Molecular Sieve Zeolites-I

Sea Mount phillipsite is a deep-sea specimen on decomposed basalt ob tained from the Scripps Institute, La Jolla, Calif. The Nidda, Germany, and Rome,...
1 downloads 0 Views 1MB Size
18 Linde Type Β Zeolites and Related Mineral and Synthetic Phases

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

1

WILLIAM C. BEARD Union Carbide Corp., Tarrytown Technical Center, Tarrytown, New York 10591 The

Linde

Type

B zeolites, synthesized

Na O-SiO -Al O -H O, 2

2

2

3

2

in the system

have been correlated

with syn­

thetic phases produced by Barrer, and Taylor and Roy on the basis of powder x-ray diffraction patterns which show similarity with those of the mineral zeolites phillipsite, har­ motome, and gismondine.

The complex structural relation­

ships among these zeolite phases are discussed, and the difficulties in identifying zeolite structures on the basis of a general similarity of x-ray powder diffraction patterns are illustrated.

Structurally, the Β zeolites may represent the

following possibilities: (1) Displacive transformations due to variable cation composition and water content; (2) Twin­ ning, such as is commonly encountered in phillipsite to yield lattice constants identical to the single crystal, but tetragonal diffraction pattern symmetry; (3) Intergrowths faults of several members within the phillipsite

or stacking group.

T p h e Linde Type Β zeolites are synthesized in the N a 0 - S i 0 2 - A l 0 3 2

H 0 2

2

system, and have an adsorption pore size of about 3.5A (6).

The synthesis of various B-zeolites under a variety of conditions and their sequence of formation indicates that they are thermodynamically more stable than the more open structured zeolites, Α , X , and Y. There exists a series of variants of synthetic Β phases arbitrarily designated by "B" with subscripts 1 through 8. T h e designation of the zeolites in this series is based on differences in their respective x-ray powder diffraction pat­ terns.

These differences are of varying degree, and the major x-ray

diffraction peaks are common to all phases; hence their tentative classifi1

Present address: Department of Geology, The Cleveland State University, Cleveland, Ohio 44115. 237 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

238

MOLECULAR SIEVE ZEOLITES

c a t i o n c o l l e c t i v e l y as " B " zeolites.

1

T h e characterization and designation

of the v a r i a n t s of the s y n t h e t i c Β phases w a s i n i t i a l l y p r o p o s e d b y Ε. M . F l a n i g e n a n d E . R . K e l l b e r g of this l a b o r a t o r y ; u n p u b l i s h e d w o r k . T h e Β zeolites

have been

c a l l e d , at various times, p h i l l i p s i t e - l i k e ,

h a r m o t o m e - l i k e , N a - P - l i k e , a n d g i s m o n d i n e - l i k e phases.

This nomencla­

t u r e has arisen b y c o m p a r i s o n w i t h the x - r a y d i f f r a c t i o n patterns of m i n ­ e r a l zeolite specimens.

S i n c e the Β zeolites first w e r e i d e n t i f i e d , h o w e v e r ,

t h e structures of p h i l l i p s i t e , h a r m o t o m e , a n d g i s m o n d i n e h a v e b e e n deter­ m i n e d , a n d a structure w a s p r o p o s e d

b y Barrer (2),

b a s e d o n x-ray

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

p o w d e r d i f f r a c t i o n d a t a , for N a - P l , the e q u i v a l e n t of c u b i c L i n d e Bi. T h e f o l l o w i n g discussion attempts to e x p l a i n the p r e v i o u s c o n f u s i o n of d e s c r i b i n g the Β zeolite structures i n terms of m i n e r a l zeolites

by

s h o w i n g s i m i l a r i t i e s a m o n g structures of the m i n e r a l phases a n d x - r a y p o w d e r patterns of the m i n e r a l a n d s y n t h e t i c phases. Discussion Harmotome.

T h e s t r u c t u r e of h a r m o t o m e ,

w a s d e t e r m i n e d b y S a d a n a g a et al. ( 8 ) . P2 /m 1

a n d l a t t i c e constants a

0

=

Ba Al Sii2032 · 1 2 H 0 , 2

2

2

9.87, b

T h e y give the space g r o u p as 0

=

14.14, c

0

=

8.72A; β

=

124°50'. T h a t is, the structure is m o n o c l i n i c , b u t the d e v i a t i o n f r o m a n o r t h o r h o m b i c c e l l is v e r y slight. T h e p s e u d o r h o m b i c c e l l has β = a

0

=

9.87, b

0

tetragonal cell.

=

14.14, and c

0

=

90° 2 3 ' ,

14.3A, d i f f e r i n g o n l y s l i g h t l y f r o m a

F i g u r e 1 shows the r e l a t i o n s h i p of the cells

a b o v e . T h e structure consists of d o u b l e chains of ( S i , A l ) 0

4

described tetrahedra

f o l d e d to a n s-shaped c o n f i g u r a t i o n a l o n g the fo-axis d i r e c t i o n , offset i n the d i r e c t i o n n o r m a l to the a-b p l a n e a l t e r n a t i n g l y b y 1/2 the rhombic c

0

pseudo-

p a r a m e t e r , a n d c o n n e c t e d b y 4-rings t i l t e d to the p l a n e of

the f o l d e d chains.

Figure 1. Rehtionship of the mon­ oclinic harmotome cell (H) and the cubic Na-Pl cell (N) to the orthorhombic phillipsite cell (P)

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

18.

BEARD

Linde

Type Β

239

Zeolites

Phillipsite. T h e c r y s t a l structure of p h i l l i p s i t e , p r o b a b l e c o m p o s i t i o n (K ]Vai_ .)5SiiiAl5032 · 1 0 H O , w a s d e t e r m i n e d b y Steinfink (12), a

a;

g r o u p , B2mb,

space

2

9.96, b

a = 0

=

0

14.25, c

0

=

14.25A. F r o m the lattice c o n ­

stants, one m i g h t q u e s t i o n w h y the s t r u c t u r e is not d e s i g n a t e d as tetrago­ n a l , b u t the g e o m e t r i c a l a r r a n g e m e n t of atoms a b o u t the c-axis does not p e r m i t a n axis of 4 - f o l d s y m m e t r y .

T h e f r a m e w o r k of this zeolite is

essentially the same as that of h a r m o t o m e . T h e g e n e r a l a r r a n g e m e n t of

Gismondine.

(Si,Al)0

4

tetrahedra i n

the f r a m e w o r k of g i s m o n d i n e w a s p r o p o s e d b y S m i t h a n d R i n a l d i

(11)

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

as one of the several possible arrangements of c r o s s l i n k i n g the " d o u b l e c r a n k s h a f t " t e t r a h e d r a l chains c o m m o n to f e l d s p a r structures. F i s c h e r ( 5 ) c o n f i r m e d that the N - a r r a n g e m e n t of S m i t h a n d R i n a l d i w a s i n d e e d the g i s m o n d i n e structure. L i k e the other structures discussed above,

gis­

m o n d i n e has a s i m i l a r x-ray d i f f r a c t i o n p a t t e r n . T h e o r i g i n a l d e s i g n a t i o n of the B-zeolites w a s as g i s m o n d i n e - l i k e phases (4).

T h e structure m o d e l

of g i s m o n d i n e shows d o u b l e t e t r a h e d r a l c h a i n s c o m m o n to a l l of these structures. Na-Pl.

T h e structure p r o p o s e d for N a - P l b y B a r r e r (2)

space g r o u p Im3m w i t h a = 0

has the

10.0A. T h e f r a m e w o r k is f o r m e d b y j o i n i n g

d o u b l e 4-rings of ( A l , S i ) 0 t e t r a h e d r a ( c u b e s ) o n t h e i r corners so that 4

e v e r y c u b e is c o n n e c t e d to 8 other cubes. B a r r e r ( 2 ) also p r o p o s e d a d i s t o r t i o n of the c u b i c phase to a tetrago­ n a l structure (tetragonal N a - P 2 ) b y a displacive transformation. T h e r e l a t i o n s h i p of the c u b i c s t r u c t u r e to h a r m o t o m e / p h i l l i p s i t e , as suggested b y B a r r e r before the structures of the latter 2 w e r e k n o w n , is s h o w n i n F i g u r e 1.

T h e d i m e n s i o n s of t h e c e l l edge c o n n e c t i n g

m i d p o i n t s o n the b a n d c u n i t c e l l lengths [b

0

is 10.07A.

(12)1

=c

0

=

the

14.25A, Steinfink

T h i s gives a c e l l w i t h edges 10.07, 9.96A, w h i c h c a n

be v i s u a l i z e d as a d i s t o r t i o n f r o m a n i d e a l c u b i c structure. Table I.

T y p i c a l Chemical Analyses of Linde N a - B Zeolites" Composition,

Zeolite

Bi

B

B B B B B

2

4 6 6 7 8

Na 0 2

0.95 0.99 1.05 0.92 0.88 0.87 1.04 1.02

Moles/Al 0 2

Si0

2

3.35 4.07 3.80 3.50 3.38 2.80 3.74 5.01

3

H0 2

4.79 5.70 4.70 4.24 4.80 4.66 3.50 4.28

Range of Si0 'Al 0s Observed 2

2

2.16-3.35 3.65-4.07 2.98-5.07 3.38-3.52

.6

° Unpublished data of Ε. M . Flanigen and E . R. Kellberg. The composition listed for B is the starting composition of a cubic Β zeolite before dehydration. 6

8

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

240

MOLECULAR SIEVE ZEOLITES 1

τ—ι—ι—ι—ι—ι—ι—ι—ι—I ι—ι—ι—ι—ι—ι—ι—ι—ι—r ι—Γ —

ι

Ί

PHILLIPSITE SYLVAN IA SEA SYLVAN IA SE

I

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

PHILLIPSITE NIDDA, HESSE. GERMANY



ι

J

PHILLIPSITE

rniLLirgiiE

ι ROME, ITALY

HARMOTOME STRONTIAN. SCOTLAND

GISMONDINE MONTE. SOMMA.

GISMONDINE CAPO Dl BOV

8

16 24 °2B

32

40

_J

48

I

56

J

I

ι—ι—ι—i—

8 16

CuK.

24



32 C

40 u

K

48 56

«

Figure 2. X-ray diffraction patterns of Linde Β zeolites and phillipsite, harmotome, and gismondine

A l t h o u g h the cell dimensions for comparing the cubic N a - P l

with

the h a r m o t o m e / p h i l l i p s i t e f r a m e w o r k a r e i n g o o d agreement, w e n o w know

from

t h e structures

described

a b o v e that t h e a r r a n g e m e n t

of

t e t r a h e d r a i n t h e h a r m o t o m e / p h i l l i p s i t e structure is definitely different f r o m t h a t p r o p o s e d b y B a r r e r ( 2 ) f o r t h e N a - P l structure. O n t h e other h a n d , b y l o o k i n g a t models of these 2 structures a n d s u p e r i m p o s i n g 1 o n t h e other, s t r i k i n g s i m i l a r i t i e s are i m m e d i a t e l y a p p a r ­ ent w h i c h a r e o t h e r w i s e difficult to d i s c e r n . F i r s t , t h e i n t e r p l a n a r spacings essentially are i d e n t i c a l , alone e n o u g h to g i v e t h e s u s p i c i o n t h a t t h e x - r a y patterns w o u l d p r o b a b l y b e s i m i l a r .

Secondly, for a given volume

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

18.

Linde

BEARD

Type Β

241

Zeolites

there are the same n u m b e r of t e t r a h e d r a , l e a d i n g to s i m i l a r densities a n d pore volumes. T a y l o r a n d R o y (13)

discussed i o n e x c h a n g e d d e r i v a t i v e s of tetago-

n a l N a - P structures. T h e y define the " P zeolite g r o u p " as t h a t g r o u p of zeolites

c o m p o s e d of

members

having an aluminosilicate framework

l i n k e d i n a m a n n e r i d e n t i c a l to t h a t of the c u b i c N a - P l z e o l i t e , n a m e l y t e t r a h e d r a l c u b e u n i t s j o i n e d b y t h e i r corners. T h e y state that the N a - P l s t r u c t u r e of B a r r e r (2)

cannot b e c o n s i d e r e d as a m e m b e r of t h e h a r m o ­

t o m e / p h i l l i p s i t e g r o u p because the different l i n k i n g of t e t r a h e d r a i n the

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

2 structures w o u l d r e q u i r e a r e c o n s t r u c t i v e t y p e t r a n s f o r m a t i o n .

They

s t u d i e d the effect of i o n exchange o n the structure of the t e t r a g o n a l N a - P zeolite a n d n o t e d a m a x i m u m r a n g e of 7 %

i n the c - d i m e n s i o n .

O n the

basis of p o w d e r x - r a y d i f f r a c t i o n d a t a , t h e y d i s t i n g u i s h e d 3 m a i n structure d i v i s i o n s , d e p e n d i n g o n cations present: ( 1 ) P r i m i t i v e c e l l , a ^ c: tetrago­ nal L i , N a ; cubic M g , N i , C u ; (2)

B o d y - c e n t e r e d c e l l a > c: t e t r a g o n a l

K , R b , C s , A g ; ( 3 ) B o d y - c e n t e r e d c e l l , c ^ a: t e t r a g o n a l C a , Sr, B a , P b ; cubic C d . Barrer's (2)

N a - P l c u b i c structure c o u l d be d i s t o r t e d to a b o d y -

c e n t e r e d t e t r a g o n a l structure b y d i s p l a c i v e t r a n s f o r m a t i o n , b u t d i s t o r t i o n to a p r i m i t i v e t e t r a g o n a l lattice w i t h o u t a r e c o n s t r u c t i v e t r a n s f o r m a t i o n seems i m p o s s i b l e . T h e r e f o r e , p r i m i t i v e c e l l t e t r a g o n a l varieties of N a - P cannot b e c o n s i d e r e d as b e l o n g i n g to the same g r o u p as the b o d y - c e n t e r e d c u b i c a n d t e t r a g o n a l N a - P ' s for the same reason g i v e n b y T a y l o r a n d R o y (13)

for e x c l u d i n g h a r m o t o m e a n d p h i l l i p s i t e .

L i n d e T y p e Β Zeolites. T h e L i n d e Β zeolites are c o n s i d e r e d s t r u c ­ t u r a l l y the same as B a r r e r ' s N a - P phases. T a b l e I fists the t y p i c a l c h e m i ­ c a l compositions of the Β zeolites. F o r some Β zeolites, a r a n g e of S i 0 / 2

A1 0 2

3

is listed.

T h e m a x i m u m observed variation i n S i 0 / A l 0 2

2

3

i n the

Β series is f r o m 2.2 to 5.1. S y n t h e t i c phases a p p a r e n t l y r e l a t e d to the p h i l l i p s i t e g r o u p o c c u r i n the Κ a n d K - N a systems. L i n d e (7),

O n e s u c h phase, d e s i g n a t e d Zeolite W

appears to be analogous to B a r r e r ' s K - M (1).

r e p o r t e d a B a - M phase i n the b a r i u m system w h i c h is d e s c r i b e d h a r m o t o m e - l i k e (3).

by

B a r r e r also has as

R e l a t e d phases w h i c h o c c u r i n systems other t h a n

p u r e N a w i l l not b e discussed f u r t h e r here. X - r a y d i f f r a c t i o n patterns of L i n d e Β zeolites are s h o w n i n F i g u r e 2 a n d T a b l e I I . T h e s i m i l a r i t y of the m a i n d i f f r a c t i o n peaks is obvious. T h e s y n t h e t i c phases p r o d u c e d b y v a r i o u s w o r k e r s h a v e b e e n a r r a n g e d i n T a b l e I I I to s h o w t h e i r r e l a t i o n s h i p to e a c h other. Z e o l i t e Bi is c o r r e ­ l a t e d w i t h the c u b i c b o d y - c e n t e r e d phases of B a r r e r (2) T a y l o r a n d Roy's N a - P

c

(13).

( N a - P l ) and

The Linde B , B , B „ and B 2

3

r

s i m i l a r to the t e t r a g o n a l b o d y - c e n t e r e d phases of B a r r e r (2)

6

phases are

(Na-P2) and

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

242

MOLECULAR SIEVE ZEOLITES

Table II. B\ d, A

B I/h

— 7.08

86

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

d, A

I/h

7.14

83

2.88

15

— —

— —

— —

— —

2.67

69

2.36

13

— — — —

— — — —





1.77

10 17 13

1.97

19

1.72 1.67 0

79 66

5.07

45

12 66

4.11

— — —

7.14 7.08

4.21 4.11

83

100



83

4.10

— — —

100

38 36 14



3.18

///•

5.04 4.98 4.93



— — —

d, A

39 25 15



— —

I/h



5.04 5.01 4.93

— — — — —

d, A



— —

44

B\

7.08

— —

4.98

— — —

— — —

3.33 3.21 3.19 3.12 3.05 2.99 2.90 2.70 2.68 2.66

18 100 60 43 12 12 9 46 35 22

— — — —

— — — —

2.21 2.16 1.98

7 8 12





1.76 1.72 1.69

X - R a y Diffraction

Bs

2

8 9 8



3.88 3.41 3.33 3.20 3.16



3.02 2.95 2.83 2.72 2.68 2.64 2.54 2.40



2.45 2.20 2.17 2.10 1.97 1.82 1.76



1.69

1

— 13

4.93



— 20

4.11 4.06

83 15

— —

— —

13 11 89 17

3.34 3.21

17 100

30 15 14 36 14

3.12 3.05 3.00

55 13 9

2.71

— 29

10 10

— 16 6 6 7 7 12 10

— 12





















— — 1.73

— —

53

24 8 7 7

2.66 2.54 2.44 2.39

9

2.21

9 8

1.99 1.97

12 9

1.69

Unpublished data of Ε. M . Flanigen and E . R. Kellberg.

T a y l o r a n d R o y ' s N a - P (13), a n d p o s s i b l y represent v a r i o u s degrees of d i s t o r t i o n ( d i s p l a c i v e t r a n s f o r m a t i o n ) of the c u b i c b o d y - c e n t e r e d struc­ ture. B is q u i t e s i m i l a r to Bi except for d o u b l e t i n g of peaks n e a r 1 8 ° , 2 8 ° , a n d 3 4 ° 2 0 ( C u K « ) . B p r o b a b l y represents the least d i s t o r t i o n f r o m the c u b i c s t r u c t u r e (Bi) of a l l the other Β zeolites. Zeolites B a n d B t

6

6

2

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

5

18.

Linde

BEARD

Spacings of L i n d e N a - B Z e o l i t e s Β

0

Ββ

δ

d, A

I/h

d, A

96

7.14

7.14

— — — — —

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

243

Type Β Zeolites

— — — — —

5.07 5.01 4.93

39 40 14

Bi

I/h 91





5.75

38

5.13 5.04

13 42

5.04

— — —

— — —

4.11

100

4.11

87

— —

— —

3.33 3.21 3.18 3.12 3.04 3.00 2.90 2.71 2.68 2.67

17 88 86 44 13 8 11 25 58 20

— —

— — —

2.37



1.97

16

— —

1.97

14

3.23 3.19

— — —

2.90 2.71 2.69

— — —

18 100

— — —

16 35 61

— 13





7.08 7.03



4.90



68 68



40 29



4.42

10

4.11 4.04

100 22





3.33 3.20

23 100

3.11 3.04 2.98 2.89 2.70

50 19 12 14 53









— — —

2.65 2.53 2.44 2.39

28 12 9 9

Ζ

ζ





2.05 1.98

7 12

12

— 1.72



— — — —

— —

— —

I/h

— — — —

— —

— —

d, A

Bfi

1.78 1.72 1.68

12 14 14

d, A

I/h

— — —

— — —

— — —

— — —











— —

— — — —

— — — — —

— — — — — — —

— — — — — — —

3.86

67

3.00

88

ζ

1.87

9

1.76 1.72 1.69

9 13 10

— —



50

4.79

— — —



100

6.56

are c h a r a c t e r i z e d b y s p l i t t i n g of the lines i n Bi i n t o doublets.

— — — — — —

B is s i m i l a r 3

to B a n d B w i t h 2 a d d i t i o n a l reflections at 22.9° a n d 40° 20. Zeolites B 2

and B

5

7

resemble the t e t r a g o n a l p r i m i t i v e structure ( N a - P ) t

a n d R o y (13) Zeolite B

8

of

4

Taylor

a n d s h o w doublets i n the first m a i n p e a k of the p a t t e r n .

is a phase p r o d u c e d b y p a r t i a l d e h y d r a t i o n of the c u b i c

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Bi

244

MOLECULAR SIEVE ZEOLITES

1

zeolite. T h e o r t h o r h o m b i c N a - P phase r e p o r t e d b y B a r r e r ( 2 ) w a s n o t o b t a i n e d b y T a y l o r a n d R o y (13)

or b y L i n d e .

X - r a y d i f f r a c t i o n patterns of the m i n e r a l zeolites p h i l l i p s i t e , h a r m o ­ tome, a n d g i s m o n d i n e are s h o w n i n F i g u r e 2 a n d T a b l e I V . T h e S y l v a n i a Sea M o u n t p h i l l i p s i t e is a deep-sea s p e c i m e n o n d e c o m p o s e d basalt o b ­ t a i n e d f r o m the S c r i p p s I n s t i t u t e , L a J o l l a , C a l i f . T h e N i d d a , G e r m a n y , a n d R o m e , I t a l y , p h i l l i p s i t e s are f r o m igneous rocks.

T h e N i d d a x-ray

p a t t e r n checks i n a l l m a j o r peaks w i t h the A S T M c a r d (13-455) for a p h i l l i p s i t e f r o m the same l o c a l i t y , a n d is f r o m t h e H a r v a r d M u s e u m

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

c o l l e c t i o n ( N o . 102839).

T h e Rome, Italy, specimen came from Ward's,

Rochester, Ν. Y . T h e harmotome specimen, from Strontian, Scotland ( H a r v a r d N o . 8 6 5 4 5 ) , agrees w i t h the A S T M p a t t e r n for a s p e c i m e n f r o m S t r o n t i a n ( 1 3 - 4 9 4 ) , b u t does not c h e c k w i t h the p a t t e r n for one f r o m N o r t h - W e s t Ross-shire, S c o t l a n d ( 9 - 4 8 0 ) . O f the g i s m o n d i n e specimens M o n t e S o m m a ( W a r d ' s ) a n d C a p o d i B o v e ( H a r v a r d M u s e u m ), o n l y the latter c o u l d b e s a i d to agree w i t h the A S T M d a t a (13-495) of a g i s m o n d i n e s p e c i m e n f r o m F r i t z ' s Is., P a . F r o m T a b l e I V a n d F i g u r e 2, the s i m i l a r i t y i n x-ray patterns for p h i l l i p s i t e , h a r m o t o m e , a n d g i s m o n d i n e is a p p a r e n t . A l l 3 zeolites h a v e the f o l l o w i n g a p p r o x i m a t e i n t e r p l a n a r spacings i n c o m m o n :

8.00,

7.15,

6.40, 5.35, 5.04, 4.12, 3.25, 3.20, 2.69. T h e v a r i a t i o n s a m o n g the patterns of 2 or m o r e specimens i d e n t i f i e d as the same species are often as great as the v a r i a t i o n s b e t w e e n species. F r o m t h e d i s c u s s i o n of l a t t i c e p a r a m e ­ ter changes w i t h c a t i o n c o m p o s i t i o n a n d w a t e r content b y T a y l o r a n d R o y (13, 14),

changes i n c e l l s y m m e t r y a n d size w i t h a c c o m p a n y i n g d i f ­

f r a c t i o n p a t t e r n p e a k shifts a n d s p l i t t i n g are to b e expected i n n a t u r a l zeolite specimens f r o m different localities a n d exposed to different c a t i o n environments. A t least 6 of the d i f f r a c t i o n peaks l i s t e d a b o v e as b e i n g c o m m o n to the 3 m i n e r a l zeolites, n a m e l y the 7.15, 5.04, 4.12, 3.25, 3.20, a n d 2.69,

Table III. Relationship Between Linde B-Zeolites and Synthetic Phases of Barrer, and T a y o r and Roy Linde

Barrer

Bi Β , B g, B, B 2

5

Β, B 4

B

7

6



and Roy

(13)

N a - P l ( C u b i c , body-centered)

Na-P

Na-P2 (Tetragonal, b o d y centered)

N a - P (Tetragonal, bodycentered)



-

8

Taylor

(2)

Na-P3 ( O r t h o r h o m b i c )

c

( C u b i c , body-centered)

t

Na-Pt (Tetragonal, primitive)



In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

18.

Linde

BEARD

Type Β

245

Zeolites

are c o m m o n to the Β zeolites. F o r this reason, t h e y w e r e o r i g i n a l l y i d e n t i ­ fied as b e i n g p h i l l i p s i t e - , h a r m o t o m e - , or g i s m o n d i n e - l i k e phases. O n e source of the difficulty m a y arise f r o m the i n c o r r e c t i d e n t i f i c a ­ t i o n of m i n e r a l specimens w h o s e x - r a y patterns w e r e u s e d as standards for c o m p a r i s o n .

X - r a y p o w d e r patterns of m a t e r i a l s u s e d i n structure

d e t e r m i n a t i o n s w o u l d b e of great h e l p i n c l a r i f y i n g the p r o b l e m of i d e n t i ­ f y i n g these zeolites. A n a l t e r n a t i v e to the a c t u a l p o w d e r patterns is the c a l c u l a t i o n of p o w d e r patterns f r o m structure d a t a , as d e m o n s t r a t e d b y Smith

(9).

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

F r o m the f o r e g o i n g d i s c u s s i o n , i t is seen that the m i n e r a l zeolites a n d N a - P l possess s i m i l a r l a t t i c e constants, cZ-values, a n d are d e r i v e d f r o m different arrangements of a c o m m o n s t r u c t u r a l element, t h e d o u b l e t e t r a ­ h e d r a l c h a i n or " d o u b l e - c r a n k s h a f t . "

A d d e d to this is the p o s s i b i l i t y of

s t i l l f u r t h e r structures as yet u n k n o w n , b a s e d o n the same s t r u c t u r a l units.

T h i s w a s p o i n t e d out b y S m i t h a n d R i n a l d i (11)

i n describing

t h e series of structures d e r i v e d b y c h a n g i n g the t e t r a h e d r a i n a 4 - r i n g as either p o i n t i n g u p w a r d ( U ) or d o w n w a r d ( D ) .

T h e y said, "Because a l l

types of structures b a s e d o n the U U D D a n d r e l a t e d chains s h o u l d give s i m i l a r p o w d e r patterns, i t is possible t h a t some of the c o m p l e x i t y m a y arise because of the existence of several u n r e c o g n i z e d m e m b e r s of this structural family." Conclusion The Linde Type

Β zeolites h a v e b e e n

phases p r o d u c e d b y B a r r e r (2)

correlated w i t h

a n d T a y l o r a n d R o y (13)

synthetic

o n the basis of

x-ray p o w d e r d i f f r a c t i o n d a t a . T h e p o w d e r patterns of the Β zeolites also s h o w s i m i l a r i t y w i t h those of the m i n e r a l zeolites p h i l l i p s i t e , h a r m o t o m e , and gismondine. Since the structures of the Β zeolites h a v e not b e e n classification is difficult, b u t f r o m the x-ray p o w d e r

determined,

diffraction data it

seems t h a t a n assignment c a n b e m a d e to the p h i l l i p s i t e g r o u p as defined b y S m i t h (10),

i.e., b e i n g a g r o u p of structures f o r m e d f r o m p a r a l l e l f o u r -

a n d e i g h t - m e m b e r e d rings of ( S i , A l ) 0

4

tetrahedra.

A s s i g n m e n t to this g r o u p does little to define the a c t u a l structure, however,

for a l t h o u g h N a - P l

a n d harmotome/phillipsite have

similar

lattice constants, etc., t h e y h a v e q u i t e different structures. T h e Β series m a y represent d i s p l a c i v e transformations f r o m one or m o r e b a s i c structures. S t r u c t u r a l changes d u e to c a t i o n c o m p o s i t i o n a n d h y d r a t i o n state i n the N a - P zeolites h a v e b e e n discussed b y T a y l o r a n d R o y (13,

T h e Β zeolite series, h o w e v e r , a l l c o n t a i n s o d i u m cations

14).

as s y n t h e s i z e d , a n d the w a t e r content ( T a b l e I I ) is essentially constant, except for B

8

w h i c h is a d e h y d r a t e d f o r m p r o d u c e d f r o m Bi.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

Another

246

MOLECULAR SIEVE ZEOLITES Table IV. Phillipsite -

Phillipsite

0

d,

A

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

8.25

6

d e /

I/h

d,A

0

I/h

d, A

19



8.04

20

7.97

5

7.15 6.39

69 16

7.14 6.42

100 80

7.19 6.42

100 10

5.37 5.04



28 31



5.36 5.04 4.96

23 85 25

5.40 5.07 4.96

10 20 10

— 4.12

— 45

4.27 4.11

10 60

4.31 4.13

5 20

3.26 3.19

40 100

2.96

29

3.25 3.19 3.13 2.91

40 88 28 43

3.29 3.21 3.14 2.93

20 60 20 10

12 28

2.75 2.69

45 40

2.76 2.71 2.68

15 20 30

2.53 2.39 2.33

8 10 10

2.54 2.39 2.34

10 10 10

2.17

13

1.79

18

2.75 2.69

c

Phillipsite

0





a

X - R a y D i f f r a c t i o n Spacings







Phillipsite, Sylvania Sea Mount, near Bikini Atoll. Phillipsite, Nidda, near Giessen, Germany. Phillipsite, V i a Laurentia, Rome, Italy. Harmotome, Strontian, Scotland. Gismondine, Capo di Bove, Italy. Gismondine, Monte Somma, Italy.

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

1 of

18.

Linde

BEARD

Type Β

Zeolites

Phillipsite, Harmotome, and Gismondine Zeolites Harmotome

Gismondine

d

d, A

I/h

8.04

29



Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

7.08 6.33

— 53 70

— — 4.98 — — — 4.27

— — 20 — — — 10

4.10 4.06 4.02 3.88

13 14 13 8

— — — — 3.23

— — — — 15

3.20 3.12 3.06 2.91 2.71 2.69 2.66 2.62

10 100 15 7 16 46 17 7

— — 2.32 2.25 2.15 1.95

— — — — 1.77 — 1.70 — — —

Gismondine

6

— —8 10 6 10

— — — —7 — 14 — — —

f

d, A

I/h





7.25 7.14 6.33 5.72 5.34 5.04

100 87 23 13 9 15

4.65 4.25 4.10 4.04

11 19 23 13

— 4.90

— 19

— — 3.63

— —6

3.59 3.48 3.33 3.25 3.20 3.12

11 9 43 11 43 30

— — 2.75

— — 28

à, A

7.196 6.463



5.405 5.096 4.983

— — 100 15

— 10 17 13

— — 4.311

— — 12

4.133

35

— — — — — — — 3.278

— — — — — — — 30

3.209 3.143 2.940

97 20 12



2.763 2.706

— 22 35

2.71 2.65

26 89

2.5-1 2.37 2.33

—9

— — 2.578

— —7

19 11

2.392 2.344

7 7

— — — 1.82

— — — 34

1.80 1.79 1.787 1.780

6 15 17 17

— — 1.667

— — 19

1.406 1.393

13 17

— — — — — 1.791 — — 1.728 — — — —

— — — — — 10 — —7 — — — —

American Chemical Socfefe Library 1155 16th St.. N.W.

Washington, O.C. 20031 In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

248

M O L E C U L A R SIEVE ZEOLITES

1

p o s s i b i l i t y for v a r i a t i o n i n t h e Β series is t w i n n i n g . T w i n n i n g i n p h i l l i p s i t e is q u i t e c o m m o n , a n d i n d e e d , Steinfink ( 1 2 ) n o t e d that a t w i n e d p h i l l i p ­ site c r y s t a l gave a d i f f r a c t i o n p a t t e r n d i s p l a y i n g tetragonal

symmetry

w i t h the same u n i t c e l l dimensions as the u n t w i n n e d c r y s t a l . Determination

o f t h e s t r u c t u r a l relationships

between the L i n d e

T y p e Β zeolites a n d the r e l a t e d m i n e r a l zeolites b y c o m p a r i s o n o f x - r a y p o w d e r data w o u l d b e greatly aided i f p o w d e r data were available o n t h e same s p e c i m e n o n w h i c h structure d e t e r m i n a t i o n s w e r e m a d e . T h e c o m p l e x relationships a m o n g t h e f a m i l y o f zeolite

structures

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

discussed here a p t l y illustrate the difficulties i n i d e n t i f y i n g zeolite f r a m e ­ work

structures o n t h e basis of a general s i m i l a r i t y i n x-ray

powder

d i f f r a c t i o n patterns. Acknowledgment T h e a u t h o r is g r a t e f u l t o U n i o n C a r b i d e C o r p . f o r p e r m i s s i o n t o p u b l i s h this w o r k , a n d a c k n o w l e d g e s the c o n t r i b u t i o n s of R . M . M i l t o n , D . W . B r e c k , Ε. M . F l a n i g e n , a n d E . R . K e l l b e r g o f the L i n d e R e s e a r c h Laboratory of U n i o n Carbide Corp.

Literature Cited (1) Barrer, R. M., Baynham, J. W., J. Chem. Soc. 1956, 2882. (2) Barrer, R. M., Bultitude, F. W., Kerr, I. S., J. Chem. Soc. 1959, 1521-28. (3) Barrer, R. M., Marshall, D. J., J. Chem. Soc. 1964, 2296. (4) Breck, D. W., Eversole, W. G., Milton, R. M., J. Am. Chem. Soc. 1956, 78, 2338. (5) Fischer, K., Am. Mineralogist 1963, 48, 664-72. (6) Milton, R. M., U. S. Patent 3,008,803 (1961). (7) Milton, R. M., U. S. Patent 3,012,853 (1961). (8) Sadanaga, R., Marumo, F., Takeuchi, Y., Acta Cryst. 1961, 14, 1153-63. (9) Smith, D. K., Norelco Reptr. 1968, 15, 57-65. (10) Smith, J. V., Mineral. Soc. Am. Spec. Paper 1963, 1, 281-290. (11) Smith, J. V., Rinaldi, F., Mineral. Mag. 1962, 33 (258), 202-12. (12) Steinfink, H., Acta Cryst. 1962, 15, 644-51. (13) Taylor, A. M., Roy, R., Am. Mineralogist 1964,49, 656-82. (14) Taylor, A. M., Roy, R., J. Chem. Soc. 1965, 4028-43. RECEIVED February 13, 1970.

Discussion W . M . Meier ( Eidgenossische Technische Hochschule, Z u r i c h ) : The structure o f N a P l ( B ) has r e c e n t l y b e e n s o l v e d u s i n g x-ray intensities x

obtained from a m u l t i p l y - t w i n n e d crystal i n addition to p o w d e r data. R e ­ finement

p r o c e e d e d to a n i n t e n s i t y R v a l u e o f 0.077. T h e structure is

based on a gismondine-type

f r a m e w o r k a n d is thus n o n c u b i c .

The maxi-

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.

18. mum

BEARD

Linde

Type Β

249

Zeolites

possible s y m m e t r y of the f r a m e w o r k is lét/amd.

T h e f r a m e w o r k is

r e m a r k a b l y flexible, a n d d i s p l a c i v e changes are a c c o m p a n i e d b y m a r k e d changes of the lattice constants a n d s y m m e t r y . Since this t y p e of f r a m e w o r k c a n r e a d i l y u n d e r g o d i s p l a c i v e changes a n d t w i n n i n g , i t is n o l o n g e r s u r p r i s i n g t h a t several a p p a r e n t l y different F-phases h a v e b e e n r e c o r d e d . F u l l details w i l l b e g i v e n i n a f o r t h c o m i n g p a p e r ( C . B a e r l o c h e r a n d W . M . M e i e r , to b e p u b l i s h e d i n Z .

Krist.).

G . H . K i i h l ( M o b i l Research & Development Corp., Paulsboro, N . J . 08066 ) : Y o u h a v e s h o w n the x - r a y diffraction patterns of three different

Downloaded by STANFORD UNIV GREEN LIBR on July 3, 2012 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1971-0101.ch018

" p h i l l i p s i t e s " f r o m different locations.

T h e r e are n u m e r o u s references i n

the l i t e r a t u r e to s o - c a l l e d p h i l l i p s i t e s . T h e x - r a y d i f f r a c t i o n patterns are a l l different. I t h i n k it is t i m e to agree o n w h a t p h i l l i p s i t e is. I suggest that the s t r u c t u r e d e t e r m i n e d b y Steinfink is that of a r e a l p h i l l i p s i t e . A l l the other " p h i l l i p s i t e s " r e p o r t e d are either m i x t u r e s or h a v e

different

structures a n d s h o u l d n o t be c a l l e d p h i l l i p s i t e . W.

C . B e a r d : I agree that w e s h o u l d a c c e p t Steinfink s s t r u c t u r e

d e t e r m i n a t i o n as that of a r e a l p h i l l i p s i t e a n d that the p r a c t i c e b e

ex-

t e n d e d to cover the other zeolites for w h i c h structures h a v e b e e n determ i n e d . F o r p r a c t i c a l i d e n t i f i c a t i o n of p o w d e r x - r a y d i f f r a c t i o n patterns, I w o u l d suggest u s i n g c a l c u l a t e d p o w d e r d i f f r a c t i o n patterns f r o m the structure d a t a as c a r r i e d out b y D . K . S m i t h ( R e f . 9).

I p l a n to do this

for the three m i n e r a l zeolites discussed i n this p a p e r .

In Molecular Sieve Zeolites-I; Flanigen, E., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1974.