1 Practical Calculations of the Equation of State of Fluids and Fluid Mixtures Using Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001
Perturbation Theory and Related Theories DOUGLAS HENDERSON IBM Research Laboratory, San Jose, CA 95193
The properties of a fluid are determined largely by shortrange repulsive forces. The long-range attractive forces can be considered to be perturbations. Using these concepts, a perturbation theory of fluids is developed. In addition, the relationship of empirical equations of state to the perturba tion theory is examined. The major weakness of most empirical equations is the use of the van der Waals freevolume term, (V-Nb) , to represent the contributions of the repulsive forces. Replacement of this term by more satisfac tory expressions results in better agreement with experiment. -1
n p h e r e q u i r e m e n t s o f a n e q u a t i o n of state f r o m a t h e o r e t i c a l c h e m i s t a n d a c h e m i c a l engineer a r e s o m e w h a t
different.
T h e theoretical
c h e m i s t desires to u n d e r s t a n d t h e o r i g i n of t h e p r o p e r t i e s of t h e fluid h e is s t u d y i n g a n d often is less i n t e r e s t e d i n o b t a i n i n g h i g h l y a c c u r a t e agreement w i t h experimental data.
O n t h e other h a n d , t h e c h e m i c a l
e n g i n e e r w a n t s a s i m p l e , e m p i r i c a l e q u a t i o n of state w h i c h is i n close agreement w i t h e x p e r i m e n t a l d a t a . T h e q u e s t i o n of w h e t h e r this e m p i r i c a l e q u a t i o n o f state has a n y t h e o r e t i c a l basis is less i n t e r e s t i n g . B e c a u s e of this a p p a r e n t d i v e r g e n c e o f interests a n d needs, t h e r e has b e e n little i n t e r a c t i o n b e t w e e n
t h e o r e t i c a l chemists a n d c h e m i c a l
engineers w o r k i n g o n t h e e q u a t i o n of state o f fluids. T h i s is u n f o r t u n a t e b e c a u s e t h e r e q u i r e m e n t s o f t h e t w o g r o u p s are c o m p a t i b l e .
N o theore-
t i c i a n w o u l d c l a i m to u n d e r s t a n d f u l l y some p h e n o m e n a i f h e c o u l d n o t o b t a i n reasonable q u a n t i t a t i v e a g r e e m e n t w i t h e x p e r i m e n t . O n t h e o t h e r h a n d , a n e m p i r i c a l e q u a t i o n of state w i t h a w e a k o r e v e n f a u l t y t h e o r e t i c a l 0-8412-0500-0/79/33-182-001$07.50/l © 1979 American Chemical Society
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
2
EQUATIONS
O F
STATE
basis is no m o r e t h a n a n i n t e r p o l a t i o n s c h e m e a n d is q u i t e useless
for
e x t r a p o l a t i o n to t h e r m o d y n a m i c states for w h i c h e x p e r i m e n t a l d a t a are n o t a v a i l a b l e . P r e s u m a b l y c h e m i c a l engineers w o u l d p r e f e r to h a v e some p r e d i c t i v e c a p a b i l i t y a n d if the results of t h e t h e o r e t i c i a n c a n be expressed i n some u s e f u l f o r m w h i c h is c o n v e n i e n t for q u i c k c a l c u l a t i o n , c h e m i c a l engineers w o u l d b e i n t e r e s t e d . I assume that this gap b e t w e e n t h e o r e t i c a l chemists a n d c h e m i c a l engineers exists because, u n t i l v e r y r e c e n t l y , theoreticians h a d l i t t l e to Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001
offer c o n c e r n i n g the t h e o r y of
fluids.
H o w e v e r , d u r i n g the past d e c a d e
r a p i d progress has b e e n m a d e i n this area a n d a n a t t e m p t to b r i d g e t h i s g a p n o w seems a p p r o p r i a t e .
T h i s is a n a m b i t i o u s task a n d g i v e n the
d e a d l i n e s w h i c h are a n u n a v o i d a b l e p a r t of a n y conference,
i t is not a
task that I w o u l d c l a i m to a c c o m p l i s h f u l l y here. H o w e v e r , I h o p e that this c h a p t e r w i l l c o n t r i b u t e to the b r i d g i n g of this g a p . I s h a l l a t t e m p t to s u r v e y recent progress fluids.
i n t h e t h e o r y of
I w i l l p r o v i d e references to a l l of the m a j o r t e c h n i q u e s .
dense
However,
I w i l l e m p h a s i z e p e r t u r b a t i o n t h e o r y b e c a u s e I f e e l t h a t this is the t e c h n i q u e w h i c h is most i n t e r e s t i n g to c h e m i c a l engineers.
Further, I
w i l l s h o w that the p e r t u r b a t i b n t h e o r y c a n b e u s e d i n p a r t to justify c o m m o n e m p i r i c a l equations of state. M a n y of these equations are w e l l f o u n d e d i n theory.
H o w e v e r , w e s h a l l see t h a t there is one t e r m w h i c h
seems to a p p e a r i n a l l e m p i r i c a l e q u a t i o n s
of
state.
This term
has
a b s o l u t e l y no t h e o r e t i c a l basis a n d i t s h o u l d be d i s c a r d e d a n d r e p l a c e d b y a m o r e satisfactory expression. Some General
Considerations
T h e basic r e s u l t i n s t a t i s t i c a l m e c h a n i c s is t h a t the p r o b a b i l i t y of a system b e i n g i n a state specified b y a n e n e r g y E{ is p r o p o r t i o n a l to t h e B o l t z m a n n f a c t o r exp{ —
where p =
d y n a m i c p r o p e r t i e s m a y be specified.
1/kT.
W i t h this result, t h e r m o -
F o r example, the thermodynamic
e n e r g y is
i
U
d In Zjv
(1)
where 'N
exp{-/M} £
exp {—
pEJ
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(2)
1.
Fluids
H E N D E R S O N
and Fluid
3
Mixtures
is c a l l e d t h e p a r t i t i o n f u n c t i o n a n d A is the H e l m h o l t z free e n e r g y A =
U — TS).
(i.e.,
W i t h e x c e p t i o n of a f e w fluids, s u c h as h e l i u m a n d
h y d r o g e n , the e n e r g y levels Ei f o r m a c o n t i n u u m a n d the s u m i n E q u a t i o n 2 c a n be r e p l a c e d b y a n i n t e g r a l . T h u s , for a system of N m o l e c u l e s
Z n
=
Tfiflf
e
x
t-i ^/) *
p
V*
dp
8
d
( 3 )
Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001
w h e r e the ps a n d q's are t h e g e n e r a l i z e d m o m e n t a a n d coordinates, s is the n u m b e r of degrees of f r e e d o m , a n d system.
T h e factor h
8
is the H a m i l t o n i a n of
the
arises f r o m the v o l u m e associated w i t h q u a n t u m
states i n phase space a n d the factor N\ appears because the molecules i n a fluid are i n d i s t i n g u i s h a b l e . G e n e r a l l y the m o l e c u l e s of the fluid w i l l h a v e i n t e r n a l degrees of freedom.
If these i n t e r n a l degrees of f r e e d o m
are i n d e p e n d e n t of t h e
d e n s i t y of the fluid (as is often t h e case) t h e y m a k e no c o n t r i b u t i o n to t h e e q u a t i o n of state a n d c a n b e i g n o r e d .
S i n c e I a m interested o n l y i n
p r e s e n t i n g g e n e r a l p r i n c i p l e s , I w i l l i g n o r e the c o n t r i b u t i o n of i n t e r n a l degrees of f r e e d o m a n d assume t h a t
i-l w h e r e $ is the p o t e n t i a l energy of the m o l e c u l e s a n d d e p e n d s o n l y u p o n the positions of the center of mass. T h e t h e o r y of fluids i n w h i c h i n t e r n a l degrees of f r e e d o m development.
Z N
where A =
c o n t r i b u t e to the e q u a t i o n of state is s t i l l
under
U s i n g E q u a t i o n 4 , the p a r t i t i o n f u n c t i o n b e c o m e s
=
~NY I
e
x
p
(""^)
d r i
•••
W
d r N
h/(2irmkT) . 1/2
T o m a k e f u r t h e r progress the f o r m of m u s t b e specified. G e n e r a l l y the p o t e n t i a l e n e r g y w i l l c o n t a i n terms i n v o l v i n g the coordinates o f p a i r s , t r i p l e t s , q u a d r u p l e t s , etc., of m o l e c u l e s .
A f e w c a l c u l a t i o n s of the e q u a -
t i o n of state of a fluid w i t h s u c h a g e n e r a l f o r m for h a v e b e e n
made.
H o w e v e r , the c o m m o n p r a c t i c e is to assume p a i r - w i s e a d d i t i v i t y : *(ri,
I n this case, u(r)
. . . , r) N
— 1 3 u(r ) i?)
V 2
^ 1728(11/2 - 8 e - + 3 e * )
(23)
1 9 c
^
_ ,
)
i
M
.
( 2 4 )
and 1 1 ^
°
3
3 5
e
"
[-
W 2 4 )
+ 2z + 4 ( l + * K * ]
E q u a t i o n 21 gives the exact r e s u l t for t>i i n t h e M S A . T h e for v , 2
v
Sy
a n d t;
are p a r a m e t r i z a t i o n s .
4
(25)
2
4
expressions
E q u a t i o n 21 is a n a l y t i c a l a n d
q u i t e easy to use. F o r most cases, v , t ; , a n d tf are s m a l l w h e n 2
3
4
compared
w i t h Vx so that i t is best to use E q u a t i o n 21 for Vx r a t h e r t h a n some approximation.
H o w e v e r , i f one wishes, s i m p l i f i c a t i o n s c a n b e
f r o m a n e x p a n s i o n of E q u a t i o n 21 i n p o w e r s of p a n d z.
obtained
One possibility
is
"
1
"
2
4
^ - ? - L
1
+ 1 0 ( l + , ) ( 7 + 2,)
(26)
\]
E x c e p t for z —> oo, most of t h e c o n t r i b u t i o n to Vi comes f r o m t h e term.
The limit z - »
oo is m a i n l y of m a t h e m a t i c a l interest.
first
I n most
situations of p h y s i c a l interest z is s m a l l . W e refer to t h e l i t e r a t u r e ( I ) the v a r i o u s i n t e g r a l equations
for a d i s c u s s i o n of t h e d e r i v a t i o n of
a n d f o r details r e g a r d i n g t h e i r s o l u t i o n
( u s u a l l y n u m e r i c a l ) for other cases.
Perturbation
Theory
P e r t u r b a t i o n t h e o r y is t h e oldest of t h e three m e t h o d s . W e w i l l see t h a t i t dates b a c k to v a n d e r W a a l s . H o w e v e r , its u t i l i t y w a s n o t a p p r e c i a t e d b y theorists u n t i l t h e last d e c a d e . I n p e r t u r b a t i o n t h e o r y w e assume t h a t w e h a v e f u l l k n o w l e d g e of s o m e reference system ( o r u n p e r t u r b e d s y s t e m ) w h o s e p r o p e r t i e s w e w i l l d e n o t e b y a s u b s c r i p t 0. W e m a y h a v e o b t a i n e d this k n o w l e d g e b y means
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
H E N D E R S O N
Fluids
of some c o m p u t e r equation. fluid,
and Fluid
9
Mixtures
s i m u l a t i o n s or f r o m the s o l u t i o n of
some i n t e g r a l
U s u a l l y , this reference system is t a k e n to b e the h a r d - s p h e r e
where r d
/ oo,
=
u (r)=)°:> 0
lO,
(27)
W e assume that, to some a p p r o x i m a t i o n , the p a i r p o t e n t i a l is u (r)
and a
0
Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001
s m a l l p e r t u r b a t i o n . T h e simplest case is u(r)
=
+
u (r) 0
(28)
€w(r)
If the free energy is e x p a n d e d i n p o w e r s of c, w e h a v e
Az_^5. _ NkT
£
(j8c) AJNkT
(29)
n
£i
where Ai/NkT-^p and go(r)
jw(r)g (r)
is the R D F of the reference
(30)
dr
0
system.
T h e higher-order
A
n
i n v o l v e s integrals o v e r h i g h e r - o r d e r d i s t r i b u t i o n f u n c t i o n s . I f the reference system is the h a r d - s p h e r e system, A l a t e d f r o m E q u a t i o n 14.
Carnahan and Starling (8)
0
m a y be calcu-
have proposed
slight m o d i f i c a t i o n of E q u a t i o n 14 w h i c h is s l i g h t l y m o r e accurate. the C a r n a h a n a n d S t a r l i n g expression is c e r t a i n l y r e c o m m e n d e d ;
a
Using
however,
I w i s h to g i v e t h e f o l l o w i n g w a r n i n g . T h e a n a l o g u e of the C a r n a h a n a n d S t a r l i n g e q u a t i o n of state becomes v e r y i n a c c u r a t e for a m i x t u r e of h a r d spheres w h e n one of the components i n the m i x t u r e is v e r y l a r g e w h e r e a s the a n a l o g u e of E q u a t i o n 14 r e m a i n s accurate. I n as m u c h as t h e C a r n a h a n a n d S t a r l i n g - t y p e expression is i n better agreement w i t h
computer
s i m u l a t i o n s for h a r d - s p h e r e m i x t u r e s for d i a m e t e r ratios at least as l a r g e as 3 : 1 , i t is p r o b a b l e that this d e f i c i e n c y p r o b a b l y is i r r e l e v a n t to a n y p r a c t i c a l c a l c u l a t i o n . H o w e v e r , one s h o u l d be w a r y n o t o n l y to a v o i d a p p l i c a t i o n of the C a r n a h a n a n d S t a r l i n g - t y p e expression for
extremely
large d i a m e t e r ratios b u t to e x a m i n e c a r e f u l l y a n y p r e d i c t i o n s b a s e d o n the use of this expression i n situations i n w h i c h i t has n o t b e e n s t u d i e d i n d e t a i l . F o r a h a r d - s p h e r e reference
fluid,
go(0
a n d thus A i , c a n b e
o b t a i n e d either f r o m the P Y h a r d - s p h e r e results ( 5 ) simulations ( 9 , 1 0 ) .
or from
computer
F o r most cases, A i m u s t be o b t a i n e d b y n u m e r i c a l
integration. H o w e v e r , if w(r)
=
—c exp {—z(x
—
l)}/x
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
(31)
10
EQUATIONS
where x = yield
r/a- a n d the P Y g o ( r )
>
A
N
k
T
O F
S T A T E
are u s e d , E q u a t i o n 16 m a y b e u s e d to
- - e W % z )
( 3 2 )
T h e s i m i l a r i t y to E q u a t i o n 21 is not a c c i d e n t a l . I f a h a r d - s p h e r e reference
fluid
is u s e d , the s e c o n d - o r d e r
t e r m has
Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001
the f o r m A /NkT 2
=
r*[w(rd)
] g (r)dr
w(rid)w(r d)
F (r r )
-TrptP J°°
+ff
2
2
0
0
l9
(33)
dr dr
2
x
2
B a r k e r a n d H e n d e r s o n ( J O ) h a v e g i v e n a c o n v e n i e n t p a r a m e t r i z a t i o n of Fo(r
for the h a r d - s p h e r e reference
r)
u
2
fluid.
So f a r a l l w e h a v e is f o r m a l i s m . O n e c o u l d a r g u e t h a t t h e r e is n o reason to b e l i e v e that E q u a t i o n 29 is u s e f u l e x c e p t at h i g h t e m p e r a t u r e s , w h e r e /?c is s m a l l . T h e u t i l i t y of p e r t u r b a t i o n t h e o r y e v e n at t e m p e r a t u r e s as l o w as t h e t r i p l e p o i n t , w a s first p o i n t e d o u t a d e c a d e ago b y B a r k e r a n d H e n d e r s o n (11)
w h o a r g u e d t h a t the r e l e v a n t p a r a m e t e r i n deter-
m i n i n g the c o n v e r g e n c e of E q u a t i o n 29 w a s not t h e smallness of /Jc b u t the smallness of the effect of t h e p e r t u r b a t i o n o n t h e s t r u c t u r e of fluid.
T h e y noted that A
x
gives t h e effect of w(r)
p r o p e r t i e s i n the absence of a n y changes i n s t r u c t u r e a n d t h a t A
2
t h e effect of changes
the
on the thermodynamic gives
i n structure. A t h i g h densities s u c h changes
in
structure are suppressed because the m o l e c u l e s are p a c k e d t i g h t l y . T h e r e fore, A
is s m a l l c o m p a r e d w i t h A i (as is o b s e r v e d b y d i r e c t c a l c u l a t i o n
2
of A i a n d A ) . T h e h i g h e r - o r d e r A
n
2
are e v e n s m a l l e r a n d , as B a r k e r a n d
H e n d e r s o n suggested, c a n be n e g l e c t e d i n most c a l c u l a t i o n s . A t l o w e r densities, p a r t i c u l a r l y n e a r the c r i t i c a l p o i n t , changes
in
structure are easier a n d the c o n v e r g e n c e of the p e r t u r b a t i o n e x p a n s i o n is slower.
B u t e v e n there, second-order
p e r t u r b a t i o n t h e o r y gives
quite
r e a s o n a b l e results. A l l of this makes sense as l o n g as u(r) p l u s ew(r).
is the h a r d - s p h e r e p o t e n t i a l
Unfortunately, the potentials w h i c h occur i n real applications
are not of this f o r m . N e v e r t h e l e s s , f o l l o w i n g B a r k e r a n d H e n d e r s o n
(12),
we can write u(r)
=
Uo(r)
+
(34)
w(r)
€
w h e r e u (r) a n d w(r) are the p o s i t i v e a n d n e g a t i v e parts of u(r). Thus, w e c a n use E q u a t i o n s 29 a n d 30. H o w e v e r , w e n o w h a v e a n u n f a m i l i a r reference fluid. F o r t u n a t e l y , for most a p p l i c a t i o n s u (r) is v e r y steep 0
0
In Equations of State in Engineering and Research; Chao, K., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
1.
H E N D E R S O N
Fluids
11
and Fluid Mixtures
a n d c a n b e r e p l a c e d b y t h e h a r d - s p h e r e p o t e n t i a l i f t h e d i a m e t e r d is chosen j u d i c i o u s l y . B y means of a f o r m a l e x p a n s i o n i n p o w e r o f a n i n v e r s e steepness p a r a m e t e r , B a r k e r a n d H e n d e r s o n s h o w e d t h a t
d — f
a
[1 -
exp {-pu«(z)}]dz
(35)
J o
w h e r e o- is the p o i n t at w h i c h u(r) changes s i g n . W i t h t h e a b o v e c h o i c e
Downloaded by NORTH CAROLINA STATE UNIV on August 22, 2013 | http://pubs.acs.org Publication Date: December 1, 1979 | doi: 10.1021/ba-1979-0182.ch001
of d, a u s e f u l s e c o n d - o r d e r p e r t u r b a t i o n t h e o r y is o b t a i n e d f r o m E q u a tions 14, 29, 30, a n d 32. T h e results of this second-order p e r t u r b a t i o n t h e o r y f o r a fluid w h o s e p a i r p o t e n t i a l is the L e n n a r d - J o n e s 6:12 p o t e n t i a l ,
w(r)
=