Chapter 14
Improvement in Barrier Properties of Polymers via Sulfonation and Reductive Metallization 1
W. E. Walles
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
Central Research, The Dow Chemical Company, 1702 Building, Midland, MI 48674
This paper considers various methods to create a thin diffusion barrier at the surface of a plastic article such as a packaging film or container after i t has been given its intended shape. Such an approach permits one to choose the optimum polymer type based on strength, processability, cost, etc. without being constrained by barrier properties. The advantages of surface sulfonated containers are presented for barrier applications such as polyethylene drums and tanks for solvents and automotive gasoline. The improvement of barrier properties for c r i t i c a l gases such as oxygen are also treated. The barrier treatment can be applied during blow molding as an integrated process or as a separate step afterwards. For very demanding future applications, such as a l l - p l a s t i c thermos bottles and flat foam panels with vacuum insulation, the sulfonation step can be followed by reductive metallization. This results in a further dramatic reduction in permeation, especially when combined with a high barrier polymer overcoat to cover minor imperfections in the metallized surface. Chemical m o d i f i c a t i o n o f the s u r f a c e o f e n g i n e e r i n g p o l y m e r s i s an a t t r a c t i v e a p p r o a c h t o t h e p r o b l e m o f economically producing a b a r r i e r or a permselective structure with t a i l o r e d p r o p e r t i e s . The f o l l o w i n g d i s c u s s i o n w i l l f o c u s on a p p l i c a t i o n s o f t h i s t e c h n o l o g y Current address: Coalition Technologies, Ltd., 6648 River Road, Freeland, MI 48623 0097-6156/90/0423-0266$06.00/0 © 1990 American Chemical Society
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
14.
267
Improvement in Barrier Properties ofPolymers
WALLES
involving sulfonation(1-8). Related applications involving a s y m m e t r i c membranes f o r gas s e p a r a t i o n s have a l s o been d e m o n s t r a t e d , but w i l l not be c o n s i d e r e d i n d e p t h h e r e . T h i s l a t t e r membrane a p p l i c a t i o n i n v o l v e s s e l e c t i v e l y a l t e r i n g t h e p e r m e a b i l i t y o f one gas r e l a t i v e t o a n o t h e r without causing unacceptable r e d u c t i o n s i n the p e r m e a b i l i t y of the d e s i r e d penetrant. In t h e c a s e o f p o l y e t h e r s u l f o n e , i t has been shown t o be p o s s i b l e t o e s s e n t i a l l y d o u b l e t h e s e l e c t i v i t y o f an asymmetric membrane f o r t h e C 0 / C H and 2
0 /N 2
2
systems w h i l e
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
d e s i r e d C0
2
and
0
2
reducing o n l y by
the
permeability
of
about a f a c t o r o f two
4
the (9) .
The b a r r i e r work i n v o l v e s r e d u c i n g t h e p e r m e a b i l i t y o f v a r i o u s p o l y m e r s t o b o t h l i q u i d s and g a s e s . In t h e c a s e o f l i q u i d s , t h e o b j e c t i v e i s t o d e v e l o p medium l e v e l d i f f u s i o n b a r r i e r s t o v o l a t i l e o r g a n i c s s u c h as h y d r o c a r b o n f u e l s w h i c h have a t e n d e n c y t o s w e l l and p l a s t i c i z e many containers. F o r g a s e s , t h e o b j e c t i v e s a r e more demanding and r e q u i r e t h e development o f h i g h , o r e f f e c t i v e l y c o m p l e t e b a r r i e r f o r a p p l i c a t i o n s such as p r e v e n t i n g l o n g t e r m d i f f u s i o n o f a i r components i n t o a vacuum r e t a i n e d by plastics in insulating applications. T y p i c a l l y , chemically modified surface layers involve t h i c k n e s s e s r a n g i n g from l e s s t h a n 1 micrometer(μ) up t o 20μ, so t h e o v e r a l l mechanical p r o p e r t i e s o f t h e t r e a t e d o b j e c t s a r e h a r d l y a f f e c t e d by t h e p r o c e s s . Even i f one l i m i t s t h e d i s c u s s i o n t o m a t e r i a l s c o n t a i n i n g C-H bonds, p r a c t i c a l l y a l l e n g i n e e r i n g p l a s t i c s are covered except p u r e f l u o r o c a r b o n s and some s i l i c o n e s . Clearly, various g a s e s can r e a c t w i t h t h e c a r b o n - h y d r o g e n bonds on t h e s u r f a c e o f a p l a s t i c a r t i c l e and can r e d u c e t h e d i f f u s i o n c o e f f i c i e n t of penetrants i n the m a t e r i a l . The c h o i c e o f s u l f o n a t i o n as t h e p r e f e r r e d t r e a t m e n t , t h e r e f o r e , i s not b a s e d s o l e l y on t h e a b i l i t y t o m o d i f y t r a n s p o r t p r o p e r t i e s . Rationale
f o r the
Use
of Surface
Sulfonation
Our e x p l o r a t o r y e x p e r i m e n t s i n v o l v i n g t h e use o f f l u o r i n e t r e a t m e n t s r e s u l t e d i n c o n t a i n e r s w i t h a good b a r r i e r t o g a s o l i n e ; however, upon r e p e a t e d f l e x i n g , a l o s s o f b a r r i e r p r o p e r t i e s can r e s u l t . The b a r r i e r l a y e r s i n t h e s e c a s e s were up t o 0.1 μ t h i c k . A d d i t i o n a l s t u d i e s u s i n g 25μ f i l m s o f p o l y s t y r e n e , p o l y e t h y l e n e and p o l y p r o p y l e n e exposed t o f l u o r i n e f o r a l o n g e r time l e d t o t o t a l p u l v e r i z a t i o n of the f i l m s . The l o s s i n m e c h a n i c a l p r o p e r t i e s a p p e a r s t o be a s s o c i a t e d w i t h t h e l o c a l i z a t i o n o f e n e r g y a s s o c i a t e d w i t h t h e C-F bond f o r m a t i o n , which i n t u r n can b r e a k n e i g h b o r i n g C-C bonds o f t h e p o l y m e r backbone. Under c e r t a i n r i g o r o u s l y c o n t r o l l e d t r e a t m e n t p r o t o c o l s , t h e use o f f l u o r i n e has p r o v e n w o r k a b l e ( 1 0 ) , but i t was f e l t t h a t a l e s s a g g r e s s i v e agent a l l o w e d added p r o c e s s f l e x i b i l i t y f o r our work.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
268
BARRIER POLYMERS AND STRUCTURES
S u r f a c e c h l o r i n a t i o n c a n p r o d u c e good b a r r i e r l a y e r s with l e s s tendency t o p r o v i d e f l e x u r e f a i l u r e s . U n f o r t u n a t e l y , c h l o r i n e r e a c t s t o o s l o w l y t o be p r a c t i c a l as a t r e a t m e n t a g e n t i n t h e absence o f p r o m o t i o n by UV light. I t i s c l e a r l y n o t c o n v e n i e n t t o use UV i n t h e i n t e r i o r o f c o n t a i n e r s , s o a l t e r n a t i v e a c t i v a t o r s were sought. Chemical a c t i v a t i o n of the c h l o r i n a t i o n r e a c t i o n was shown t o be p o s s i b l e u s i n g a m i x t u r e o f 10% SO3/90% C l
2
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
as s u c h o r f u r t h e r d i l u t e d w i t h a i r o r n i t r o g e n a t 25°C. The p r o c e s s l e d t o s i g n i f i c a n t l y u p t a k e s o f b o t h CI and SO3 (4) and p r o d u c e d good b a r r i e r s t o g a s o l i n e s , p a r t i c u l a r l y t o t h e e t h a n o l - and m e t h a n o l - c o n t a i n i n g t y p e s . Treatment o f t h e i n s i d e o f h i g h d e n s i t y p o l y e t h y l e n e (HDPE) a u t o m o t i v e gas t a n k s w i t h about 20% SO3 i n a i r f o l l o w e d by a i r p u r g i n g w i t h subsequent n e u t r a l i z a t i o n w i t h NH3 gas r e s u l t e d i n an e x c e l l e n t g a s o l i n e b a r r i e r (See F i g . 1).
C o n c e n t r a t i o n s o f about
75 and 200 micrograms
SO3 p e r
2
cm o f s u r f a c e r e d u c e s p e r m e a t i o n l o s s e s by 90 and 99%, r e s p e c t i v e l y i n ambient t e m p e r a t u r e p e r m e a t i o n t e s t s . As i n d i c a t e d i n F i g . 2 , t h e b a r r i e r l a y e r was f o u n d t o have -S03~NH groups t o a d e p t h o f 20-25 m i c r o m e t e r s . The +
4
t r e a t e d l a y e r has good r e s i s t a n c e t o f l e x u r e f a i l u r e s . When a 25 m i c r o m e t e r p o l y e t h y l e n e f i l m was s i m i l a r l y s u l f o n a t e d , i t was f o u n d t o have r o u g h l y 200% e l o n g a t i o n a t b r e a k and t w i c e t h e b r e a k i n g s t r e n g t h o f t h e u n t r e a t e d polyethylene. Of t h e f i r s t s e r i e s o f one t h o u s a n d s t a t i o n wagons e q u i p p e d w i t h t h e s e t a n k s , s e v e r a l were r e t r i e v e d from junked c a r s w i t h g a s o l i n e exposure times c o r r e s p o n d i n g t o more t h a n 90,000 m i l e s e a c h . In a l l o f t h e s e c a s e s , t h e s u l f u r s u r f a c e c o n c e n t r a t i o n , b a r r i e r p r o p e r t i e s and m e c h a n i c a l p r o p e r t i e s o f t h e t a n k w a l l s were f u l l y i n t a c t . Nature
that
of the B a r r i e r
Layer
Based on i n f r a r e d s p e c t r o s c o p i c a n a l y s i s , i t i s c l e a r f o l l o w i n g SO3 e x p o s u r e , s u b s t a n t i a l l y a l l of the
s u l f u r p r e s e n t i s i n t h e form o f : 1
-C-SO3H I
With t y p i c a l treatment p r o c e d u r e s , i t appears t h a t t h e s u l f o n a t e d p o l y m e r u n i t s a r e i n t e r s p e r s e d between 0-500 u n i t s o f u n s u l f o n a t e d p o l y m e r u n i t s as i l l u s t r a t e d by t h e f o l l o w i n g formula -CR-C (R ) (R ) - [C (H) (R) -C (R ) 1
SO3H
2
±
Polyethylene \ Polyacrylate
3
4
) Polycarbonate 5) Trycite Cellulose Cel ί ) Ξ_) Ace Acetate =j> Polypropylene
8>
Comparison with Other Films
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
273
NH
λ
+ 4
N a +
Li +
A\ Mylar Polyester =) Saran
_L J ziL 140 40 60 " 80 100 120 Surface Cone, of S 0 in Microgram per Cm Film
160
2
3
F i g u r e 3: D e m o n s t r a t i o n o f t h e d r a m a t i c r e d u c t i o n s i n oxygen permeability a t 25°C f o l l o w i n g s u r f a c e s u l f o n a t i o n t o d i f f e r e n t d e g r e e s . The e f f e c t s o f i n t r o d u c i n g d i f f e r e n t i o n s i n place of the N H i s also illustrated. The oxygen p e r m e a b i l i t i e s o f v a r i o u s r e s i n s a r e shown f o r c o m p a r i s o n . +
4
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
274
BARRIER POLYMERS AND STRUCTURES
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
Reductive
Metallization
A n a t u r a l e x t e n s i o n o f t h e above i d e a s i n v o l v e s t h e c h e m i c a l r e d u c t i o n o f heavy m e t a l i o n s , p r e s e n t as counterions within the t r e a t e d surface region. In the case o f c o p p e r and s i l v e r , h i g h l y r e f l e c t i v e m e t a l l a y e r s c a n be o b t a i n e d w i t h a m e t a l l i c - t y p e t o t a l b a r r i e r i n some c a s e s . The e l e c t r i c a l s u r f a c e c o n d u c t i v i t y , which i s i o n i c b e f o r e the reduction, i s converted t o e l e c t r o n i c a f t e r the r e d u c t i o n t o free metal, thereby p e r m i t t i n g r a p i d electroplating i f desired. Moreover, f o r c e r t a i n a p p l i c a t i o n s , t h i s a p p r o a c h can be u s e d t o p r o d u c e an e x t r e m e l y h i g h b a r r i e r t o t h e passage o f gases. F o r example n o v e l t h e r m a l i n s u l a t i o n p a n e l s f o r r e f r i g e r a t o r s w i t h p l a s t i c - w a l l e d p a n e l s e n c l o s i n g a v a c u u m i z e d space w i t h v e r y l i t t l e gas b u t w i t h l o a d - b e a r i n g f i n e powders have been d e v e l o p e d (13-22). In a d d i t i o n t o a d d i n g s t r u c t u r a l i n t e g r i t y , c o r r e c t l y chosen powders added t o t h e e v a c u a t e d c a v i t y i n a vacuum c o n t a i n e r h e l p t o e l i m i n a t e gas from t h e s y s t e m o r g e n e r a t e a p r o d u c t o r p r o d u c t s which can be a d s o r b e d by a n o t h e r gas a d s o r b i n g m a t e r i a l such as a c t i v a t e d c a r b o n . F o r example, c a r b o n d i o x i d e i s r e a d i l y removed i n t h i s manner w i t h m i x t u r e s o f c a r b o n and l i t h i u m a l k o x i d e s such as l i t h i u m i s o p r o p o x i d e . The l i t h i u m i s o p r o p o x i d e r e a c t s w i t h c a r b o n d i o x i d e t o form l i t h i u m c a r b o n a t e and t o l i b e r a t e d i i s o p r o p y l e t h e r which i s s t r o n g l y a d s o r b e d by a c t i v a t e d c a r b o n ( 2 1 ) . A l t h o u g h c a r b o n d i o x i d e i s a l s o a d s o r b e d by t h e a c t i v a t e d c a r b o n , i t s l o w l y d e s o r b s , r e e n t e r s t h e gas phase a n d i s s u b s e q u e n t l y c o n v e r t e d t o d i i s o p r o p y l e t h e r where i t i s p e r m a n e n t l y removed from t h e gas p h a s e . S i m i l a r a p p r o a c h e s a r e p o s s i b l e w i t h o t h e r g a s e s , and i n some c a s e s , s i m p l e a c t i v a t e d c h a r c o a l i s s u f f i c i e n t . F o r demanding i n s u l a t i o n a p p l i c a t i o n s , vacuum w i t h i n t h e p l a s t i c c o n t a i n e r must be m a i n t a i n e d f o r 30 y e a r s o r more. To a c h i e v e such a s u p e r b a r r i e r , an u l t r a t h i n , v e r y r e g u l a r m e t a l l i c l a y e r c a n be c r e a t e d by c o m b i n i n g t h e p r e v i o u s l y d i s c u s s e d s u l f o n a t i o n treatments with reductive metallization. The m e t a l l a y e r i s e x t e n s i v e enough so t h a t a t l e a s t 95-99% o f t h e s u r f a c e i s c o v e r e d by m e t a l . An a d d i t i o n a l p r o b l e m i n u s i n g molded p l a s t i c s t o e n c l o s e vacuum and t o m a i n t a i n i t v i a an u l t r a t h i n m e t a l l i c b a r r i e r l a y e r a r i s e s from i r r e g u l a r m e t a l l i z a t i o n . This l a t t e r p r o b l e m , c a u s e d by r e s i d u a l mold s t r e s s e s , can be overcome by f i r s t s u l f o n a t i n g t h e s u r f a c e l i g h t l y t o p r o d u c e a water w e t t a b l e s u r f a c e , f o l l o w e d by t h e a p p l i c a t i o n o f a t h i n l a t e x c o a t i n g which d r i e s t o y i e l d a low s t r e s s s u r f a c e . T h i s s u r f a c e , i n t u r n can be s u l f o - m e t a l l i z e d as d i s c u s s e d below. F o r even h i g h e r i n t e g r i t y , t h e m e t a l l a y e r can be f u r t h e r c o a t e d w i t h a l a y e r o f a b a r r i e r c o p o l y m e r such as vinylidene chloride/vinyl chloride. The b a r r i e r polymer i s most c o n v e n i e n t l y a p p l i e d i n l a t e x form t o t h e e x p o s e d s u r f a c e o f t h e m e t a l l a y e r t o form a c o a t i n g o f a few micrometers t h i c k . S u i t a b l e b a r r i e r polymers i n c l u d e latexes that w i l l give a continuous f i l m at temperatures
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
14. WALLES
275
Improvement in Barrier Properties ofPolymers
below t h e h e a t d i s t o r t i o n t e m p e r a t u r e o f t h e t h e o r g a n i c p o l y m e r u s e d t o make t h e p l a s t i c p a r t i t s e l f . A t y p i c a l example o f t h e p r o c e s s t o p r o d u c e a m e t a l l i z e d l a y e r i n v o l v e s t h e development o f a s u l f o n a t e d l a y e r o f micrometer t h i c k n e s s u s i n g the techniques d i s c u s s e d above. A degree o f s u r f a c e s u l f o n a t i o n o f o n l y 0.2 micrograms o f s u l f u r t r i o x i d e e q u i v a l e n t s p e r s q u a r e c e n t i m e t e r i s achieved by c o n t a c t i n g the s u r f a c e with dry a i r containing 2 percent s u l f u r t r i o x i d e a t 25°C f o r a p p r o x i m a t e l y one s e c o n d . A m e t a l l i z i n g b a t h b a s e d on one p a r t o f each o f the f o l l o w i n g i s c o n v e n i e n t l y used: 0.6% A g ( N H ) N 0 i n H 0 , 0.3% NaOH i n H 0 w i t h 0.15% g l u c o s e a n d 0.15% f r u c t o s e i n H 0 ( 2 1 ) . The s u l f o n a t e d s u r f a c e s are dipped i n t o the bath and m e t a l l i z a t i o n i s completed w i t h i n 1 minute. The t h i c k n e s s o f t h e m e t a l l a y e r s i n t h i s c a s e a r e a p p r o x i m a t e l y 0.03 m i c r o m e t e r s as d e t e r m i n e d by m i c r o s c o p y . In t h i s case, t h e l o c a t i o n o f e a c h m e t a l atom i s o r i g i n a l l y f i x e d b y t h e d i f f u s i o n o f SO3 3
2
3
2
2
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
2
i n t o the polymer, t h e r e b y e s t a b l i s h i n g the p o s i t i o n s p e c i e s a t t h e time o f r e d u c t i o n : Ο ι
of the
1 1
-C-S-0 N H
+ 4
Ag°
A c l o s e l y r e l a t e d s e c o n d method t o a c h i e v e an even d e n s e r m e t a l l i c l a y e r i n v o l v e s the i n t r o d u c t i o n o f t i n ions i n s t e a d o f s i l v e r f o l l o w e d by a s p r a y o f w a t e r - b a s e d s i l v e r - a m m o n i a complex, f r e s h l y mixed w i t h r e d u c e r . The t i n c a t a l y z e s the d e p o s i t i o n o f s i l v e r , r e s u l t i n g i n the formation o f c o l l o i d a l m e t a l l i c s i l v e r . Upon d r y i n g , a very regular, shiny m e t a l l i c s i l v e r layer with a thickness r a n g i n g from 10 t o 600 atoms i s p r o d u c e d a s i n d i c a t e d f o r m a l l y below: Ο -C-S-0 N H
+ 4
Sn°
Ag°
1 0
_
6 0 0
B a s e d on e x p e r i e n c e , under t h e above c o n d i t i o n s , p r o d u c t i o n o f a t l e a s t 80-120 s i l v e r atoms p e r s u l f o n a t e d c e n t e r i s adequate t o p r o v i d e a t o t a l m e t a l l i c - t y p e b a r r i e r t o t h e p a s s a g e o f a i r . These e x t r e m e l y t h i n s i l v e r l a y e r s , when p a r t o f a v a c u u m - t r e a t e d t h e r m a l i n s u l a t i o n p a n e l , c o n d u c t v e r y l i t t l e h e a t around t h e r i m s o f t h e p a n e l a s i s needed t o a c h i e v e t h e d e s i r e d h i g h t h e r m a l i n s u l a t i o n . F o r example, t h e t h e r m a l c o n d u c t i v i t i e s o f an a p p r o p r i a t e l y formed p a n e l i s t y p i c a l l y as low a s 0.007 w a t t s m /m C a s compared t o v a l u e s f o r p o l y s t y r e n e a n d p o l y u r e t h a n e foams o f 0.03-0.04 w a t t s m /m^°C and 0.016-0.025 w a t t s m /m C, r e s p e c t i v e l y (3). To i l l u s t r a t e t h e v a l u e o f t h e t r e a t m e n t , a vacuum c o n t a i n e r w i t h a s i l v e r l a y e r a p p r o x i m a t e l y 0.01 m i l i s compared w i t h v a r i o u s c a s e s i n T a b l e I . The 90/8/2 v i n y l 2o
2o
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
276
BARRIER POLYMERS AND STRUCTURES
c h l o r i d e / a c r y l o n i t r i l e / s u l f o e t h y l methacrylate b a r r i e r terpolymer c o a t i n g i s a p p l i e d t o the completed m e t a l l i z e d container. The l a t e x had a p a r t i c l e s i z e o f about 0.22 m i c r o m e t e r and was a p p l i e d by d i p p i n g i n a 50% s o l i d s latex. The e x c e s s l a t e x i s a l l o w e d t o run o f f t h e s u r f a c e and t h e w a l l i s d r i e d a t 60°C f o r 15 m i n u t e s . The c o n t a i n e r i s a 1 q u a r t vacuum b o t t l e h a v i n g a s u r f a c e f a c i n g t h e e v a c u a t e d e n c l o s e d space o f 1500 cm w i t h an e v a c u a t e d volume o f 500 crn^, and a s t a n d a r d styrene/ a c r y l o n i t r i l e boundary w a l l t h i c k n e s s , e x c l u d i n g t h e t h i c k n e s s o f t h e m e t a l and b a r r i e r p l a s t i c o f 80 m i l s . The space e n c l o s e d by t h e boundary w a l l i s e v a c u a t e d t o a p r e s s u r e o f 0.01 mm Hg, and 80g o f a c t i v a t e d c h a r c o a l o f 0.2 m i c r o n s i z e i s added t o t h e e n c l o s e d space under vacuum. P r i o r t o a d d i t i o n t o t h e e n c l o s e d space, t h e c h a r c o a l i s a c t i v a t e d f o r 48 h o u r s a t 10"" mm Hg. The p e r m e a t i o n r a t e s d e t e r m i n e d u s i n g a mass s p e c t r o m e t e r were u s e d t o e s t i m a t e t h e p r o j e c t e d c o n t a i n e r l i f e b a s e d on t h e f a c t t h a t t h e a c t i v a t e d c h a r c o a l which f i l l s t h e e v a c u a t e d space can a d s o r b a t o t a l o f about 24-80 c c ( S T P ) o f a i r . The p r o j e c t e d l i f e , t h e r e f o r e , was e s t i m a t e d by d i v i d i n g t h e gas a d s o r b i n g c a p a c i t y by t h e a i r p e r m e a t i o n r a t e . 2
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
7
Table
Sample
No.
I : Comparison o f m e t a l l i z e d and containers (14) Coating
A i r P e r m e a t i o n Rate (cc(STP) a i r / d a y )
non
metallized
Projected Container L i f e
1
Metal & Barrier Plastic
0.056
1.2
2
Metal
3.2
7.5-25 days
3
Barrier Plastic
4
None
alone
1.1
-4
22.5
years
-75
days
alone 9
3-9
days
F u r t h e r c h a r a c t e r i z a t i o n of the s y n e r g i s t i c e f f e c t s of o v e r c o a t i n g m e t a l l a y e r s w i t h t h e b a r r i e r p o l y m e r was done u s i n g simple f l a t p o l y s t y r e n e f i l m s of 5 m i l t h i c k n e s s e s t h a t had been s u r f a c e s u l f o n a t e d t o p r o v i d e a low d e g r e e o f s u l f o n a t i o n o f 1.5 micrograms o f s u l f u r t r i o x i d e p e r cm . Two s t r i p s o f t h e s u r f a c e s u l f o n a t e d f i l m were c o a t e d w i t h d i f f e r e n t t h i c k n e s s e s o f t h e same b a r r i e r p o l y m e r as t h a t u s e d above. An a d d i t i o n a l s u l f o n a t e d s t r i p was not c o a t e d , but was m e t a l l i z e d as d e s c r i b e d above, and a f i n a l s t r i p was b o t h m e t a l l i z e d and c o a t e d w i t h a l a y e r o f 0.22 m i l s o f b a r r i e r polymer. The r e s u l t s o f oxygen t r a n s m i s s i o n measured by mass s p e c t r o m e t e r a t 25°C a r e r e p o r t e d i n 2
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
14.
WALLES
277
Improvement in Barrier Properties ofPolymers
T a b l e I I and c l e a r l y show t h e d r a m a t i c improvement i n p e r f o r m a n c e when t h e b a r r i e r p o l y m e r and m e t a l l i z a t i o n a r e u s e d t o g e t h e r (14). H i g h e r d e g r e e s o f s u l f o n a t i o n as compared t o 1.5 micrograms SO3/CIÏ1 u s e d h e r e , e.g., 70 micrograms S 0 / c m d i s c u s s e d i n c o n n e c t i o n w i t h F i g . 3, c l e a r l y would p r o d u c e much h i g h e r b a r r i e r s t h a n t h a t shown f o r t h e u n c o a t e d l i g h t l y s u l f o n a t e d sample 4. N e v e r t h e l e s s , even t h e b e s t o f t h e s e samples would be o v e r an o r d e r o f magnitude p o o r e r t h a n t h e h i g h b a r r i e r a c h i e v e d i n sample 1. 2
2
3
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
Table
Sample
No.
I I : I l l u s t r a t i o n of the s y n e r g i s t i c e f f e c t s of m e t a l l i z a t i o n and a t h i n b a r r i e r p o l y m e r o v e r c o a t (14)
Coating
Coating
μς/οπι
2
Thickness or
(mil)
(0.01) (0.22)
Oxygen Transmission [cc(STP)/100 i n day atm]
1
Metal & Barrier Plastic
220 1200
2
Barrier Plastic
710
(0.13)
0.43
3
Barrier Plastic
1420
(0.26)
0.20
4
Surface Sulfonated (1.5 μς/σπι )
-
Untreated Control
-
2
0.013
25.0
2
5
25.2
Waste T r e a t m e n t C o n s i d e r a t i o n s Additional p r a c t i c a l c o n s i d e r a t i o n s t h a t are a t t r a c t i v e about t h e s u l f o n a t i o n p r o c e s s i s i t s s a f e t y and ease o f t r e a t m e n t o f waste components. Excess s u l f u r t r i o x i d e i s e a s i l y removed w i t h a gas s c r u b b e r t o y i e l d a s i m p l e t o h a n d l e s u l f u r i c a c i d stream, and w i t h t h e c o n v e n i e n t ammonia n e u t r a l i z a t i o n p r o c e s s d e s c r i b e d above, t h e p r i n c i p a l waste s t r e a m i s c o m p r i s e d o f water w i t h a s m a l l amount o f ammonium s u l f a t e . Methods o f a v o i d i n g waste by r e c y c l i n g o f SO3 i t s e l f have a l s o been d e s c r i b e d (7,8). Moreover, w i t h r e c e n t d e v e l o p m e n t s f o r i n - s i t u g e n e r a t i o n o f SO3 and NH3, t h e amount o f waste g e n e r a t e d can be r e d u c e d g r e a t l y (1) .
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
278
BARRIER POLYMERS AND STRUCTURES
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
Conclusion Of s e v e r a l p o t e n t i a l l y a p p l i c a b l e a p p r o a c h e s t o r e d u c i n g t h e p e r m e a b i l i t y o f a broad spectrum o f i n e x p e n s i v e e n g i n e e r i n g r e s i n s used i n packaging, p r o c e s s e s b a s e d on s u r f a c e s u l f o n a t i o n a r e u n p a r a l l e l e d i n t h e d i v e r s i t y o f m o d i f i c a t i o n s t h a t can be a c h i e v e d . The approach i s r e l a t i v e l y simple t o perform d u r i n g molding o r i n p o s t m o l d i n g o p e r a t i o n s and l e a v e s t h e i n t r i n s i c mechanical p r o p e r t i e s of the substrate i n t a c t . The s u r f a c e t r e a t e d l a y e r s have good f l e x i b i l i t y even a t r e l a t i v e l y h i g h t r e a t m e n t l e v e l s , s i n c e c h a i n backbone s c i s s i o n and crosslinking i s rare. The s i m p l e s u l f o n a t e d b a r r i e r l a y e r i s v e r y e f f e c t i v e a g a i n s t n o n p o l a r components such as f u e l s and even c h l o r i n a t e d hydrocarbons. Under d r y c o n d i t i o n s , t h e b a r r i e r layer i s also highly e f f e c t i v e f o r suppressing the p e r m e a t i o n o f f i x e d gases such as oxygen o r n i t r o g e n . F o r h i g h e r b a r r i e r r e q u i r e m e n t s , t h e s u l f o n a t i o n t r e a t m e n t can be e f f e c t i v e l y combined w i t h r e d u c t i v e m e t a l l i z a t i o n t e c h n i q u e s t o produce v e r y h i g h b a r r i e r s . When combined w i t h b a r r i e r polymer o v e r c o a t s and gas a d s o r b i n g powdered f i l l e r s , i t i s p o s s i b l e t o produce super b a r r i e r s capable o f b e i n g u s e d i n vacuum p a n e l s and b o t t l e s f o r t h e r m a l insulation. For household r e f r i g e r a t o r s , o u t s i d e d i m e n s i o n s a r e f i x e d because o f s t a n d a r d i z e d k i t c h e n d i m e n s i o n s i n homes, a i r c r a f t and b o a t s . R e p l a c i n g p r e s e n t l y u s e d foam i n s u l a t i o n by v a c u m i z e d p l a s t i c p a n e l s s h o u l d p e r m i t t h i n n e r i n s u l a t i o n and t h e r e f o r e , more room inside the r e f r i g e r a t o r . More e n e r g y e f f i c i e n t r e f r i g e r a t o r s b a s e d on t h e s e h i g h l y i n s u l a t i n g p a n e l s a r e a l s o obvious p o s s i b i l i t i e s .
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
Walles, W. E. U. S. Patent No. 4,775,587, 1988. Ihata, J., J . Polym. Sci., Part A, 1988, 26, 167. Walles, W. E. U. S. Patent No. 3,740,258, 1973. Walles, W. E. U. S. Patent No. 4,220,739, 1980. Walles, W. E. U. S. Patent No. 3,613,957, 1971. Walles, W. E., In-Mold Sulfonations System, U. S. Patent applied for. Walles, W. E., Process for the generation of sulfur trioxide reagent and sulfonation of the surface of polymeric resins,U. S. Patent applied for. Walles, W. E., Apparatus for the generation of sulfur trioxide reagent and sulfonation of the surface of polymeric resins,U. S. Patent applied for. Chiao, C. C. U. S. Patent No. 4,717,395, 1988. Gentilcore, J . F . , Trialo, M.A. and Waytek, A. J., Plast. Engr., 1978, 34, 40. Walles, W. E. U. S. Patent No. 3,770,706, 1973. Walles, W. E. U. S. Patent No. 3,625,751, 1971.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
14. WALLES
Improvement in Barrier Properties ofPolymers
13. W a l l e s , W. Ε . U. S. P a t e n t No. 14. W a l l e s , W. E . U. S. P a t e n t No. 15. W a l l e s , W. E. U. S. P a t e n t No. 16. W a l l e s , W. E . U. S. P a t e n t No. 17. W a l l e s , W. E . U. S. P a t e n t No. 18. W a l l e s , W. E . U. S. P a t e n t No. 19. W a l l e s , W. E . U.S. P a t e n t No. 20. W a l l e s , W. E . U. S. P a t e n t No. 21. Cheng, C, and W a l l e s , W. E . U. 4,745,015, 1988. 22. W a l l e s , W. E . U. S. P a t e n t No.
3,959,561,
1975.
January 25, 1990
Downloaded by UNIV LAVAL on May 8, 2016 | http://pubs.acs.org Publication Date: May 9, 1990 | doi: 10.1021/bk-1990-0423.ch014
RECEIVED
3,824,762, 1974. 3,828,960, 1974. 3,856,172, 1974. 3,921,844, 1975. 3,993,811, 1976. 4,000,246, 1976. 3,996,725, 1976. 4,457,977, 1984. S. P a t e n t No.
Koros; Barrier Polymers and Structures ACS Symposium Series; American Chemical Society: Washington, DC, 1990.
279