42 Intracrystalline Diffusion R. M . B A R R E R
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
Physical Chemistry Laboratories, Chemistry Department, Imperial College, L o n d o n , S . W . 7, E n g l a n d
The rate of intracrystalline nificant
for molecule
migration
sis. In view of this, an account aspects of diffusion related
diffusion
integral,
and tracer
cataly-
has been given of
various
Ways
dependence
single crystals and powders.
Examples
line channel valence, foreign
J
-
dimensions,
temperature, molecules
Heterogeneous A
anisotropy
of measuring include
molecules,
and
and
the
using penecomplex
intracrystal-
ions of different
concentration,
have also been
these
various
and effects of
exchange
inter-
differential,
are considered,
trants, such as water, small nonpolar Diffusion
Three
can be measured:
coefficients.
is sig-
sieve
in porous aluminosilicates.
coefficients
and their concentration
molecules.
of molecules
sieving and for molecular
size
and
presence
of
discussed.
catalysts are u s u a l l y h i g h - a r e a porous materials w h i c h
m a y b e a m o r p h o u s or c r y s t a l l i n e . A n i m p o r t a n t aspect of a l l s u c h
materials is t h e r a p i d i t y w i t h w h i c h reactant m o l e c u l e s r e a c h active sites a n d p r o d u c t s leave these sites.
A p a r t f r o m flow i n gas o r l i q u i d phase,
there m a y b e surface m i g r a t i o n i n t o a n d f r o m m i c r o p o r e s , w h e t h e r i n a m o r p h o u s catalysts o r i n c r y s t a l l i n e ones, s u c h as t h e zeolites.
It is s t i l l
a n o p e n q u e s t i o n h o w i m p o r t a n t s u c h m i g r a t i o n processes are as ratec o n t r o l l i n g steps.
H o w e v e r , i t seems l i k e l y that active sites d e e p i n a
p o r o u s c r y s t a l w i l l b e less i m p o r t a n t t h a n sites near t h e surface because m a n y m o r e u n i t d i f f u s i o n steps w i l l b e n e e d e d to transport m o l e c u l e s to a n d f r o m d e e p l y b u r i e d sites. A s corollaries, o n e w o u l d expect that o n l y a l i m i t e d v o l u m e f r a c t i o n of a c r y s t a l of a zeolite s u c h as sieve Y is c a t a l y t i c a l l y effective,
a n d that
f o r best p e r f o r m a n c e
crystals
i n the
catalyst s u p p o r t s h o u l d b e w e l l exposed a n d as s m a l l as possible, i n o r d e r to p r o v i d e the largest s u r f a c e - t o - v o l u m e ratio. 1
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
2
M O L E C U L A R SIEVE ZEOLITES
Studies of i n t r a c r y s t a l l i n e d i f f u s i o n c a n delineate factors
II
limiting
t r a n s p o r t w i t h i n crystals a n d h e n c e w i l l a i d u n d e r s t a n d i n g of m o l e c u l e s i e v i n g a n d site a c c e s s i b i l i t y i n catalysis. basic
d i f f u s i o n studies
O n e m a y h o p e to l e a r n f r o m
h o w d i f f u s i o n coefficients
within
zeolites are
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
related t o : 1.
Intracrystalline channel geometry a n d dimensions.
2.
S h a p e , size, a n d p o l a r i t y o f p e n e t r a n t molecules.
3.
C a t i o n d i s p o s i t i o n s , size, charge, a n d n u m b e r s .
4.
L a t t i c e defects, s u c h as s t a c k i n g faults.
5.
Presence of " i m p u r i t y " m o l e c u l e s i n channels.
6.
S t r u c t u r a l changes b r o u g h t a b o u t b y penetrants.
7.
S t r u c t u r a l d a m a g e associated w i t h p h y s i c a l a n d c h e m i c a l treatments.
8.
C o n c e n t r a t i o n of p e n e t r a n t w i t h i n t h e crystals.
Despite the obvious importance
of d i f f u s i o n studies, i n f o r m a t i o n o n
these t o p i c s is s t i l l l i m i t e d . T h e p o s i t i o n reflects e x p e r i m e n t a l difficulties and,
i n p a r t , a f a i l u r e to r e a l i z e h o w u s e f u l a p r o b e d i f f u s i o n m a y b e .
It is h o p e d that t h e i m p o r t a n c e of d i f f u s i o n w i l l b e c o m e a p p a r e n t f r o m t h e present r e v i e w . Diffusion
Coefficients
I n t h e t w o - c o m p o n e n t system gas + zeolite, i n p a r a l l e l w i t h a g e n e r a l t w o - c o m p o n e n t system, one m a y c o n s i d e r 5 d i f f u s i o n coefficients: ( i n t e r d i f f u s i o n coefficient of sorbate a n d z e o l i t e ) ; D , D A
B
f u s i o n coefficients, r e s p e c t i v e l y , of sorbate a n d z e o l i t e ) ; a n d D ( t r a c e r d i f f u s i o n coefficients, r e s p e c t i v e l y , o f sorbate a n d z e o l i t e ) . ever, because D
B
and D *
D
AB
(intrinsic dif A
*, How
are effectively zero, as f o r a n o n s w e l l i n g
B
crystal, D
=
AB
D
A
It is sometimes a s s u m e d that
= D*
DA
where a
A
=
A
f^i aln
(1)
CA
PA is t h e a c t i v i t y o f sorbate, e q u a l to t h e l o c a l e q u i l i b r i u m
pressure of sorbate, w h e r e t h e c o n c e n t r a t i o n o f A is c . A
H o w e v e r , this r e l a t i o n is n o t correct.
D
A
=
D
A
din aA din CA
T h e t r u e r e l a t i o n ( I ) is
CAL
A
C *L A
A
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(2)
42.
BARRER
Here c * A
Intracrystalline
Diffusion
3
is t h e c o n c e n t r a t i o n of i s o t o p i c a l l y l a b e l l e d species at a p o i n t
w h e r e t h e c o n c e n t r a t i o n of u n l a b e l l e d species is c .
L
A
AA
a n d L A * are A
the straight a n d cross p h e n o m e n o l o g i c a l coefficients of t h e i r r e v e r s i b l e t h e r m o d y n a m i c f o r m u l a t i o n of d i f f u s i o n . T h e o r i g i n a l r e l a t i o n , E q u a t i o n 1, assumes a z e r o cross coefficient, w h i c h i n dense i n t r a c r y s t a l l i n e fluids c e r t a i n l y is n o t l i k e l y t o b e true. T h e o n l y i n f o r m a t i o n f o r s o r b a t e - z e o l i t e systems f r o m w h i c h E q u a tion 2 c a n b e discussed was obtained b y Barrer a n d F e n d e r ( 7 ) . T h e y
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
s t u d i e d i n t r i n s i c a n d tracer d i f f u s i o n of w a t e r i n c h a b a z i t e , h e u l a n d i t e , and gmelinite, using H 0 and D 0 . T h e activity correction: 2
2
din a
A
_ din p
A
din c
din c
A
can
A
b e d e r i v e d f r o m t h e i r w a t e r s o r p t i o n isotherms.
T h e results of a n
analysis o f t h e i r d a t a are p r e s e n t e d i n T a b l e I. T h e r a t i o
c L */c *L A
AA
A
c a n h a v e c o n s i d e r a b l e values, a l t h o u g h t h e c o r r e c t i o n t e r m din a /din A
is d o m i n a n t .
AA
c
A
T h e results i n t h e t a b l e refer to zeolite crystals n e a r l y
s a t u r a t e d w i t h w a t e r , a n d s h o u l d b e e x t e n d e d , f o r v a r i o u s sorbates, o v e r a greater r a n g e of sorbate concentrations. T h e significance of cross coefficients, L *,
has b e e n d e m o n s t r a t e d
AA
also f o r i n t r i n s i c a n d tracer d i f f u s i o n of SO2 i n surface flow t h r o u g h c a r b o n compacts
(I).
C r o s s coefficients
m u s t arise f r o m d i r e c t
interactions
b e t w e e n A a n d A * , a n d s h o u l d b e significant w h e n e v e r sorbate is suffi c i e n t l y c o n c e n t r a t e d f o r s u c h encounters t o b e c o m e
Table I.
Relation Between D
and D *
A
Chabazite B
Heulandite
Gmelinite
T,°
75 65 55 45 35 75 65 55 45 35 55 45 35
C
I n the
for Water in Several Zeolites
A
dln&A
CALAA*
dim A
CA*LAA
5.4 3.8o 2.5
23.0 24.0 25.5 27.0 28.0
0.09I 0.15 0.17 0.21 0.27
3.7 2.U 1.24
3.0 1.9 1.26 0.78 0.46
30.0 32.0 34.0 35.5 37.0
0.39 0.44 0.48 0.51 0.56
7.3 5.0 3.3i
1.9 1.40 0.97
26.5 28.0 29.5
0.15
D * X 10 , Cm Sec~ s
A
Zeolite
frequent.
2
l
46., 31. 21. 14.x 9.0
D X W\ Cm Sec~ A
2
l
IO.65 7.6
8
4
5
0
9.8
0
6.1
6
0
3
5
5
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
O.O65
0.030
4
M O L E C U L A R SIEVE ZEOLITES
d i l u t e H e n r y ' s l a w s o r p t i o n r a n g e , cfln a /dln
c
A
A
=
II
1. S i n c e encounters
of A a n d A * w i l l t h e n b e m u c h less f r e q u e n t , t h e cross coefficient s h o u l d be m i n i m a l a n d D
A
=
B
T h e d i f f u s i o n coefficients D
A
D
->
A
D* A
andD *
r e f e r r e d to a b o v e a r e differ
A
e n t i a l v a l u e s f o r p a r t i c u l a r concentrations c ,
o r else d e t e r m i n e d o n l y
A
over a n a r r o w concentration range.
O v e r a w i d e concentration r a n g e —
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
e.g., i n m a n y s o r p t i o n rate e x p e r i m e n t s — a m o r e accessible q u a n t i t y is the i n t e g r a l v a l u e , D , w h e r e A
D
A
=
c
A
- f c J l
A
D(c )dc A
Q
A
or, f o r i n t e r v a l e x p e r i m e n t s , c
A
D
A
Measurement
=
of Molecule
X
,
N
Diffusion
/
D(c )dc
in Zeolite
A
A
Crystals
Single Crystals. N a t u r a l l y - o c c u r r i n g zeolites are sometimes f o u n d as l a r g e single crystals. T i s e l i u s (34, 35) u s e d this feature t o s t u d y d i f f u s i o n i n zeolites. D i f f u s i o n of w a t e r i n h e u l a n d i t e crystals w a s f o l l o w e d b y a n
Figure 1. A stage of diffusion in a heulandite single crystal viewed through crossed Nicols ( 3 4 ) . The diferent distances moved by the band in 2 directions show the diffusion anisotropy. The direction of more rapid penetration is normal to 201, and that of less rapid pentration is normal to 001
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
42.
BARRER
Intracrystalline
5
Diffusion
o p t i c a l p r o c e d u r e i n w h i c h b i r e f r i n g e n c e of a c r y s t a l p l a t e w a s o b s e r v e d u n d e r crossed N i c o l s . B i r e f r i n g e n c e w a s a f u n c t i o n inter alia o f t h e c o n c e n t r a t i o n of sorbate.
A c c o r d i n g l y , u n d e r crossed N i c o l s d a r k
bands
progress i n t o t h e c r y s t a l as d i f f u s i o n proceeds ( F i g u r e 1 ) . A t t i m e t, i f the b a n d has p r o g r e s s e d t h r o u g h distance x, t h e n x
2
=
2D t A
T h e figure shows strong a n i s o t r o p y i n t h e d i f f u s i o n of z e o l i t i c w a t e r , t h e
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
d a r k b a n d h a v i n g m o v e d f u r t h e r f r o m t h e 201 t h a n f r o m t h e 001 face.
D
A
is g i v e n i n T a b l e I I ; t h e a c t i v a t i o n energies, E, i n t h e A r r h e n i u s e q u a t i o n D
A
=D
0
e x p — E/RT
are 5400 a n d 9140 c a l / m o l e , r e s p e c t i v e l y , f o r
d i f f u s i o n n o r m a l to 201 a n d 001.
Table II.
T,
°C
20 33.8 46.1 60.0 75.0
Diffusion Anisotropy in Heulandite D
A
X W -L 201 Cm Sec~ 7
2
l
2.7 4.1 4.8 7.6 11.1
D
A
X 10 J_ 001 Cm Sec~ 7
2
l
0.23 0.45 0.66 1.45 2.8
W. Meier, "Molecular Sieves," Society of the Chemical Industry
Figure 2. Sheets of linked tetrahedra present in heulandite ( 2 5 ) . Diffusion across these sheets does not occur. Between the sheets, different intersecting channels run parallel to a and c, respectively, forming twodimensional networks
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
6
M O L E C U L A R SIEVE ZEOLITES
II
H e u l a n d i t e consists of sheets ( F i g u r e 2 ) l i n k e d to other l i k e sheets a n d e n c l o s i n g b e t w e e n e a c h p a i r a t w o - d i m e n s i o n a l c h a n n e l system N o r m a l to the
sheets, T i s e l i u s f o u n d the
d i f f u s i o n coefficient
(25). to
be
n e g l i g i b l e , as w o u l d b e e x p e c t e d f r o m the c o m p a c t n a t u r e of the sheets. B e t w e e n the sheets are channels c i r c u m s c r i b e d b y 10-rings a n d 8-rings:
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
(a)
P a r a l l e l to a, e l l i p t i c a l 8-rings of free d i a m e t e r 2.4 a n d 6.1 A .
( b ) P a r a l l e l to c, 3.2 a n d 7.8A ( 1 0 - r i n g s ) a n d 3.8 a n d 4 . 5 A ( 8 - r i n g s ) . T h e a n i s o t r o p y f o r different d i r e c t i o n s p a r a l l e l to the sheets is i n a c c o r d w i t h the structure, w h i c h w a s u n k n o w n at the t i m e of T i s e l i u s ' measure ments. T i s e l i u s , a g a i n u s i n g s u i t a b l y c u t plates of h e u l a n d i t e , e s t a b l i s h e d a c t u a l c o n c e n t r a t i o n gradients f r o m b i r e f r i n g e n c e studies as a f u n c t i o n of distance x f r o m the surface. If the c o n c e n t r a t i o n at t = 0 is c t h r o u g h o u t the c r y s t a l , a n d at t i m e t is c at distance x; w h i l e at x = 0, c = c « f o r a l l t > 0, t h e n 0
x
,c=c
T h e concentration-distance
c u r v e at t i m e t serves to give dx/dc
and
xdc Hence, D is o b t a i n e d . T h i s m e t h o d is associated w i t h B o l t z m a n n (14) a n d w a s d e v e l o p e d b y M a t a n o (24). S o m e results are g i v e n i n T a b l e I I I . T h e s a t u r a t i o n w a t e r content, c , was 19.67% b y w e i g h t of w a t e r ; the values of c are g i v e n i n the table. D s h o u l d be, a n d w a s , w i t h i n error, i n d e p e n d e n t of c . T h e v a r i a t i o n of D w i t h c o n c e n t r a t i o n c
=
Cx
x
0
A
0
Table III.
Wt% 10 11 12 13 14 15 16 17 18 19
D J L 201 A
Co
D
= A
A
Plane in Heulandite at 20°C, C m X
8.3% 10
0.04 0.2 0.7 1.3 2.0 2.7 3.0 4.0 4.0 3.3
7
Co
D
= A
X
18.2% W
2.1 2.6 3.5 4.2 4.1 3.5
7
Co
D
= A
X
2
Sec
16.2% 10 7
4.0 4.2 4.1
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
1
42.
BARRER
Intracrystalline
Diffusion
7
m a y b e associated w i t h c h a n g e i n the b i n d i n g e n e r g y of w a t e r as c increases a n d w i t h s m a l l lattice changes associated
w i t h rising
water
content. Synthetic
Powders.
zeolites
a n d n a t u r a l l y o c c u r r i n g zeolites
of
s e d i m e n t a r y o r i g i n n o r m a l l y o c c u r as p o w d e r s . F o r t h e m different m e t h ods m u s t b e e m p l o y e d , w h i c h f a l l i n t o 2 s u b d i v i s i o n s :
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
( a ) S o r p t i o n o r d e s o r p t i o n is m e a s u r e d , k e e p i n g t h e sorbate pres sure constant. ( b ) S o r p t i o n or d e s o r p t i o n occurs i n a c o n s t a n t - v o l u m e v a r i a b l e pressure vessel. C O N S T A N T - P R E S S U R E S O R P T I O N OR D E S O R P T I O N .
The
boundary
condi
tions f o r a n y crystallite are c =
c
c =
Co t h r o u g h o u t t h e c r y s t a l l i t e at t =
just w i t h i n t h e surface f o r a l l t > 0.
x
0.
w h i l e f o r flow ^ When D
A
=
d i v (DA g r a d c).
is i n d e p e n d e n t of c a n d t h e crystals are a l l of t h e same shape
a n d size, e.g., spheres of r a d i u s r Qt - Qo Q — Qo
,
0
6 A 1 x „= i n
D
n izH 2
A
2
m
F o r larger times, a l l b u t one e x p o n e n t i a l t e r m b e c o m e n e g l i g i b l e , a n d t h e e q u a t i o n reduces to , l
Q- n
Q
6
t
Q ^ Q r
l
n
D
A
V
2
rt 2
~ ^
so that a p l o t of t h e left side against t gives a straight l i n e of slope D 7r A
2
~~2~O n c e D is k n o w n , this c a n b e s u b s t i t u t e d i n t h e f u l l e q u a t i o n , w h i c h t h e n c a n b e tested f o r a l l t. A
F o r s m a l l t, s i m p l e r f o r m s c a n b e o b t a i n e d :
I» -
Qo
Wo / 2
r
0
2
or
Plots of t h e left side against \/Tgive
D /r , A
2
0
a n d so D . A
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
8
M O L E C U L A R SIEVE ZEOLITES
II
F o r r e c t a n g u l a r p a r a l l e l e p i p e d crystallites o f edges a, b, a n d c, t h e l i m i t i n g expressions a r e Q~ - Q
512
t =
Qoo
— Q
Q
— yo
i nFigure 3 ( 7 ) . MQO
Journal of Physics and Chemistry of Solids
Figure 3.
The % deviations from the \/T law as func-
tions of 9°° _ 9* Voo
YO
for particles of different forms (7) M
x
Curve 1: Sphere Curve 2: Cube Curve 3: Rectangular parallelepiped (2:2:1) Curve 4: Plane sheet
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
42.
BARRER
Intracrystalline
Diffusion
9
T h e c o r r e s p o n d e n c e w i t h t h e \ft l a w is i l l u s t r a t e d i n F i g u r e 4 ( 7 ) f o r the i n t r i n s i c d i f f u s i o n o f w a t e r i n c h a b a z i t e , g m e l i n i t e , a n d h e u l a n d i t e . 10Chobozite
09-
/
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
07-
/
/
040-3-
o o o
o
o
//
0-2-
•
•
1/
0-1-
r
0
Heulandite
/ / /
/ /
. A
o
o
Gmelinite
I
2
3
4
5
R 60
4
I
50
2
4
6
8
10 12
Journal of Physics and Chemistry of Solids
Figure 4.
Applicability of the \ftlaw for the intrinsic diffusion of water in chabazite, gmelinite, and heulandite (7) Calculated curves: Chabazite: O, 75.4°C; *, 30.8°C Gmelinite: O, 62.5°C; #, 31.7°C Heulandite: O, 77.8°C; *, 37.4°C
C O N S T A N T - V O L U M E VARIABLE-PRESSURE
time t =
S O R P T I O N OR D E S O R P T I O N .
At
0, f o r s o r p t i o n , a dose o f gaseous sorbate is i n t r o d u c e d i n t o the
s o r p t i o n v o l u m e a n d left t o d i s t r i b u t e itself b e t w e e n gas phase a n d crys tals.
E x a c t a n a l y t i c a l solutions are a v a i l a b l e , p r o v i d e d s o r p t i o n f o l l o w s
H e n r y ' s l a w (2,27).
T h u s , f o r spheres of r a d i u s r
Qtt -~ Q, Qo _ , - — ^ - 1 -
where r =
a . V ZK(K + D L K i K
0
exp - g ' T
n
w
9
(
J
[
+
1
)
+
a
A
8
j
r
-
^ ~ a n d «„ is the n t h p o s i t i v e root of the r e l a t i o n Tan a r
0
=
3r a 0
3 +
Xr
0
2
a
2
and where K
=
J J L
=
« M _ a=
(Qo)o ~ ( Q - ~ Qo)
I n this last expression, k is t h e H e n r y ' s l a w constant, a n d K denotes t h e
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10
M O L E C U L A R SIEVE ZEOLITES
e q u i l i b r i u m r a t i o o f gas i n t h e gas phase a n d i n crystals. V
g
v o l u m e s o f gas phase a n d crystals, respectively.
(Qcc)
II
a n d V are 8
a n d (Qo) a r e
g
g
a m o u n t s o f gas finally a n d i n i t i a l l y i n t h e gas phase. F o r s m a l l e n o u g h times, t h e \ / T l a w a g a i n results i n t h e f o r m ( 6 ) Qt ~
Qo
6 (K +
Qco -
Q
r
=
0
0
K
1) \IT52 y
x
6 /(QQ), + Q
\
0
r \(Qo) ~ ( Q - 0
ilD2
Qo)/ r
9
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
T h e v a l i d i t y o f t h e \ / £ l a w is s h o w n u n d e r c o n s t a n t - v o l u m e
* variable
pressure c o n d i t i o n s w h e n H e n r y ' s l a w is a p p r o x i m a t e l y v a l i d i n F i g u r e 5.
0*8
f
0*6 0-4 0-2
4
Z
4
6
8
.j_
J
fO
/Z
f4
16
Transactions of the Faraday Society
Figure 5. Validity of the V T law in a constant-volume variable-pressure system where the sorption isotherms approach Henry's law (2) Curve 1: Ne in Li-mordenite at —185°C Curve 2: Ne in Ca-mordenite at —185°C Curve 3: Kr in Ba-mordenite at 24°C Curve 4: Kr in Levynite at 0°C O: Experimental points X : Calculated points, using the full solution of the diffusion equation The \ / 1 L a w and Particle Size and Shape Distributions in Powders. A s p e c i a l i m p o r t a n c e o f t h e yfl
l a w s is that, p r o v i d e d t i m e is s m a l l
e n o u g h f o r e a c h p a r t i c l e t o a c t as a semi-infinite m e d i u m , t h e l a w s h o l d w h a t e v e r t h e size a n d shape d i s t r i b u t i o n , w i t h l / r r e p l a c e d b y A / 3 V . 0
Thus, Qt ~ Qco -
Qo _ Qo
Mt_ _ 2A Moo V
(constant pressure)
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
42.
BARRER
Intracrystalline
Qt ~ Qco
Qo
— Qo
=
Diffusion
11
Mt_
(constant v o l u m e , H e n r y ' s law)
Ma
P r o v i d e d t o t a l surface areas, A, are m e a s u r e d , D
A
c a n be f o u n d . A c a n
b e d e t e r m i n e d i n several w a y s : 1.
B y p r o j e c t e d area ( t r u e area =
2.
B y f l o w [ K o z e n y - C a r m a n (16)
3 X projected area). procedure].
T h e s e g i v e g e o m e t r i c a l or s m o o t h e d areas, not t a k i n g surface
roughness
Downloaded by LOUISIANA STATE UNIV on September 3, 2014 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch042
i n t o account. 3.
B y a d s o r p t i o n , u s i n g either (a) w a t e r - f i l l e d crystals, so that N or K r s o r p t i o n is l i m i t e d to external areas, or (b) s p h e r i c a l sorbate m o l e c u l e s too large to enter the c r y s t a l s — e.g., i s o - C H i or n e o - C , H i for c h a b a z i t e , sieve A , or a n y zeolite less o p e n t h a n these. 2
4
0
r
2
T h e a d s o r p t i o n area i n c l u d e s a l l
fine-scale
roughness a n d h e n c e i n
general w i l l exceed the s m o o t h e d areas f o u n d b y the other T h e t w o areas w i l l l e a d thus to different values of D , A
methods.
a n d it is not clear
w h i c h is best. F o r longer times, t h o u g h p o s s i b l y s t i l l i n the y/T
range,
effects of surface roughness u p o n the d i f f u s i o n w i l l h a v e d i e d out.
In
the first m o m e n t s t h e y w i l l not. It is u s e f u l to d e t e r m i n e b o t h areas, a n d so to g i v e u p p e r a n d l o w e r l i m i t s to D .
T h i s has not a l w a y s b e e n d o n e ,
A
a n d i n c o m p a r i n g values of D
f o u n d b y different authors, the m e t h o d
A
of d e t e r m i n i n g A s h o u l d be t a k e n i n t o account. A s expected f r o m the d i f f u s i o n theory, the larger the particles, the s l o w e r the s o r p t i o n ; A becomes s m a l l e r for constant V . T h i s is i l l u s t r a t e d i n F i g u r e 6 (8)
for s o r p t i o n of p r o p a n e at 2 0 0 ° C i n c h a b a z i t e .
Concentration-Dependent D
A
in Powders. It has b e e n a s s u m e d i n
the p o w d e r t e c h n i q u e s d i s c u s s e d so f a r that D
A
intracrystalline concentration.
does not d e p e n d u p o n
F o r the d i l u t e range of sorptions—e.g.,
w h e r e H e n r y ' s l a w is v a l i d — t h i s is correct.
H o w e v e r , as a l r e a d y c o n
sidered
i n concentration
(Table
III),
over e x t e n d e d ranges
Tiselius's
results f o r w a t e r i n a single c r y s t a l of h e u l a n d i t e s h o w e d strong c o n c e n tration dependence.
F o r p o w d e r s , 2 m e t h o d s m a y be m e n t i o n e d .
INTERVAL METHOD. The quantity Q
0
of sorbate i n i t i a l l y i n the c r y s t a l
c a n be v a r i e d systematically b y steps f r o m zero to near saturation. e a c h v a l u e of Q
0
of D
A
o b t a i n e d c a n be r e g a r d e d as constant over e a c h i n t e r v a l Q
0
Thus D
A
is f o u n d as a f u n c t i o n of Q .
dQ was often c o n s i d e r a b l e , c o m p a r e d w i t h Q . 0
A
-f- dQ.
A n i n t e r v a l m e t h o d w a s u s e d for
{)
several d i f f u s i n g species i n c h a b a z i t e b y B a r r e r a n d B r o o k (4), of D
At
a s m a l l extra a m o u n t , dQ, is t h e n s o r b e d , a n d the v a l u e
w a s o b t a i n e d over the i n t e r v a l Q
0
to Q*.
in which
Thus, an integral value Some results are g i v e n i n
T a b l e YVa, i n w h i c h the areas A w e r e those d e t e r m i n e d b y a flow m e t h o d . D
A
appears to decrease rather s t r o n g l y w i t h i n c r e a s i n g average c o n c e n t r a -
In Molecular Sieve Zeolites-II; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
12
M O L E C U L A R SIEVE ZEOLITES
II
^Cftrve I: Particlesfa-% inch diametery outdsssed 14hs. dt470'480°C '.Particles 20-30mesh;out&jsscd l4hrs.dt4JD-4S$ Curve 3: Particles -80-IOC mesh; outyHut I4hrs. at470-480*C. Curve4: Partizks