Osmosis through α Vapor Gap Supported by Capillarity
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019
GERALD L. HASSLER and J . W. McCUTCHAN Department of Engineering, University of California, Los Angeles, Calif.
The semipermeable membrane proposed for the demineralization of sea water is based on H. L. Cal endar's theory that osmosis takes place through the membrane as vapor, condensing at the opposite membrane surface. The actual membrane being used consists of two sheets of untreated cellophane separated by a water-repellent powder, such as a silicone-coated pumice powder. The vapor gap is maintained by an air pressure in excess of the pres sure on the sea water and the cellophane sheets support the capillary surfaces, which will withstand pressures up to 1500 p.s.i. A number of successful experiments are reported with over 95% desalinization. The present effort is directed toward obtain ing reproducible experimental results and better methods of fabricating the vapor gap.
T h e t e r m " o s m o s i s " i s u s e d t o describe s p o n t a n e o u s flow of w a t e r i n t o a s o l u t i o n , o r f r o m a more dilute t o a more concentrated solution, separated f r o m each other b y a s u i t a b l e m e m b r a n e . T o o b t a i n f r e s h w a t e r f r o m s e a w a t e r , t h e flow m u s t b e r e v e r s e d , f r o m t h e s o l u t i o n i n t o a f r e s h w a t e r s t r e a m . H e n c e t h e t e r m u s e d t o describe t h i s process is " r e v e r s e o s m o s i s . " C e r t a i n e x p e r i m e n t s (16) a s s o c i a t e d w i t h t h e t h e o r e t i c a l ideas o f C a l l e n d a r (2) s h o w t h a t , i n some i n s t a n c e s a t least, osmosis t a k e s p l a c e t h r o u g h e v a p o r a t i o n of t h e w a t e r a t one m e m b r a n e s u r f a c e , passage t h r o u g h t h e m e m b r a n e as v a p o r , a n d c o n d e n s a t i o n a g a i n a t t h e o p p o s i t e m e m b r a n e s u r f a c e . T h e e x p e r i m e n t s r e p o r t e d here h a v e b e e n b a s e d e n t i r e l y o n t h i s t y p e o f osmosis. I t seems p r o b a b l e t h a t i n o t h e r i n s t a n c e s , w h e n c e r t a i n t y p e s o f m e m b r a n e s are u s e d , osmosis t a k e s p l a c e w i t h o u t a change of p h a s e . F o r e x a m p l e , t h e f r e s h w a t e r ions m a y pass t h r o u g h c h a n n e l s i n t h e m e m b r a n e s too s m a l l t o p e r m i t passage of t h e solute i o n s , o r a g a i n , t h e w a t e r m a y d i s s o l v e i n t h e m e m b r a n e ( a n d p o s s i b l y p a r t o f t h e m e m b r a n e also dissolves i n w a t e r ) , w h i l e t h e s o l u t e does n o t so d i s s o l v e a n d does n o t pass. T h i s d i s t i n c t i o n i s d e v e l o p e d b y M c B a i n (10) a n d G l a s s t o n e (4). T h e o s m o t i c p r e s s u r e o f a s o l u t i o n i s defined b y G l a s s t o n e (4) as t h e excess p r e s s u r e w h i c h m u s t b e a p p l i e d t o a s o l u t i o n t o p r e v e n t t h e passage i n t o i t o f s o l v e n t w h e n t h e y are s e p a r a t e d b y a p e r f e c t l y s e m i p e r m e a b l e m e m b r a n e . A c t u a l l y n o m e m b r a n e i s 192
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
193
HASSLER AND McCUTCHAN—OSMOSIS THROUGH VAPOR GAP
p e r f e c t i n t h i s respect, b u t c o p p e r f e r r o c y a n i d e , C u F e ( C N ) , h a s b e e n f o u n d t o b e most selective. D a t a collected w i t h membranes of this t y p e p l a y e d a n i m p o r t a n t p a r t i n t h e f o r m u l a t i o n o f p r e s e n t - d a y s o l u t i o n t h e o r y — s o m u c h so t h a t t h e a u t h o r s h a v e u s e d t h i s t h e o r y w i t h o u t h e s i t a t i o n t o c o m p u t e o s m o t i c pressures of s o l u t i o n s w h o s e o s m o t i c pressures h a v e n e v e r b e e n p r e c i s e l y m e a s u r e d . S u c h a s o l u t i o n i s sea w a t e r . T h e copper ferrocyanide m e m b r a n e is " l e a k y " t o solutions of strong electrolytes. Some d a t a h a v e b e e n o b t a i n e d o n w e a k s o l u t i o n s of s t r o n g e l e c t r o l y t e s b y t h e T o w n e n d m e t h o d (16), b u t n o one has m a d e precise m e a s u r e m e n t s o n t h e o s m o t i c p r e s s u r e o f sea w a t e r .
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019
2
6
R e c e n t w o r k b y R e i d (18), B r e t o n (1), a n d L o e b (9) shows p r o m i s e t h a t c e l l u lose acetate m a y b e u s e d f o r s u c h o s m o t i c m e a s u r e m e n t s . H o w e v e r , t h e i r o b j e c t i v e w a s t o s t u d y t h e d e s a l i n i z a t i o n process a n d n o t t h e e q u i l i b r i u m m e a s u r e m e n t o f osmotic pressure. T h e o s m o t i c p r e s s u r e ( O P ) of s o l u t i o n s expressed i n a t m o s p h e r e s i s u s u a l l y c a l c u l a t e d f r o m t h e f r e e z i n g - p o i n t d e p r e s s i o n , AT, i n degrees C e n t i g r a d e , i n a c c o r d a n c e with the relation OP
= 12.06ΔΓ -
0.021(Ar)
2
w h e r e AT i s o b t a i n e d f r o m t h e I n t e r n a t i o n a l C r i t i c a l T a b l e s (8). B y t a k i n g a v e r a g e c o n c e n t r a t i o n s o f t h e v a r i o u s salts i n sea w a t e r , t h e o s m o t i c p r e s s u r e is c a l c u l a t e d t o be a p p r o x i m a t e l y 2 5 a t m . ( 3 7 0 p . s . i . ) .
Proposed Osmotic Membrane for Sea Water T h e s e m i p e r m e a b l e m e m b r a n e p r o p o s e d a t U C L A i n 1950 (7) i s b a s e d o n C a l e n d a r ' s t h e o r y t h a t osmosis t a k e s place t h r o u g h e v a p o r a t i o n o f t h e w a t e r a t one m e m b r a n e s u r f a c e , passage t h r o u g h t h e m e m b r a n e as v a p o r , a n d c o n d e n s a t i o n a t t h e o p p o site m e m b r a n e s u r f a c e : T h e scheme i s F r e s h water channel •— — * Diffusion gap Salt water channel
„ -u ι C a p i l l a r y membrane C a p i l l a r y membrane
Pi
:
T )
P P
2 3
ft > Λ » Λ P m u s t b e > P , i n o r d e r t h a t w a t e r c o n t a i n i n g s a l t w i l l n o t flow t h r o u g h t h e m e m b r a n e b u t , r a t h e r , p u r e w a t e r w i l l e v a p o r a t e f r o m t h e t o p o f t h e c a p i l l a r y surfaces. I f P — P = o s m o t i c pressure o f t h e s a l t s o l u t i o n , n o flow b y d i f f u s i o n w i l l o c c u r across t h e g a p . F o r p r e s s u r e differences less t h a n t h i s , Δ Ρ < ( P — Pi), n o r m a l o s m o t i c flow w o u l d o c c u r f r o m t h e f r e s h w a t e r s t r e a m i n t o t h e s a l t w a t e r . T h u s , i f w e are t o reverse t h i s process, Δ Ρ m u s t be g r e a t e r t h a n ( P — P ), i n o r d e r t h a t w a t e r w i l l d i s t i l l f r o m t h e s a l t w a t e r side t o t h e f r e s h w a t e r side. B e f o r e e q u i p m e n t c a n b e designed, a d e c i s i o n m u s t b e m a d e c o n c e r n i n g pressures l*i J Τ*2> d P . T h r e e pressure a r r a n g e m e n t s h a v e b e e n c o n s i d e r e d b a s e d o n t h e a s s u m p t i o n t h a t t h e o s m o t i c pressure of sea w a t e r is 2 5 a t m . ( T a b l e I ) . 2
3
1
3
3
3
a
R
x
3
Table I. Condition F r e s h water Gap Sea water
Pressure Data A
-25 0.01 + 0.01
Pressure, Atmospheres Β -24 1 + 1
C 1 25 + 25
T h u s a n y pressure d i f f e r e n t i a l i n excess of t h e 2 5 - a t m . o s m o t i c p r e s s u r e s h o u l d p r o d u c e some y i e l d o f f r e s h w a t e r . T h e q u e s t i o n t h e n b e c o m e s one o f r a t e o f p r o d u c t i o n . A n a n a l y s i s m a d e as follows shows t h a t t h e l i m i t i n g f a c t o r , so f a r as r a t e i s
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
194
ADVANCES IN CHEMISTRY SERIES
c o n c e r n e d i n a w e l l designed s y s t e m , w i l l b e t h e d i f f u s i o n o f t h e w a t e r v a p o r across t h e g a p . W a l k e r et al. (17) p r e s e n t S t e f a n ' s e q u a t i o n f o r t h e d i f f u s i o n o f v a p o r t h r o u g h a gas f i l m . W h e n t h e r e i s n o d i f f u s i o n o f a i r , t h e e q u a t i o n b e c o m e s : ^ 4
dA
-D dP P dZ m
A
B
T h i s e q u a t i o n shows u s t h a t t h e p r a c t i c a l p r o b l e m i s t o d e s i g n a n a r r o w g a p , t h u s m a k i n g Ζ s m a l l , o r t o decrease t h e a i r p r e s s u r e i n t h e g a p , P ( T o w n e n d ' s a p p r o a c h ) , w h i c h necessitates a p a r t i a l v a c u u m i n t h e g a p a n d p u l l i n g t e n s i o n o n t h e f r e s h w a t e r column i n the equipment.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019
B
T h e o r e t i c a l l y t h i s i s possible, a n d — 1 5 0 - a t m . t e n s i o n has been d e m o n s t r a t e d e x p e r i m e n t a l l y o n w a t e r i n B e r t h e l o t (3) t u b e s . H o w e v e r , n e g a t i v e pressures i n T o w n end's e x p e r i m e n t s w i t h d i l u t e s o l u t i o n were less t h a n 1 a t m . a n d i t i s felt t h a t m o r e b a s i c r e s e a r c h o n l i q u i d tensions i s necessary b e f o r e schemes A a n d Β of T a b l e I c a n be c o n s i d e r e d f o r s o l u t i o n s as c o n c e n t r a t e d as s e a w a t e r . T o w n e n d m e a s u r e d o n l y e q u i l i b r i u m a n d h a d n o need f o r r a p i d v a p o r t r a n s f e r . T h i s leaves a r r a n g e m e n t C , T a b l e I , i n w h i c h t h e n a r r o w a i r g a p f u n c t i o n s as a s e m i p e r m e a b l e m e m b r a n e , as t h e m o s t p r o m i s i n g . T h e choice o f m a t e r i a l w i t h c a p i l l a r i e s s m a l l e n o u g h t o s u p p o r t t h e p r e s s u r e necessary f o r reverse osmosis o f sea water is a research project i n itself. T h e d e s i r a b l e p r o p e r t i e s f o r t h e a u t h o r s ' e q u i p m e n t are a i r e n t r y pressures g r e a t e r t h a n 7 5 0 p.s.i., s t a b i l i t y ( m a n y p l a s t i c f i l m s d e t e r i o r a t e w i t h t i m e ) , l o w a i r p e r m e a b i l i t y o f t h e w e t t e d f i l m , a v a i l a b i l i t y , a n d l o w cost. C e l l o p h a n e seems t o c o m e closest t o s a t i s f y i n g these r e q u i r e m e n t s . T h e d e c i s i o n t o u s e c e l l o p h a n e w a s b a s e d o n t h e w o r k o f R i c h a r d s (15). whose classic studies o n h i g h v a l u e s o f v a p o r p r e s s u r e a n d l o w s a t u r a t i o n s i n soils l e d h i m t o test m a n y p l a s t i c sheets before d e c i d i n g t o u s e V i s k i n g c a s i n g i n h i s h i g h p r e s s u r e equipment.
Prediction Equation T h e process o f p r e s s u r e d i s t i l l a t i o n t h r o u g h a h o m o g e n e o u s m e m b r a n e i s b a s e d first o n t h e c o m m o n f a c t t h a t t h e v a p o r p r e s s u r e of a n y l i q u i d c a n b e i n c r e a s e d b y c o m p r e s s i n g i t o r decreased b y p l a c i n g i t u n d e r s u c t i o n , a n d second o n t h e e q u a l l y c o m m o n f a c t t h a t o n l y p u r e w a t e r v a p o r escapes f r o m w a t e r i n t o v a p o r o r a i r , l e a v i n g n o n v o l a t i l e salts b e h i n d t h e phase b o u n d a r y . I n o p e r a t i n g t h e processes o f v a p o r i z a t i o n — h e a t t r a n s f e r a n d d i f f u s i o n across a n e x t r e m e l y t h i n g a p — n o n e w p h e n o m e n a o r n e w p r o p e r t i e s o f m a t e r i a l s are r e q u i r e d . H o w e v e r , t h e n o v e l c o m b i n a t i o n o f c a p i l l a r y surfaces, p r e s s u r e , a n d e x t r e m e l y s h o r t p a t h s f o r h e a t a n d d i f f u s i o n offers a n o p p o r t u n i t y f o r i m p r o v e m e n t s i n film p r o p e r t i e s a n d m e t h o d s o f c o n s t r u c t i o n not k n o w n before. T h e f o l l o w i n g c a l c u l a t i o n as m a d e f o r t h e S a l i n e W a t e r P r o j e c t (6) shows t h e r e l a t i o n b e t w e e n p r e s s u r e a p p l i e d a n d p r o d u c t i o n r a t e . T h e d o m i n a n t f a c t o r s a r e : (1) t h e s a l t s o l u t i o n w h o s e o s m o t i c p r e s s u r e m u s t b e o v e r c o m e , (2) t h e p r e s s u r e , as a n e n e r g y source, (3) t h e d i f f u s i o n of heat a n d (4) v a p o r as resistance f a c t o r s , a n d (5) v i s c o u s losses w i t h i n t h e c e l l o p h a n e c a p i l l a r i e s . T h e v a p o r d e n s i t y , l i k e t h e v a p o r p r e s s u r e , c a n b e u s e d as a t h e r m o d y n a m i c p o t e n t i a l whose t o t a l change a r o u n d a closed p a t h i s zero. A c c o r d i n g t o t h i s a r g u m e n t , t h e effect of t h e a b o v e five f a c t o r s o n v a p o r d e n s i t y c a n b e m a t h e m a t i c a l l y expressed a n d s u m m e d t o zero. B e g i n n i n g a t t h e p r o d u c t w a t e r o u t l e t , m o v e t o s a l t w a t e r b y a d d i n g M, c o m p r e s s t h e s a l t w a t e r t o p r e s s u r e p , a n d s u b j e c t i t t o t h e t h e r m a l loss o f l a t e n t h e a t t r a n s f e r , t h e d i f f u s i o n loss o f m a s s t r a n s f e r , a n d t h e v i s c o u s loss o f p r e s s u r e i n c e l l o p h a n e a n d m a n i f o l d passages. T h i s r e t u r n s t h e p a t h t o f r e s h w a t e r a n d a closed circuit.
In SALINE WATER CONVERSION; Advances in Chemistry; American Chemical Society: Washington, DC, 1960.
HASSLER AND McCUTCHAN—OSMOSIS THROUGH VAPOR GAP
195
Salt. T h e d e p a r t u r e f r o m s t a n d a r d v a p o r d e n s i t y , Δ ρ , w i l l b e g i v e n b y — A — X 1 0 M g r a m p e r cc. Pressure. T h e effect o f p r e s s u r e i s ( b y a s t r a i g h t - l i n e a p p r o x i m a t i o n o f t h e K e l v i n equation) P
ν
0.61
v
_ e
- f Δρί, = 1.31 X 10 " ρ grams per cc.
Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on September 5, 2015 | http://pubs.acs.org Publication Date: January 1, 1960 | doi: 10.1021/ba-1960-0027.ch019
8
D i f f u s i o n of H e a t . I n d y n a m i c e q u i l i b r i u m , a transfer of v a p o r f r o m l i q u i d t h r o u g h a v a p o r phase t o a second l i q u i d ( t h e t w o l i q u i d s b e i n g t h e r m a l l y c o n n e c t e d o n l y across t h e t h i n g a p ) w i l l r e q u i r e reverse t r a n s f e r o f t h e h e a t o f v a p o r i z a t i o n . T h i s w i l l a c c o m p a n y a t e m p e r a t u r e difference d e t e r m i n e d b y t h e r a t i o o f h e a t flow t o t h e t h e r m a l conductance of t h e t w o heat paths. These t w o a r e t h e diffusion v a p o r g a p a n d t h e series o f s a l t w a t e r a n d p l a s t i c films. F o r t h e d i f f u s i o n g a p t h e c.g.s. a i r v a l u e 5.7 X I O i s c h o s e n f o r t h e t h e r m a l c o n d u c t i v i t y ( n e g l e c t i n g t h e s e p a r a t i n g p o w d e r ) , w h i l e f o r t h e series p o l y e t h y l e n e ( 5 0 Χ 1 0 c m . t h i c k ) , w e t c e l l o p h a n e ( 5 0 X 1 0 c m . t h i c k ) , a n d water (200 Χ 1 0 c m . t h i c k ) t h e respective t h e r m a l conductivities a r e 3.5 X I O " , 4 X I O " , a n d 14 X 1 0 " . - 5
- 4
- 4
- 4
4
4
Δ0
4
= \Z/gap
ΑΘ =
V / disk
585w 5.7 X 10 ~* 50 X 10 ~ 3.5 X 1 0 ~ 585w 0.57 + 0.0244
ΑΘ
, 50 X 10 " 200 X 10 ~ 4 X 1 0 " - " 14 X 1 0 ~
4
4
4
f
4
585w 5.7 X 1 0 - *
+
0
Q
2
4
1
4
4
4
S u c h a t e m p e r a t u r e difference w i l l cause a f u r t h e r d e p a r t u r e f r o m s t a n d a r d v a p o r density given b y -A
P
= - 1 . 0 2 X 10-e ΑΘ = - ,
v
5
g r a m per cc.
t°^-}°~
4W
7
7
X
1
+ 0.0244
0
ζ
Diffusion of V a p o r . across t h e g a p i s
T h e difference i n v a p o r d e n s i t y needed t o cause diffusion w — Ap
Χ
=
v
ζ
w h e r e t h e d i f f u s i o n coefficient, D, f o r w a t e r v a p o r t h r o u g h a i r is a f u n c t i o n o f p r e s s u r e . η = °· D
A sq. c m . per second
2 0 8
[See t h e G i l l i l a n d e q u a t i o n (12).] V i s c o u s P r e s s u r e L o s s . T h e v i s c o u s p r e s s u r e loss as d e s c r i b e d b y t h e m e a s u r e d p e r m e a b i l i t y o f c e l l o p h a n e (IS) i s AP
=
W lo.o X 1U
(one sheet of cellophane)
β
T h i s p r e s s u r e d r o p w i l l b e reflected i n t h e d e n s i t y o f v a p o r i n e q u i l i b r i u m w i t h w a t e r . S u b s t i t u t i n g t h e a b o v e a n d i n c l u d i n g t w o sheets o f c e l l o p h a n e : 1
- A
P
v
Q1
* 1.31 X 10-» ρ -
ν
1Ω~8
W
6 9 χ 10-*
=
L
9
X
1 0
~
3
W
N o w s e t t i n g t h e s u m of these five t e r m s e q u a l t o z e r o : ΔρββΗ + ΔρρΓβββιΐΓβ + Apthermal loss + Ap^Uius^jn + Δρ ί