.3 60.9

14 22 14 22

Vapor Pressure t/°C

Ps/Pa

25 50 75 100 125 25 50 75 100 125 20 25 LDV at 25 °C FAV at 25 °C

PL/Pa

log(PL/Pa)

method

ref

0.008 0.11 0.98 6.7 36 0.0047 0.061 0.54 3.6 19 0.0029 0.0073 0.0080 0.0073

-2.10 -0.96 0.01 0.83 1.56 -2.33 -1.22 -0.27 0.56 1.28 -2.54 -2.14 -2.10 -2.14

gas saturation - GC

note Rordorf, unpublished

GC - retention time

36

GC - AA GC - retention time linear regression

102

calcd from the reported equation log(PL/Pa) ) -4284/(T/K) + 12.04

Li, unpublished log(PL/Pa) ) -4331/(T/K) + 12.43 R2 ) 1.000

Aqueous Solubility SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

note

25

0.00014

0.0015

-2.83

shake flask - GC

103

24 25 LDV at 25 °C

0.000078 0.0045

0.00084 0.048 0.0011

-3.08 -1.32 -2.96

batch solubility generator column - GC log mean of the values at (24 and 25) °C

104 38

mixture of 3:1 cis/trans, used anyhow no isomer specified, used anyhow not consistent with other properties

0.0013

-2.89

ref

note

t/°C

FAV at 25 °C

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

25 22-24 23 23 23 23 LDV at 25 °C FAV at 25 °C

4.9 8.4 5.4 5.9 89 419 6.0 5.7

0.0020 0.0034 0.0022 0.0024 0.036 0.17 0.0024 0.0023

-2.71 -2.47 -2.66 -2.62 -1.44 -0.77 -2.61 -2.61

method gas stripping - GC wetted-wall column fog chamber (drain) fog chamber (cyclone) gas stripping - GC

19 95

no isomer specified, used anyhow τ-chlordane, used anyhow

20

not consistent with other properties not used, seawater

log mean of the values at (23 to 25) °C Octanol-Water Partition Coefficient

t/°C

KOW

log KOW

method

ref

note

25 25 23 LDV at 25 °C FAV at 25 °C

1.3 × 106 6.0 × 102 1.2 × 105 1.3 × 106 1.6 × 106

6.10 2.78 5.08 6.10 6.20

slow stirring - GC shake flask - GC RP-HPLC directly take the value at 25 °C

105 103 97

not used, 3:1 cis-to trans-chlordane no isomer specified

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 15 25 35 25 LDV at 25 °C FAV at 25 °C

1.4 × 3.2 × 109 8.1 × 108 2.2 × 108 8.3 × 108 8.1 × 108 6.8 × 108

10.14 9.50 8.91 8.35 8.92 8.91 8.83

1010

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 5127/(T/K) - 8.29 (5 to 35) °C

GC - retention time directly take the value at 25 °C

Li, unpublished

Octanol Solubility t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

138 151 209

3483 2715 2714

3.54 3.43 3.43

slow stirring - GC

18

not used for the adjustment

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 753 Table 7. Reported and Selected Physical-Chemical Properties for trans-Chlordane (TC) common name CAS registry no. formula MW/g‚mol-1

trans-chlordane 5103-74-2 C10H6Cl8 409.8

tM/°C ∆fusS/J‚K-1‚mol-1

101.1 75.4

14 14

Vapor Pressure t/°C

Ps/Pa

25 50 75 100 125 25 50 75 100 125 20 25 LDV at 25 °C FAV at 25 °C

PL/Pa

log(PL/Pa)

method

0.013 0.16 1.4 9.3 48 0.0066 0.082 0.71 4.6 23 0.0039 0.0098 0.013 0.010

-1.89 -0.80 0.15 0.97 1.68 -2.18 -1.09 -0.15 0.66 1.37 -2.41 -2.01 -1.89 -1.99

gas saturation - GC

ref

note Rordorf, unpublished

GC - retention time

36

GC - AA GC - retention time linear regression

102

calcd from the reported equation log(PL/Pa) ) -4216/(T/K) + 11.96

Li, unpublished log(PL/Pa) ) -4238/(T/K) + 12.32 R2 ) 1.000

Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

note

25 24 25 LDV at 25 °C

0.00014 0.000078 0.0045

0.0014 0.00080 0.046 0.0011

-2.86 -3.10 -1.34 -2.96

shake flask batch solubility generator column - GC log mean of the values at (24 and 25) °C

103 104 38

mixture of 3:1 cis/trans, used anyhow no isomer specified, used anyhow not consistent with other properties

0.0015

-2.82

FAV at 25 °C

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

25 23 23 23 23 23 LDV at 25 °C

4.9 8.4 5.4 5.9 135 566 6.0

0.0020 0.0034 0.0022 0.0024 0.055 0.23 0.0024

-2.71 -2.47 -2.66 -2.62 -1.26 -0.64 -2.62

FAV at 25 °C

6.8

0.0027

-2.56

method

ref

gas stripping - GC wetted-wall column fog chamber (drain) fog chamber (cyclone) gas stripping - GC

note

19 95

no isomer specified, used anyhow τ-chlordane, used anyhow

20

not consistent with other properties not used, seawater

log mean of the values at (23 and 25) °C

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

note

25 25 23 LDV at 25 °C FAV at 25 °C

1.7 × 6.0 × 102 1.2 × 105 1.7 × 106 1.8 × 106

6.22 2.78 5.08 6.23 6.27

slow stirring shake flask RP-HPLC directly take the value at 25 °C

105 103 97

not used, 3:1 cis-to trans-chlordane no isomer specified

106

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C

1.2 × 5.7 × 109 2.8 × 109 1.4 × 109 7.3 × 108 5.9 × 108 7.3 × 108 6.7 × 108

10.08 9.76 9.45 9.15 8.86 8.77 8.86 8.83

1010

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 5036/(T/K) - 8.03 (5 to 25) °C

GC - retention time directly take the value at 25 °C

Li, unpublished

Octanol Solubility t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

204 275 347

4912 4699 4274

3.69 3.67 3.63

slow stirring - GC

18

not used for the adjustment

754

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 8. Reported and Selected Physical-Chemical Properties for Heptachlor (HEPT) common name CAS registry no. formula MW/g‚mol-1

heptachlor 76-44-8 C10H5Cl7 373.4

tM/°C ∆fusS/J‚K-1‚mol-1

93 98 69.64 70.96

14 15 14 15

Vapor Pressure t/°C

Ps/Pa

PL/Pa

log(PL/Pa)

method

25 50 75 100 125 25 50 75 100 125 25 LDV at 25 °C FAV at 25 °C

0.021 0.41 5.1

0.16 1.35 8.38 46 320 0.030 0.33 2.5 15 70 0.036 0.13 0.13

-0.81 0.13 0.92 1.66 2.51 -1.52 -0.48 0.41 1.17 1.85 -1.44 -0.87 -0.87

gas saturation - GC

ref

GC - retention time

note Rordorf, unpublished

36

calcd from the reported equation log(PL/Pa) ) -3995/(T/K) + 11.88

GC - retention time linear regression

Li, unpublished log(PL/Pa) ) -3870/(T/K) + 12.11 R2 ) 0.996

Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

15 25 35 45 25 25 27 LDV at 25 °C FAV at 25 °C

0.00027 0.00048 0.00084 0.0013 0.00033 0.00008 0.00015

0.0028 0.0036 0.0044 0.0050 0.0025 0.00059 0.0010 0.0035 0.0035

-2.55 -2.45 -2.35 -2.30 -2.61 -3.23 -2.99 -2.45 -2.45

shake flask - GC

89

shake flask - GC linear regression

106

note particle size, 5 µm

not used, small particle size 0.05 µm not used, small particle size 0.01 µm not used, outlier log(SWL/mol‚m-3) ) -770/(T/K) + 0.13 R2 ) 0.990

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

method

ref

note

25 25 LDV at 25 °C FAV at 25 °C

30 150 30 38

0.012 0.060 0.012 0.015

-1.92 -1.22 -1.92 -1.81

thermodynamic method gas stripping - GC directly take the value at 25 °C

52 19

not consistent with other properties

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

25 18 23 23 25 LDV at 25 °C FAV at 25 °C

1.3 × 3.8 × 105 1.7 × 105 2.8 × 105 1.9 × 105 1.3 × 106 8.8 × 105

6.1 5.58 5.24 5.44 5.27 6.10 5.94

slow strirring - GC RP-HPLC RP-HPLC RP-HPLC RP-HPLC directly take the value at 25 °C

105 66 97 69 65

106

note from regression

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C

3.0 × 1.8 × 108 1.1 × 108 6.9 × 107 4.3 × 107 4.3 × 107 4.3 × 107 5.7 × 107

8.47 8.25 8.04 7.84 7.64 7.64 7.64 7.76

108

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 3455/(T/K) - 3.95 (5 to 25) °C

GC - retention time directly take the value at 25 °C

Octanol Solubility t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

182 219 234

2960 2596 2065

3.47 3.41 3.31

slow stirring - GC

18

not used for the adjustment

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 755 Table 9. Reported and Selected Physical-Chemical Properties for Heptachlor Epoxide (HEPX) common name CAS registry no. formula MW/g‚mol-1

heptachlor epoxide 1024-57-3 C10H5Cl7O 389.2

tM/°C

166 161.7 61.56 55.62

∆fusS/J‚K-1‚mol-1

14 15 14 15

Vapor Pressure t/°C

PS/Pa

25 LDV at 25 °C FAV at 25 °C

PL/Pa

log(PL/Pa)

method

ref

0.013 0.013 0.022

-1.88 -1.88 -1.65

GC - retention time directly taken

note Li, unpublished indirect, used anyhow

Aqueous Solubility SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

25 15 25 35 45 25

0.00090 0.00028 0.00051 0.00090 0.0015 0.00031

0.024 0.011 0.014 0.017 0.021 0.0082

-1.62 -1.97 -1.86 -1.77 -1.67 -2.09

25

0.000064

0.0017

-2.77

27

0.000090

0.0022

-2.65

shake flask - GC

0.018 0.013

-1.74 -1.88

log mean of the values at 25 °C

t/°C

LDV at 25 °C FAV at 25 °C

method

ref

generator column - GC shake flask - GC

38 89

106

note particle size, 5 µm

not used, small particle size, 0.05 µm not used, small particle size, 0.01 µm not used, small particle size, 0.05 µm

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

method

ref

note

25 25 LDV at 25 °C FAV at 25 °C

2.1 3.2 2.1 1.7

0.00086 0.0013 0.00086 0.00068

-3.07 -2.88 -3.07 -3.17

thermodynamic method gas stripping - GC directly take the value at 25 °C

52 19

not consistent with other properties

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

note

25 23 LDV at 25 °C FAV at 25 °C

3.6 × 2.5 × 105 2.5 × 105 2.6 × 105

4.56 5.4 5.4 5.42

shake flask - GC RP-HPLC directly taken

107 69

not consistent with other properties indirect, used anyhow

104

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

method

25 LDV at 25 °C FAV at 25 °C

4.2 × 108 4.2 × 108 3.9 × 108

8.62 8.62 8.59

GC - retention time directly take the value at 25 °C

ref

note Li, unpublished indirect, used anyhow

Octanol Solubility t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

87.10 81.28 120.23

5076 3468 3820

3.71 3.54 3.58

slow stirring - GC

18

not used for the adjustment

PS, SWS, and SOS need to be converted to the properties of the supercooled liquid PL, SWL, and SOL. This is done by using compound-specific entropy of fusion values, ∆fusS, and melting temperatures, TM, in eq 1:

SWS/mol‚m-3 SWL/mol‚m-3

)

)

SOS/mol‚m-3 SOL/mol‚m-3 PS/Pa PL/Pa

[

) exp

(

- ∆fusS/J‚K-1‚mol-1 TM/K -1 T/K R/J‚K-1‚mol-1

)]

(1)

where R is the ideal gas constant and T is the experimental temperature in K. ∆fusS can be calculated from the compound-specific enthalpy of fusion, ∆fusH, and TM. The literature search revealed that TM values reported for a particular OCP can show large discrepancies. For example, TM values compiled by Mackay et al.7 are in the range of (70 to 109) °C for R-endosulfan and (108 to 213) °C for β-endosulfan. In addition, aldrin, dieldrin, heptachlor, and heptachlor epoxide have multiple phase transitions between the solid and liquid states. Different phasetransition energies are cited by different authors, referring to different articles. The molecules in an ideal crystal acquire both translational and rotational energy as they change from the solid to the liquid state and show only one melting temperature TM.14 However, for some OCPs,

756

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 10. Reported and Selected Physical-Chemical Properties for Aldrin common name CAS registry no. formula MW/g‚mol-1

aldrin 309-00-2 C12H8Cl6 364.9

tM/°C

99 103.1 52.17 56.37

∆fusS/J‚K-1‚mol-1

14 16 14 16

Vapor Pressure t/°C

PS/Pa

PL/Pa

log(PL/Pa)

method

ref

35.3 41 41.6 45.6 50.8 63.3 70 25 50 75 100 125 20 30 40 50 20 25 50 75 100 125 25 25 LDV at 25 °C FAV at 25 °C

0.063 0.10 0.11 0.16 0.33 1.0 2.2 0.0081 0.19 2.8

0.25 0.35 0.38 0.51 0.91 2.1 4.0 0.043 0.53 4.6 29 220 0.019 0.030 0.036 0.038 0.0061 0.076 0.79 5.9 33 153 0.023 0.033 0.061 0.064

-0.60 -0.45 -0.42 -0.29 -0.04 0.33 0.60 -1.37 -0.27 0.66 1.46 2.34 -1.73 -1.52 -1.45 -1.41 -2.22 -1.12 -0.10 0.77 1.52 2.18 -1.64 -1.48 -1.21 -1.20

generator column - GC

108

0.0031 0.0065 0.010 0.014 0.0010

note

gas saturation - GC

Rordorf, unpublished

109

outlier

relative loss rate GC - retention time

33 36

outlier calcd from the reported equation log(PL/Pa) ) -3924/(T/K) + 12.04

GC - retention time

86

BP-1 column Apolane-87 column log(PL/Pa) ) -4106/(T/K) + 12.56 R2 ) 0.990

linear regression Aqueous Solubility

t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

25 35 45 15 25 35 45 15 25 35 45 15 25 35 45 27 25 LDV at 25 °C FAV at 25 °C

0.20 0.39 0.79 0.11 0.18 0.35 0.60 0.052 0.14 0.24 0.46 0.0055 0.013 0.030 0.065 0.027 0.017

0.0029 0.0043 0.0068 0.0020 0.0026 0.0039 0.0052 0.0010 0.0020 0.0026 0.0039 0.00011 0.00019 0.00033 0.00056 0.00037 0.00025 0.0029 0.0027

-2.54 -2.36 -2.17 -2.69 -2.58 -2.41 -2.28 -3.00 -2.69 -2.58 -2.41 -3.98 -3.73 -3.48 -3.25 -3.43 -3.61 -2.55 -2.56

method

ref

note

shake flask - UV

110

shake flask - GC

89

particle size, 5 µm

shake flask - GC

89

not used, small particle size, 0.05 µm

shake flask - GC

89

not used, small particle size, 0.01 µm

shake flask - GC generator column - GC linear regression

106 38

outlier outlier log(SWL/mol‚m-3) ) -1480/(T/K) + 2.42 R2 ) 0.948

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

method

ref

25 25 LDV at 25 °C

50 4.5 15

0.020 0.0018 0.0060

-1.69 -2.74 -2.22

gas stripping - GC thermodynamic method log mean of the values at 25 °C

19 52

FAV at 25 °C

23

0.0094

-2.03

note

none above are consistent with other properties

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

25 20 23 LDV at 25 °C FAV at 25 °C

3.1 × 106 2.5 × 107 5.5 × 105 3.1 × 106 1.7 × 106

6.50 7.4 5.74 6.50 6.24

slow stirring - GC RP-TLC RP-HPLC directly take the value at 25 °C

58 111 97

note

Octanol-Air Partition Coefficient t/°C 5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C Octanol Solubility

KOA

log KOA

9.2 × 108 5.4 × 108 3.2 × 108 1.9 × 108 1.2 × 108 2.0 × 108 1.2 × 108 1.8 × 108

8.96 8.73 8.50 8.28 8.07 8.31 8.07 8.26

method generator column - GC

ref 12

GC - retention time directly take the value at 25 °C

note calcd from the reported equation log KOA ) 3709/(T/K) - 4.37 (5 to 25) °C Li, unpublished

not found

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 757 Table 11. Reported and Selected Physical-Chemical Properties for Dieldrin common name CAS registry no. formula MW/g‚mol-1

dieldrin 60-57-1 C12H8Cl6O 380.9

tM/°C ∆fusS/J‚K-1‚mol-1

175 180 180 45.69 52.04 54.37

14 14 15 14 14 15

Vapor Pressure t/°C

PS/Pa

PL/Pa

log(PL/Pa)

method

ref

35 38.2 51.5 62.8 70 75.2 20 30 40 25 50 75 100 125 20 20 30 40 50 25 50 75 100 125 25 25 LDV at 25 °C FAV at 25 °C

0.0026 0.0042 0.017 0.059 0.11 0.18 0.00037 0.00135 0.00452 0.00079 0.018 0.25 2.6 19 0.000387 0.00010 0.00019 0.00037 0.00071

0.044 0.065 0.18 0.48 0.78 1.1 0.010 0.027 0.067 0.018 0.20 1.5 9.3 43 0.010 0.0028 0.0038 0.0054 0.0079 0.010 0.13 1.2 8.1 43 0.0053 0.0060 0.016 0.014

-1.35 -1.19 -0.74 -0.32 -0.11 0.04 -2.00 -1.58 -1.18 -1.74 -0.69 0.18 0.97 1.63 -1.98 -2.55 -2.42 -2.27 -2.10 -2.00 -0.88 0.08 0.91 1.63 -2.27 -2.22 -1.78 -1.84

generator column - GC

108

gas saturation - GC

112

gas saturation - GC

note

Rordorf, unpublished

84 109

outlier

GC - retention time

36

calcd from the reported equation log(PL/Pa) ) -4310/(T/K) + 12.46

GC - retention time

86

BP-1 column Apolane-87 column log(PL/Pa) ) -3995/(T/K) + 11.62 R2 ) 0.998

linear regression

Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

25 10 15 20 25 30 35 40 25 35 45 25 27 10 20 30 15 25 35 45 15 25 35 45 15 25 35 45 25 LDV at 25 °C FAV at 25 °C

0.00053 0.00025 0.00029 0.00032 0.00040 0.00054 0.00064 0.00076 0.00066 0.0014 0.0026 0.00047 0.00049 0.00021 0.00037 0.00053 0.00024 0.00051 0.0011 0.0017 0.00017 0.00039 0.00071 0.0013 0.000026 0.000058 0.00012 0.00024 0.00037

0.012 0.0093 0.0091 0.0086 0.0092 0.011 0.011 0.011 0.015 0.024 0.034 0.011 0.011 0.0079 0.0099 0.010 0.0075 0.012 0.018 0.022 0.0054 0.0090 0.012 0.016 0.00083 0.0013 0.0021 0.0030 0.0084 0.012 0.013

-1.92 -2.03 -2.04 -2.06 -2.03 -1.97 -1.96 -1.95 -1.82 -1.62 -1.47 -1.96 -1.98 -2.10 -2.00 -1.98 -2.13 -1.93 -1.75 -1.66 -2.27 -2.04 -1.92 -1.79 -3.08 -2.88 -2.68 -2.52 -2.07 -1.94 -1.88

generator column - GC slow stirring - GC

38 113

shake flask - UV

110

shake flask - GC shake flask - GC shake flask - GC

92 106 114

particle size, 5 µm

shake flask - GC

89

particle size, 5 µm

shake flask - GC

89

not used, small particle size, 0.05 µm

shake flask - GC

89

not used, small particle size, 0.01 µm

shake flask - GC linear regression

92

not used, small particle size, 0.4 µm log(SWL/mol‚m-3) ) -1158/(T/K) + 1.94 R2 ) 0.595

note

758

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 11. (Continued) Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

method

ref

note

25 25 20 LDV at 25 °C FAV at 25 °C

1.0 5.9 3.2 1.0 1.1

0.00041 0.0024 0.0013 0.00041 0.00044

-3.39 -2.63 -2.89 -3.39 -3.36

thermodynamic method gas stripping - GC gas stripping - UV directly take the value at 25 °C

52 19 115

not consistent with other properties not consistent with other properties

Octanol-Water Partition Coefficient KOW

log KOW

method

ref

25 25

t/°C

2.5 × 105 3.4 × 104

5.40 4.54

slow stirring - GC slow stirring - GC

58 59

20 23 18 18 LDV at 25 °C FAV at 25 °C

1.6 × 106 5.8 × 104 3.2 × 104 4.5 × 104 2.5 × 105 3.1 × 105

6.2 4.76 4.51 4.65 5.40 5.48

RP-TLC RP-HPLC RP-HPLC

note average of four measures not consistent with other properties

111 97 66

directly taken

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 15 25 35 45 25 LDV at 25 °C FAV at 25 °C

6.4 × 2.2 × 109 7.8 × 108 3.0 × 108 1.2 × 108 1.0 × 109 7.8 × 108 6.9 × 108

9.81 9.33 8.89 8.48 8.09 9.02 8.89 8.84

109

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 3790/(T/K) - 3.82 (5 to 45) °C

GC - retention time directly take the value at 25 °C

Li, unpublished

Octanol Solubility t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

91 105 107

4218 3665 2882

3.63 3.56 3.46

slow stirring - GC

18

not used for the adjustment

such as aldrin, dieldrin, β-endosulfan, heptachlor, and its metabolite heptachlor epoxide, a characteristic transition phase between the ordered solid phase and the liquid phase exists just below the melting points. In this rotator or plastic phase, the molecules are weakly ordered and behave as if they were in a liquid state. The phase-transfer process of such chemicals can be described as Ttr(∆trH)

and rotator-liquid-phase transitions correspond to the energy of fusion:14

∆fusH/kJ‚mol-1 ) ∆trH/kJ‚mol-1 + ∆MH/kJ‚mol-1 ∆fusS/J‚mol-1‚K-1 ) ∆trS/J‚K-1‚mol-1 +

∆MS/J‚K-1‚mol-1

TM(∆MH)

solid phase 98 transition phase 98 liquid phase and a temperature of transition Ttr from the solid to the rotator phase can then be observed. The existence of such an intermediate phase for aldrin, dieldrin, heptachlor, and β-endosulfan during their solid-liquid phase transition is clearly shown by endothermic peaks in their differential scanning calorimetry (DSC) curves.15-17 During phase transfer from solid to liquid, chemicals that have characteristic rotator phases acquire only translational energy upon melting because they have already acquired rotational energy at a lower temperature.14 The values of the melting entropies ∆MS are usually small and equal to the gas constant R;15 the sums of the energies of solid-rotator

(2)

)

10-3∆trH/kJ‚mol-1 + Ttr/K 10-3∆MH/kJ‚mol-1 (3) TM/K

The ∆fusH and ∆fusS values for aldrin, dieldrin, heptachlor, heptachlor epoxide, and β-endosulfan listed in Tables 8, 9, 11, 12, and 14 were calculated according to eqs 2 and 3 on the basis of Ttr, TM, ∆trH, and ∆MH values found in the literature.14-16 We believe that one reason for the large discrepancies in reported TM values in the literature is that transition temperatures Ttr have been cited erroneously as melting temperatures TM in some literature sources. In

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 759 Table 12. Reported and Selected Physical-Chemical Properties for Endrin common name CAS registry no. formula MW/g‚mol-1

endrin 72-20-8 C12H8Cl6O 380.9

tM/°C

110.5 110.2 43.24 40.73

∆fusS/J‚K-1‚mol-1

15 16 15 16

Vapor Pressure t/°C

PS/Pa

25 LDV at 25 °C FAV at 25 °C

PL/Pa

log(PL/Pa)

method

ref

0.0052 0.0052 0.0031

-2.29 -2.29 -2.50

GC - retention time directly taken

note Li, unpublished indirect, used anyhow

Aqueous Solubility t/°C

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

method

ref

25 25 35 45 25 15 25 35 45 15 25 35 45 15 25 35 45 25 LDV at 25 °C FAV at 25 °C

0.00068 0.00060 0.0010 0.0013 0.00068 0.00034 0.00066 0.0011 0.0016 0.00024 0.00047 0.00083 0.0014 0.000026 0.000064 0.00015 0.00032 0.00050

0.0030 0.0027 0.0036 0.0039 0.0030 0.0019 0.0029 0.0039 0.0048 0.0013 0.0021 0.0030 0.0040 0.00015 0.00029 0.00054 0.00092 0.0022 0.0027 0.0030

-2.52 -2.57 -2.45 -2.41 -2.52 -2.72 -2.53 -2.40 -2.32 -2.88 -2.68 -2.53 -2.40 -3.83 -3.54 -3.26 -3.04 -2.65 -2.57 -2.53

generator column - GC shake flask - UV

38 110

note

shake flask - GC shake flask - GC

92 89

particle size, 5 µm particle size, 5 µm

shake flask - GC

89

not used, small particle size, 0.05 µm

shake flask - GC

89

not used, small particle size, 0.01 µm

shake flask - GC linear regression

92

not used, small particle size, 0.06 µm log(SWL/mol‚m-3) ) -1022/(T/K) + 0.86 R2 ) 0.893

Henry’s Law Constant t/°C

H/Pa‚m3‚mol-1

KAW

log KAW

25 LDV at 25 °C FAV at 25 °C

0.63 0.64 1.1

0.00026 0.00026 0.00043

-3.59 -3.59 -3.37

method

ref

thermodynamic method

note

52

directly take the value at 25 °C

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

25 23 23 LDV at 25 °C FAV at 25 °C

1.6 × 3.6 × 104 5.1 × 104 1.6 × 105 8.8 × 104

5.20 4.56 4.71 5.20 4.94

slow stirring - GC RP-HPLC RP-HPLC directly take the value at 25 °C

58 69 97

105

note

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 10 15 20 25 30 35 25 LDV at 25 °C FAV at 25 °C

1.6 × 8.3 × 108 4.4 × 108 2.4 × 108 1.3 × 108 7.6 × 107 4.4 × 107 1.2 × 109 1.3 × 108 2.1 × 108

9.20 8.92 8.64 8.38 8.13 7.88 7.65 9.09 8.13 8.32

109

method generator column - GC

ref

note

12

calcd from the reported equation log KOA ) 4436/(T/K) - 6.75 (5 to 35) °C

GC - retention time directly take the value at 25 °C

Li, unpublished

Octanol Solubility t/°C

SOS/mol‚m-3

SOL/mol‚m-3

log(SOL/mol‚m-3)

method

ref

note

4 12 20

95 100 115

705 603 572

2.85 2.78 2.76

slow stirring - GC

18

not used for the adjustment

760

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 13. Reported and Selected Physical-Chemical Properties for r-Endosulfan R-endosulfan 959-98-8 C9H6Cl6O3S 406.9

common name CAS registry no. formula MW/g‚mol-1

tM/°C

106.8 (not used) 85.9 26.32 (not used) 46.02

∆fusS/J‚K-1‚mol-1

22 17 22 17

Vapor Pressure t/°C

PS/Pa

5 15 25 35 45 25 LDV at 25 °C FAV at 25 °C

PL/Pa

log(PL/Pa)

0.00058 0.0020 0.0060 0.017 0.046 0.0086 0.0060 0.0044

-3.23 -2.71 -2.22 -1.76 -1.33 -2.06 -2.22 -2.35

method

ref

note

GC - retention time

36

calcd from the reported equation log(PL/Pa) ) -4201/(T/K) + 11.87 used anyhow

GC - retention time directly take the value at 25 °C

Li, unpublished

Aqueous Solubility t/°C

SWS/mol‚m-3 SWL/mol‚m-3 log(SWL/mol‚m-3)

20 25 20 LDV at 25 °C

0.0013 0.0013 0.00016

FAV at 25 °C

0.0043 0.0040 0.0006 0.0042

-2.36 -2.39 -3.25 -2.38

0.0063

-2.20

method

ref

note

shake flask - GC 116 generator column - GC 38 liquid-liquid etraction-GC/MS 117 not consistent with other properties log mean of the values at (20 and 25) °C Henry’s Law Constant

t/°C 25 20 20 LDV at 25 °C FAV at 25 °C

H/Pa‚m3‚mol-1

KAW

log KAW

0.72 6.6

0.00029 0.0027

-3.54 -2.57

thermodynamic method wetted- wall column

13 0.72 0.70

0.0053 0.00029 0.00028

-2.28 -3.54 -3.55

directly take the value at 25 °C

method

ref

note

52 118

distilled water, not consistent with other properties seawater

118

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

note

25 25 LDV at 25 °C FAV at 25 °C

5.5 × 6.8 × 103 5.5 × 104 8.7 × 104

4.74 3.83 4.74 4.94

shake flask - GC shake flask - GC directly take the value at 25 °C

107 119

not consistent with other properties

104

Octanol-Air Partition Coefficient t/°C

KOA

log KOA

5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C

4.8 × 2.5 × 109 1.4 × 109 7.6 × 108 4.3 × 108 6.8 × 108 4.3 × 108 3.1 × 108

9.68 9.40 9.14 8.88 8.63 8.83 8.63 8.49

109

method generator column - GC

ref

note

12

calcd from the linear eq log KOA ) 4333/(T/K) - 5.9 (5 to 25) °C

GC - retention time directly take the value at 25 °C

Li, unpublished

Octanol Solubility not found

other cases, the true melting temperature TM was not observed properly. No articles reporting measured data for the melting point and the heat fusion of endrin have been found. Plato reported that endrin decomposes when it is heated to the melting point.14 In a study by Ksiazczak and Nagata,15 endrin showed an endothermic peak and a large exothermic peak during heating. The endothermic peak was assigned to a solid-rotator transition, and the exothermic peak was assigned to decomposition. In a DSC curve for endrin by Rodante et al.,16 two endothermic peaks occur before endrin decomposes. The reported onset temperature and enthaly

change of the first and larger of these two peaks are in agreement with the results by Ksiazczak and Nagata, but unfortunately, no thermodynamic information is provided for the second tiny peak. To convert its solid properties into those of the supercooled liquid, the melting temperature and entropy of fusion were estimated. Ttr was taken as the TM value, and ∆fusS was calculated from Ttr and ∆trH taken from the literature.15,16 Results and Discussion The physical-chemical properties for 14 OCPs are compiled in Tables 1 to 14. At the top of each Table are

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 761 Table 14. Reported and Selected Physical-Chemical Properties for β-Endosulfan common name CAS registry no. formula MW/g‚mol-1

tM/°C ∆fusS/J‚K-1‚mol-1

β-endosulfan 33213-65-9 C9H6Cl6 O3S 406.9

213.1 51.89

15 15

Vapor Pressure t/°C

PS/Pa

5 15 25 35 45 LDV at 25 °C FAV at 25 °C

PL/Pa

log(PL/Pa)

0.00040 0.0014 0.0043 0.0013 0.0035 0.0043 0.0040

-3.40 -2.86 -2.36 -1.89 -1.45 -2.36 -2.40

method

ref

note

GC - retention time

36

calcd from the reported equation log(PL/Pa) ) -4306/(T/K) + 12.08 used anyhow

directly take the value at 25 °C Aqueous Solubility

t/°C 20 25 20

SWS/mol‚m-3

SWL/mol‚m-3

log(SWL/mol‚m-3)

0.0011 0.00069 0.00028

0.11 0.057 0.028

-0.96 -1.25 -1.56

shake flask - GC generator column - GC liquid-liquid extraction - GC/MS

0.079 0.089

-1.10 -1.05

log mean of the values at 20 and 25 °C

LDV at 25 °C FAV at 25 °C

method

ref 116 38 117

note

not consistent with other properties

Henry’s Law Constant t/°C 25 20 20 LDV at 25 °C FAV at 25 °C

H/Pa‚m3‚mol-1

KAW

log KAW

0.72 6.6

0.000016 0.000360

-4.80 -3.44

thermodynamic method wetted-wall column

13 0.040 0.045

0.000870 0.000016 0.000018

-3.06 -4.80 -4.74

directly take the value at 25 °C

method

ref

note

52 118

distilled water, not consistent with other properties seawater

118

Octanol-Water Partition Coefficient t/°C

KOW

log KOW

method

ref

note

25 25 LDV at 25 °C FAV at 25 °C

6.0 × 4.2 × 103 6.0 × 104 6.0 × 104

4.78 3.62 4.78 4.78

shake flask - GC shake flask - GC directly take the value at 25 °C

107 119

not consistent with other properties

104

Octanol-Air Partition Coefficient not found Octanol Solubility not found Table 15. Literature-Derived Values (LDVs) and Assigned Uncertainty Estimates (u) for the Physical-Chemical Properties of 14 Organochlorine Pesticides at 25 °C SWL/mol‚m-3

PL/Pa

H/Pa‚m3‚mol-1

log KOW

log KOA

compound

LDV

uA

LDV

uW

LDV

uAW

LDV

uOW

LDV

uOA

HCB PeCB p,p′-DDT p,p′-DDE p,p′-DDD CC TC HEPT HEPX aldrin dieldrin endrin R-endo β-endo

0.14 1.2 0.00056 0.0033 0.00097 0.0080 0.013 0.13 0.013 0.061 0.016 0.0052 0.0060 0.0043

1 1 1 3 3 3 3 3 5 1 1 5 3 3

0.00096 0.011 0.00027 0.00081 0.0028 0.0011 0.0011 0.0035 0.018 0.0029 0.012 0.0027 0.0042 0.079

1 2 3 3 3 5 5 2 3 2 2 2 5 5

52 74 1.1 4.2 0.67 6.0 6.0 30 2.1 15 1.0 0.64 0.72 0.040

3 3 3 5 5 5 5 5 4 5 4 4 4 4

5.52 5.08 6.28 6.96 6.22 6.10 6.22 6.10 5.40 6.50 5.40 5.20 4.74 4.78

1 1 3 5 5 4 4 4 3 4 5 4 4 4

7.38 6.90 9.81 9.69 10.10 8.91 8.86 7.64 8.62 8.07 8.89 8.13 8.63

3 3 2 3 3 3 3 3 5 3 3 3 3

the data that are included in the derivation of the LDVs, including the experimental temperature, the method used, and the literature reference. For comparison and completeness, the data that are not included in the derivation of the LDVs are also listed, together with the reason for

exclusion. The LDVs and FAVs at 25 °C for each property are given at the bottom of Tables 1 to 14. A summary of the LDVs for the 14 chemicals at 25 °C is presented in Table 15 along with the uncertainty estimates uX assigned to each property. The corresponding FAVs and the required

762

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005

Table 16. Internally Consistent Physical-Chemical Properties (Final Adjusted Values, FAV) at 25 °C and the Percent Required Adjustment (adj) for 14 Organochlorine Pesticides SWL/mol‚m-3

PL/Pa

H/Pa‚m3‚mol-1

log KOW

SOL/mol‚m-3

log KOA

compound

FAV

adj/%

FAV

adj/%

FAV

adj/%

FAV

adj/%

FAV

adj/%

FAV

HCB PeCB p,p′-DDT p,p′-DDE p,p′-DDD CC TC HEPT HEPX aldrin dieldrin endrin R-endo β-endo

0.094 1.0 0.00048 0.0034 0.0012 0.0073 0.010 0.13 0.022 0.064 0.014 0.0031 0.0044 0.0040

-33 -13 -14 3 20 -9 -19 0 69 4 -12 -40 -26 -9

0.0014 0.014 0.00042 0.00079 0.0023 0.0013 0.0015 0.0035 0.013 0.0027 0.013 0.0030 0.0063 0.089

49 31 55 -3 -16 16 43 0 -27 -4 14 11 51 13

65 72 1.1 4.2 0.50 5.7 6.8 38 1.7 23 1.1 1.1 0.70 0.045

26 -4 0 0 -25 -6 13 28 -21 55 8 64 -2 13

5.64 5.19 6.39 6.93 6.33 6.20 6.27 5.94 5.42 6.24 5.48 4.94 4.94 4.78

30 30 30 -5 31 25 11 -30 4 -45 22 -44 58

7.21 6.73 9.73 9.70 10.03 8.83 8.83 7.76 8.59 8.26 8.84 8.32 8.49 9.53

-32 -33 -16 3 -15 -15 -8 31 -7 57 -11 54 -29

618 2212 1053 6830 4986 2017 2783 3099 3466 4720 4027 262 546 5357

Table 17. Sample Calculation for Obtaining Internally Consistent Final Adjusted Values (FAV) of Hexachlorobenzene SA/mol‚m-3

PL/Pa LDV log LDV uX δX (eq 7) δX (eq 8) δX (final) log FAV FAV

0.14 -0.855

0.093

SWL/mol‚m-3

0.000056 -4.249 1 -0.090

0.00096 -3.018 1 -0.090

-0.174 -4.423 0.000039

-0.174 -2.845 0.0014

KAW

KOW 3.3 × 5.522 2

0.021 -1.678 3 -0.269 0.069 -0.100 -1.578 0.026

KOA

105

0.046 0.113 5.635 4.3 × 105

2.4 × 7.384 3

107

1

2

-0.448

0.183

0.000

0.000

0.069 0.170 7.214 1.6 × 107

Table 18. Literature-Derived Values (LDV) and Assigned Uncertainty Estimates (u) for the Internal Phase-Transfer Energies of Hexa- and Pentachlorobenzene ∆UA/kJ‚mol-1

∆UW/kJ‚mol-1

∆UAW/kJ‚mol-1

∆UOW/kJ‚mol-1

∆UOA/kJ‚mol-1

compd

LDV

uA

LDV

uW

LDV

uAW

LDV

uOW

LDV

uOA

HCB PeCB

67.59a 61.65b

1 1

9.50c 12.10c

3 3

47.70d 40.60d

3 3

-24.40e -22.80e

3 3

-75.50f -71.25f

3 3

a Regression of log(P /Pa) vs 1/(T/K) using data from refs 24 and 28-34. b Regression of log(P /Pa) vs 1/(T/K) using data from refs 35, L L 71, and 72. c Derived from data given in ref 37. d Derived from data given in derived form from data given in ref 50. e Derived from data given in ref 54. f Derived from data given in ref 13.

Table 19. Internally Consistent Final Adjusted Values (FAV) of the Energies of Phase Transfer for Hexa- and Pentachlorobenzene and Percent Required Adjustment (adj) ∆UA/kJ‚mol-1

∆UW/kJ‚mol-1

∆UAW/kJ‚mol-1

∆UOW/kJ‚mol-1

∆UOA/kJ‚mol-1

∆UO/kJ‚mol-1

compd

FAV

adj/%

FAV

adj/%

FAV

adj/%

FAV

adj/%

FAV

adj/%

FAV

HCB PeCB

65.69 60.22

-3 -2

15.20 16.39

60 35

50.49 43.83

6 8

-24.70 -25.11

1 10

-75.20 -68.94

-0.4 -3

-9.51 -8.72

percentage adjustment for the 14 chemicals are listed in Table 16. LDVs could be derived for all properties, except for the solubility in octanol. Also, no measured KOA for β-endosulfan could be found during our literature search. One study18 reported SOS for most of the investigated chemicals, but these data are inconsistent with other measured properties. Although the measured SOS data were not used in the adjustment algorithm, they are still included in the Tables. All SOL values and the KOA of β-endosulfan in Table 16 are calculated from the other properties using thermodynamic constraints. When deriving LDVs for the solubility of the chlordanes, the measured SWS value from Warner19 had to be applied to both cis and trans isomers because of the lack of isomerspecific measurements. Liquid-phase solubility SWL values were then calculated according to eq 1 using isomer-specific TM and ∆fusS values. The LDVs for the Henry’s law constant H of the cis and trans isomers of chlordane are also identical. Although isomer-specific H values for cisand trans-chlordane had been reported by Atlas et al.,20 those data are not consistent with other property measure-

ments. Nevertheless, it is encouraging to see good consistency between the five LDVs for the two isomers, which points to accurate measurements and suggests that the real solubility and H values are likely close to the LDV values. Property Values at 25 °C. The physical-chemical properties for most OCPs are difficult to measure accurately. The variability of the literature data listed in Tables 1 to 14 gives an approximate indication of the considerable uncertainty of these values. The measured data for the water solubility of the OCPs shows especially large discrepancies (Figure 1). However, the literaturederived values for the 14 OCPs are reasonably consistent. In general, most properties needed to be adjusted by less than 30% to achieve consistency. Out of 70 property values for 14 OCPs, 8 required adjustments are higher than 50%; and the maximum adjustment to the LDVs at 25 °C is 69%. The required adjustments thus occur normally well within the range of the measured values (i.e., no FAV falls outside the range of reported literature values). This indicates that the procedure applied in the selection of the LDVs is successful in selecting already reasonably consistent property values.

Journal of Chemical and Engineering Data, Vol. 50, No. 3, 2005 763

Figure 1. Relationships between the logarithm of the water solubility (log SWL/ mol‚m-3) and the reciprocal absolute temperature [1/(T/ K)] for hexachlorobenzene (HCB), pentachlorobenzene (PeCB), heptachlor (HEPT), and heptachlor epoxide (HEPX), p,p′-DDT, p,p′-DDE, p,p′-DDD, aldrin, dieldrin, and endrin based on data from Shiu et al. (open, left-pointing triangle);37 Weil et al. (1);38 Miller et al. (O);39 Hashimoto et al. (open, right-pointing triangle);40 Yalkowsky et al. (]);41 Patton (>);42 Konemann (4);43 Chiou (`);44 Li and Yalkowsky (3);45 Paschke et al. (×);46 Metcalf et al. (|);47 Hollifield (black, left-pointing triangle);48 Chiou (\);55 Opperhuizen et al. (open square with cross);73 Boyd et al. (