(528) Volke, J., Volkova, V., Collection Czech. Chem. Commun. 34,2037 (1969). (529) Vole, H., Lotsch, W., Tetrahedron Letters 1969, 2275. (530) Wasa, T., Musha, S., Bull. Chem. SOC.Japan 41, 1578 (1968). (531) Weinberg, N. L., Weinberg, H. R., Chem. Rev. 68. 449 119681. (533) Yasukouchi, K., Oni Kagaku Zasshi 89, 6; (534) Yasukouchi, K., Yamaguchi, H., hleda. ICI..Ibid.. 89. 663 (19681. (535) Ybusefzadeh, P., h‘Iann, C. K., J . Org.Chem. 33, 2716 (1968). (536) Zacharova-Kalavska, D., Stankovianskv, S., Zelenskv, ” . I.,, Chem. Zvesti 23, 101 (1969). (537) Zaitsev, P. M., Zaitseva, 2. V., hlostoslavskii, hl. A., Ukr. Khim. Zh. 34, 1003 (1968).
(538) Zakharkin, L. I., Kalinin, V. N.,
Snyakin, A. P., Izv. Akad. Nauk. SSSR, Ser. Khim. 1968, 197. (539) Zakharov, V. A., Songina, 0. A,, Ospanov, K. K., Izv. Akad. Nauk.Kaz. SSR, Ser. Khim. 18, 21, 28 (J968). (540) Zelenskv. I.. Stankovianskv. S.. Zacharova-galov; D., Kosturiak; A.; Chem. Zvesti 23,94 (1969). (541) Zhantalai, B. P., Turyan, Y. I., Zh. Anal. Khim. 23, 282 (1968). (542) Zhdanov,, S. I., U S P Khim. . 38, 1390 ~
I
.
(1969). (543) Zhdanov, S. I., Zh. Obshch. Khim. 39, 1685 (1969). (544) Zhdanov, S. I., Tsveniashvili, V. S., Elektrokhimiya 4, 1383 (1968). (545) Zhdanov S. I., Tsveniashvili, V. S., Todres. Z. $., J. Polaroo. Soc. 13, 100 (1967).’ (546) Ziemba, S., Wiad. Chem. 21, 697 (1967).
(547) Zuman, P., Chem. Eng.News 46, No, 13, 94 (1968).
(548) Zuman, P., Collection Czech. Chem. Commun. 33, 2548 (1968). (549) Zuman, P., J . Polaroo. SOC.13. 53 (1967). (550) Zuman, P., Barnes, D., RyvolovaKejharova, A., Discuss. Faraday SOC. 45, 202 (1968). (551) Zuman, P., Exner, O., Rekker, R. F., Nauta, W. T., Collection Czech. Chem. Commun. 33,3213 (1968). (552) Zuman, P., Manousek, O., Ibid., 34, 1580 (1969). (553) Zuman, P., Manousek, O., Vig, S. K., J. ElectroanaL Chem. 19, 147 (1968). (554) Zuman, P., Ryvolova-Kejharova, A., -4nal. Letters 1 , 429 (1968). (555) Zuman, P., Turcsanyi, B., Collection Czech. Chem. Commun. 33, 3090 (1968). (556) Zuman, P., Turcsanyi, B., Mills, A. K., Ibid., 33, 3205 (1968).
D. F. Bolfz, Wayne State University, Detroit, Mich. M. G. Mellon, Purdue Universify, lafayeffe, lnd.
I
SEPTEMBER 1944, the Division of Analytical and RiIicro Chemistry and the Division of Physical and Inorganic Chemistry held a joint symposium on “Spectrochemical Methods of Analysis” during the New York Meeting of the American Chemical Society. The symposium paper on “Light Absorption Spectrometry” presented by Mellon was essentially a critical survey of the strides made in instrumentation and analytical application of this spectrochemical method in the preceding fifteen years, 1930-44, and was published by AKALYTICAL CHEMISTRY in 1945 (377). I n the inaugural issue of Fundamental Reviews in Analytical Chemistry, each author was charged with the responsibility of covering a five-year period to bring his assigned subject u p to date and to lay a firm foundation for the future. Hence, the inaugural review on “Light Absorption Spectrometry” appeared in January 1949, and documented the developments for this analytical discipline for the 1944 to 1949 period. Subsequently, 11 reviews in this particular field of analytical spectrometry have been published (69, 378, 379). This review chronicles the progress on the analytical absorption spectrometry of the visible region of the spectrum for the period from November 1967 through Kovember 1969, as recorded by Chemical Abstracts. Thus, the publication of this review marks the continuous coverage of the literature on this topic for a 40-year period. The subject matter has been documented under the topics of Chemistry, Physics, and Applications, as in previous reviews. N
152 R
The fact that light absorption spectrometry continues to be one of the most extensively used methods in modern analytical chemistry is substantiated by the voluminous literature cited in this review. It has been necessary to evaluate very critically all papers and abstracts and to cite only those references deemed to be most noteworthy and reasonably available to the readers. Hundreds of papers of limited analytical significance or deemed repetitious have not been included. Books related, a t least partially, to light absorption spectrometry are as follows: “The Practice of Absorption Spectrophotometry” (561), “Photometric Methods of Analysis” (98), “Reflectance Spectroscopy” (319), “Photometric Metal and Water Analysis with Filter Photometers and Spectrophotometers” (3rd Edition) (656), “Manual on Recommended Practices in Spectrophotometry” (3rd Edition) (22), “Spectroscopy and Structure of Metal Chelate Compounds” (398),“Spectroscopy, Vol. 2: Ultra-violet, Visible, Infra-red and Raman Spectroscopy” (621), “Colorimetry” (407), “Ultra-violet and Visible Spectroscopy Chemical Applications” (480), “Modern Aspects of Reflectance Spectroscopy” (624), and “Chemical Applications of Spectroscopy,” Vol. IX, 2nd Rev. Ed., Part One (625). CHEMISTRY
There have been many new chrornogenic reagents and modified color reactions proposed during the past biennium. R‘Iuch emphasis has been given
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5 , APRIL 1970
to the use of organic dyes, and interest flourishes on the formation of ternary complexes. The ultimate objective of obtaining a stable light absorbing system exhibiting a high degree of selectivity and sensitivity permeates most fundamental spectrophotometric studies. Methods for conversion of desired constitutents to a suitable light absorptive species have been reviewed (29, 450). Metals. Despite t h e extensive application of both atomic absorption spectrometry a n d direct potentiome t r y utilizing specific ion electrodes in t h e determination of metals, spectrophotometry remains t h e popular method of choice, especially when nonrepetitive t y p e of samples are being analyzed. T h e azo derivatives of chromotropic acid have been investigated rather estensively with numerous derivatives being recommended for the determination of specific metals. Relevent papers include the discussion of: color reactions of 16 elements and 12 bisazo derivatives, the corresponding reaction mechanisms and spectra of the complexes formed (4.46); numerous bisazo derivatives, many containing phenyl or 8-qumolyl substituents, as new reagents for copper (420); azo derivatives as reagents for alkaline earth elements and the formation of three different configurations of complexes, all exhibiting high molar absorptivities (509); study of the interaction of scandium, yttrium, and lanthanum ions with azo derivatives which indicted that stilbazochrome was the best reagent for scandiurn(II1) and arsenazo I, arsenazo 111, and 2,7-bis (3-sulfobenzeneaso)-l,
surement has been attributed to the formation of a kinetically inert ternary complex of Cr(III), Cu(IIj, and citrate. metal ions, only copper(II), cobalt(II), T h e addition of iron(I1) to displace the nickel(II), and lead(I1) gave color decopper(I1) eliminates the adverse effect velopment (698). The evaluation of of chromium(II1) (249). Pyrocatechol thirteen symmetrically substituted deand tribenzylamine and niobium form a rivatives of 2,2’-biquinoline revealed 2 : 1:1 ternary complex of high absorpthat 4,4’-dihydroxy-2,2’-biquinoline is a tivity (635). Molybdenum(VI), hyhighly specific, sensitive chromogenic redroxylamine, and 4(2-pyridylazo) resagent for copper(1) in basic solution orcinol from a 1 : l : 1 complex (333). (617). An investigation of 2,3,7,8,-tetNiobium(V), l-pyrrolidinecarbodithiorahydroxyphenazine as a chromogenic ate and pyrocatechol form a 1:2 : 1 comagent showed that germanium(IV), plex which is extractable with chlorozirconium(1V) gallium(II1) and antiform-acetophenone (189). Nickel(IIj, mony(II1) gave colored complexes havdithizone, and phenanthroline form a ing high molar absorptivities (445). A new dye, 2-(3,4-dihydroxyphenylazo)-4- mixed ligand complex of high absorptivity (E = 4.91 X lo4) (368). A quaterphenyl-5-benzoylthiazole, is reported to nary complex consisting of scandium, be a selective and sensitive colorimetric morin, antipyrene, and perchlorate in reagent for Al, Ga, Ge, and W (318). 1: 1: 3 : 1 combination has been reported Ascorbic acid forms numerous metal (399). Copper(I), 6,7-dimethyl-2,3-dicomplexes whose absorption spectra 2-pyridylquinozaline, and methyl orange permit spectrophotometric determinaform a 1 : 2 : 1 ternary complex (170). tions of Ti, U, Os, V, Cr, T a , Nb, A bimetallic ternary complex of nickel Mo, Zr, W, Sn, P b , Tb, Sc, Hg, Sb, and (11), lanthanum(II1) , and alizarin fluolanthanides (563). A new reagent for rine blue (1,2-dihydroxyanthraquinonthe determination of lithium is 4- [ (2carboxy-4-nitrophenyl)azo]-3-methyl-l- 3-ylmethylamine-Ar1N-diacetic acid) has been used in the determination of nickel phenyl-2-pyrazolin-5-one (131j Twenty-one dimercaptothiopyrone deriva(5411. A n investigation of the nature of the tives which react with tin(I1) to give effect of bismuth on the formation of a colored complexes having molar ratios heteropoly blue by reduction of molybof 1: 6 have been studied spectrophotodophosphoric acid has shown t h a t a metrically. One of the best reagents is unique mixed bismuth-phosphrous dibenzylaminopheny1)antipyrinylcarbinol 2,6-dimercapto-3 - benzyl- 1,4-thiopymeric heteropoly molybdate is formed and 4-dimethylamiriophenyl-4‘-methyl- rene (606). An investigation of 14 and the Mo-P-Bi ratio in the complex benzylaminophenylantipyrinylcarbi n o 1, cyanine dyes as reagents for the deteri s 1 8 : l : l (191). react with the mercury(I1) chloride and mination of rhenium(VI1) revealed I n a study of the mechanism of niobromide anions, respectively, to give t h a t Orange R, Orange 3 R L , and Red bium(Vj-thiocyanate reaction, a stepcolored complexes which are extractable Violet F R R were the most sensitive wise formation of colored thiocyanatoniwith benzene (89). Vanadium(Vj in (312). Picraminazochrome, 2,7-bis(2obates(V) was observed as well as isoper4 N HCl reacts with N-furoylphenylhyhydroxy -3,5-dinitrophenylazo) - 1,8-didroxylamine(R) to give a violet complex thiocyanic acid which accounts for varihydroxynaphthalene - 3,6 - disulfonic ations in absorptivity (143). (VORL!l) which is extractable wit’h acid, forms 1 : 1 complexes with either CHC13 containing small amounts of h photochemical reaction in which beryllium or aluminum exhibiting aburanium(V1) oxidizes ethanol to acetalethanol. At pH 4, a brown complex sorbance maxima a t 635 nm (112). having a lower molar absorptivity redehyde when irradiated with ultraviolet Iron(II1) forms a 1: 2 complex with 2,radiant energy and subsequent detersults (457). Vanadium reacts with 3,43-pyridinediol a t p H 5 (182). A sensimination of the acetaldehyde by the dinitropyrocatechol and diphenylguanitive reagent for molybdenum(V1) but dine to form a 1: 2 : 2 complex which is fuchsine-sulfite method is the basis of a which does not react with tungsten is extractable in chloroform (88). Two novel method for uranium (402). 7-iodo-8-quinolinol-5-sulfonic acid (75). new reagents, arsenazo-amino-c-acid and Calcium was determined indirectly T h e color development reactions of sularsenazo-2- methoxy-5-diethylsulfamic by precipitation using K4[Ni(NOs)6] as fochlorophenols with eleven elements acid, react with plutonium(1V) to give precipitant, dissolution of the washed have been studied (508). extractable colored complexes (213,582). precipitate in acetic acid, and addition h ternary complex of aluminum(II1) , The absorption spectra, opt,imum conof antipyrine which forms green nitroeriochrome cyanine R, and cetyl triditions, and estractability of tetrachlosoantipyrine (8). Lead anthranilate is methylammonium is reported to have a rogallate(II1) complexes formed with precipitated, filtered, and dissolved in molar absorptivity of 1.17 X lo5 (631). basic dyes of triphenylmethane and diI n using cetyltrimethyl ammonium 2 N hydrochloric acid to liberate anphenyhiaphthylmethane have been surthranilic acid. The diazotization of anchloride with the chrome azurol S reveyed (20). agent in the determination of aluminum, thranilic acid and coupling with 2-hy2-(2-Pyridylazo)-5-diethyl-maminodroxy-3-naphthoic acid gives an orangea bathochromic shift from 550 nm to phenol and the corresponding mono630 n m was observed with the absorred azo dye, the overall process providbromo and dibromo substituted derivabance being approximately doubled for ing a highly sensitive method for detertives in the pyridine ring and the thiazolyl the ternary complex (550). The 1 : 3 mining lead (21j. analogs have been studied as reagents for complex of molybdenum(V1) and alizNonmetals. T h e deleterious effect cobalt (206), N,S-Bis(2-hydroxy-5-sularin red S is also extracted as a ternary of a n appreciable a m o u n t of water in fopheny1)-C-cyanoformazari was synin the presence of tetradecyldimethylt h e curcumin method for boron c a n thesized and found to give sensitive color benzylammonium chloride (252). The be eliminated by addition of propionic react ions with many metals, especially interference of chromium(II1) in the exanhydride a n d oxalyl chloride, t h e with manganese(I1), gallium(III), zinc traction of bis (2,2’-biquinoline) copper latter catalyzing the water-anhydride (11), and thorium(1V) (275). I n a reaction (605). Mercury(I1) methyl(I) prior to spectrophotometric mea8-dihydroxynaphthalene- 3,6- disulfonic acid are best for yttrium(II1) and lanthanum(II1) (12); and the synt’heses of monoarylazo and bisarylazo derivatives and their applications in the photometric determination of metals (72). Tichromin 3,3’ [ (methyimin0)dimethylene] dichromotropic acid is a new colorless chromogenic reagent for bitanium (IV) (44)’ T h e syntheses, properties, and analyt’ical applications of xylenol orange and methylthymol blue and their use in colorimetric analysis have been discussed (71). Acid alizarine black SS has been investigated as a n extraction-photometric reagent for the determinat’ionof metals (177). Three new select’iveand sensitive reagents which form extractable complexes with nickel are 4- [(kpyridyl)azo ]thymol ; 4- [ (2-quinolyl) azo ]thymol ; and [ (N-methy1anabasine)-a’-azo]thymol (385). Eight metal ions (Co, Ni, Pd, Cu, Zn, Cd, Hg, Pb) form colored complexes with thiothenoyltrifluoroacetone, t h e stable complexes being extractable in CC1, (537). The extraction of the iodide complexes of six metals (Pb, Cd, In, Bi, Cu, Sb) with methylisobutyl ketone prior to spectrophotometric determination of traces of these metals in ferrous and nonferrous metals and alloys has been studied thoroughly (346). Two antipyrine dycs, bis (4-methyl-
study of reactions of 2-carboxy-2’-me-
thoxy-5’-sulfoformazylbenzene with 24
.
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5 , APRIL 1970
* 153R
thymol blue, under controlled conditions, forms 1:1 complexes with chloride, bromide, and iodide (414). The oxidation of iodide and bromides with chloroamine B to produce I + and Br+, respectively, followed by interaction with a triphenylmethane dye, e.g., brilliant green, has been studied spectrophotometrically and optimum conditions have been outlined (78). Numerous oxidant-anions (C103-, IOd-, NOz-) and oxidant-cations in addition to Ce(IV), V(V), and hydrogen peroxide have been determined indirectly by reactions with a n acidic iodide solution in the presence of a triphenylmethane dye such as brilliant green or crystal violet (4'76). Spectrophotometric methods for the determination of selenium and tellurium have been reviewed (893). I n application of the heteropoly blue method for the determination of phosphorus, a variety of preliminary treatments have been employed to circumvent interferences. Pyrosulfite (Na2S206) is recommended to reduce As(V) to As(II1) (148). Controlled potential electrolysis a t the Hg cathode is used to remove copper (357). A new photometric method for arsenic is based on the reaction of arsine with silver p-sulfamoylbenzoate, in basic solution, to give a stable, colored silver sol (120). The chloranilate displaced from barium chloranilate by sulfate ion forms a n extractable complex with tris (1,lO-phenanthroline) iron(I1) thereby permitting the indirect spectrophotometric determination of sulfate (639). Organic Constituents. A new chromogenic reagent, 7,7,8,8-tetracyanoquinodimethan ( T C N Q ) , has been recommended for t h e determination of free radical precursors, such as cysteine, proline,. phenoxazines, and mercaptans, and is also useful in t h e T L C identifications (512). o-Diacetylbenzene reacts with aliphatic and aromatic amino compounds to give red color (270). A kinetic method in which 1-naphthol and 2-naphthol can be determined by the rate of decolorization of methyl orange by a n acidic bromatebromide solution has been suggested as being applicable to phenols and other organics reacting with bromine (27).
Simultaneous Spectrophotometric Determinations. 8-Quinolinol has been utilized in binary component analysis of aluminum and iron(II1) (390) and nickel(I1) and iron(II1) (258). Iron(II1) and nickel(I1) have also been determined simultaneously using EDTA and hydrogen peroxide (386). The bromoconiplexes of osmium and ruthenium are the basis of a simultaneous determination (58). Three different acidities were employed in the simultaneous spectrophotometric determination of zirconium and hafnium using xylenol orange (104). Ruthenium(II1) and rhodium(II1) form stable colored com154R
0
plexes in ethanolic solution with oximidobenzotetronic acid. These complexes can be used in the simultaneous determination of these two metals (364). 3,6 - Bis(o - sulfo p methylpheny1azo)chromotropic acid and related reagents have been suggested in the simultaneous determination of barium and strontium (74). Nitrosyl bromide and bromine in a mixture of NO, NOBr, and Brz have been determined by a simultaneous method (152).
- -
PHYSICS
Theoretical concepts, methodology, and instrumentation related to the measurement of radiant energy in the visible region will be mentioned in this section of the review. A general procedure which enables one to ascertain whether a n apparent deviation from the Bouguer-Beer law is chemical or physical in nature, or a combination has been described (76). Three basic methods for selection of wavelengths of measurement in simultaneous analysis have been outlined (526). Sources of error in photometric measurements are discussed with the recommendation that the least-squares method should be employed in construction of calibration graphs (182). An equation which enables one to calculate the minimum determinable concentration of a component of a tuo-component mixture, based on the relationship of absorbance of both components a t the wavelengths of measurement, has been developed (388). The technic involved in the spectrophotometric measurements acid solutions a t temperatures from 25 to 250 "C has been discussed (619). One graphical and two mathematical techniques have been suggested to estimate absorptivity backgrounds in the spectrophotometric determination of light rare-earth elements in rare earth mixtures (416). Spectrophotometers. A number of new commercial spectrophotometers have appeared on t h e market. T h e Perkin-Elmer RIodel 402 spectrophotometer is a double beam, optical null, recording instrument covering the 190-850 nm wavelength range and features preselection of desired spectral range increments, e.g., 80 nm and repetition sequential recording (440). Perkin-Elmer also introduced its Model 356 UV-VIS, high performance spectrophotometer. This versatile instrument permits measurement of a difference of 0.0006 absorbance unit. By operating in the double wavelength mode, the sample and reference beams are a t different wavelengths but only enter the sample cell and are time shared on detector, a derivative curve ( A A / A A > vs A) 1s obtained which 13 especially useful when there is band overlap or weak shoulders on an absorbance maximum
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(442). Bausch and Lomb introduced the Spectronic 70 having an 8-nm bandpass and direct reading met'er and the Spectronic 100 having a n 8-nm bandpass and a digital readout (49). The Coleman Model 44 spectrophotometer has 20-nm bandpass and a 325- to 825-nm wavelength range. The Coleman Junior I I A features interchangeable, snapin scale panels. Both instrument,s have solid state elect'ronics, linear absorbance scales, and can be used with Coleman's Autofill Cell Assembly. This sampling system has a flow-through cell and pumping device that enables rapid filling and purging of sample cell (124). The inexpensive Turner Model 330 spectrophotometer has a bandpass of 10 nm with a 335- to 710-nm wavelength range, solid-state electronics and is especially applicable to routine spectrophotometric analysis. The Turner Model 350 instrument has a much wider readout scale and with UV and I R accessories can be used in 210-1000 nm range (597). A modular single beam instrument , the Heath/-\IalmstadtEnke 701, is available with a n analog photometric readout or recorder (226). X recording spectrophotometer for automatic scanning of selected parts of the spectrum and applicable to polycomponent analysis has been patented (615). A new spectrophotometer features automatic setting of photomultiplier sensitivity, zero, and 100% T scale, digital readout in transmittance or absorbance with auxillary print out, tape punch, or strip recording included as unique features of this instrument (293). A double beam spectrophotometer has been designed for the direct measurement of absorptivit'y and the area under absorption curves (406). Automated Instruments. T h e Perkin-Elmer hlodel C-4 -4utomat'ic Analyzer has four channels with photometric measurement, a direct print out in concentration, and is especially applicable to rapid clinical testing being capable of handling one sample (4 tests) every 2 minutes (441). Several automatic analytical systems consisting of modular units and applicable t,o rapid determinations in t'he bioanalytical field have been devised. The Norelco-Unicam SP-3000 is a n automatic spectrophotometer which can measure 50 samples at 10 wavdengths and gives digital readout and simultaneous print, out on an electric typewriter (447). The Griffin Bioanalyzt (247) and Zymat 340 (50) are automatic analyzers for bioanalytical applications. The Gilford ;\Iode1 2400 with solid st'at'e circuitry has an automated sample handling sytem (190). Instruments for Kinetic Measurements. Spectrophotonletric apparatus for practical kinetic measurements have been evaluated (623). The Durrum Nodel D-100 spectrophotom-
eter offers the choice of stopped-flow or temperature jump technics in studying fast reactions (14’7). T h e Warner Swasey Model 501 SF rapid scanning spectrometer can measure both emission and absorption spectra in the UV, visible, and IR regions and is also adaptable to kinetic investigations (622). Beckman’s Kintrac VI1 monitors automatically t h e absorbance of reaction mixtures over t h e 190- to 750-nm wavelength range (61). T h e Model 260 reaction kinetics system uses either t h e stopped-flow or temperature-jump methods (654).
Special Application Instruments. Special instruments include a dipping colorimeter which is especially useful in photometric titrations (397) and the high sensitivity DuPont Model 410 precision photometer which is applicable as a detector in liquid chromatography (146). -4n apparatus employing a peristaltic pump to circulate t h e solution between t h e absorption and titration cells is especially applicable to the study of metal chelates and the determination of metal/ligand ratios by Job’s isomolar method (224). An instrument for colorimetric analysis permits the rapid emptying and rinsing of reference and sample cells between measurements by having bottom closure plates actuated by a magnetic coil and time-programmed meter arrangement (518). A flow cell holder which circumvents the air-trapping problem and is especially applicable to an automatic system has been designed (665). Two types of microscope-photometers suitable for the determination of elements in nanogram range have been described (11). T h e Foci-flex grating monochromator for the 200-787 n m range (164) and the Minichromator (263) are new instruments of use in light absorption studies. A cell housing accessory permits the simultaneous measurement of transmittance, light scattering at 90°, and fluorescence (448). A solid-state photometer suitable for measurement of low radiant power light is available (519). T h e M 8 5 Optoscan, a scanning and integrating microdensitometer and microspectrophotometer, measures light absorption properties of translucent specimens a t high magnification (611). The Kay Model 209 double beam, ac null balance photometer is applicable to reflectance and transmittance measurements (286). T h e Trilac recording spectrophotometer permits measurement of reflectance and transmittance under various angles of illuniination and observation and can provide tristimulus values when used in conjunction with a Davidson and Hemmendinger digital integrator (302). T h e Photovolt Model 670 electro-optical meter measures color and surface appearance (449). The Hunterlab D-25 Color Difference Meter measures color
of flat surfaces as viewed in daylight;
APPLICATIONS
the Hunterlab P47 Dori-Gon Glass meter measures fractional reflectance. X D-30 Color Difference Computer is a n accessory for t h e Model D-25 which gives direct readout of color differences in NBS units without a n y transfer of data (246). Pulse photoelectric gas analyzer for nitric oxide (492) and chlorine (491) and a colorimetric ozone indicator utilizing a coated solid support which is impregnated with 2‘,3”-dibromothymolsulfophthalein and packed in small transparent tubes (460) are specific application instruments.
Applications of light absorption spectrometry are considered in respect to methods of analysis and color specification. Methods of Analysis. M a n y new reagents, modified methodology, a n d a large variety of sample materials have resulted in numerous publications on t h e spectrophotometric determination of specific constituents. A selected list of applied spectrophotometric methods a n d those believed t o be of potential practical value a r e cited in Tables I, 11, a n d 111.
Table 1. Constituent Ag
Material
...
...
A1
... ...
... Brass
Au Ba
Copper Iron ore Metal oxides Molybdenum F e alloys U alloys
...
...
Be
...
Bronze Mg alloys Silicates Bi
... ... ... ...
...
Copper Cast iron Ores Steel
Photometric Methods for Metals Method or Reagent [Wavelength; molar absorptivity] 2,3-Naphthotriazole 1,lO-Phenanthroline: 2,4,5,7-tetrabromofluorescein [550; 5.5 X lo4 (org); 3.5 X lo4 (as)] Eriochrome cyanine R, cetyltrimethyl-ammonium chloride [587; 1.17 X lp”] Pvrocatechol violet [%O; j . 8 X lo4] 1-Isonicotonyl-2-salicylidenehydraeine [375; 1.27 x 1041 Chrome azurol S, cetyltrimethyl-ammonium chloride [620; 1.08 X lo6] 5,5 ’-Dicarboxy-3,3’-dimethyl-4’-hydroxy-4fuchsone-2”,4”-disulfonic acid Stilbazochrome = 4,4’-bis(l,8-dihydroxy-3,5disulfo-2-naphthylaeo)-2,2’-stilbenedisulfonic acid (665;. 5.8 X lo4] 8-Quinolinol (CClr) Chiomazurol ‘S Eriochrome cyanine R Eriochrome cyanine R Stilbazo 8-Quinolinol (CHCl3) Anthranilic acid (reductant) Dicyanoaurate, astraviolet 3R ( C G H ~ ) 1,lO-Phenanthroline-iron(I1)(PhN02) Sulfonazo I11 [642; 6.45 X lo4] Chrome azurol S Beryllon I11 [xx; 2.0 x 1041 Rufieallol p-SuTfophenylaeosalicylic acid p 5 0 ; 1.2 x 1041 Azo fuchsine GN K-Benzoylphenylhydroxylamine(BuOH) Flavanol-2’-sulfonic acid [370; 2.14 X lo4] Stilbazo [582;. 2.9.X lo4] Zephiramine iodobismuthate (CtH,Clt) 4-(2-Pyridylazo)-resorcinol (BU~PO,) [530; 9.19 x 1031 2,5-Dibenzoyl-3,4-dihydroxyselenophene [490; 4.6 x 1031 Caprothiolactam chlorobismuthate (CHC13) Xylenol orange 1530; 1.585 x 1041 Iodide, di-o-tolylthiourea (CIH<) [475; .i.26 x 1041 Reaction rate, dimeric heteropoly molybdate Xvlenol orange Iidide Arsenazo I11 nithizone [6io; 2.7 x( C1041 ~HB)
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
155 R
Table 1.
Constituent Ca
Material
... ... ...
Photometric Methods for Metals (Continued) Method or Reagent
[Wavelength; molar absorptivity] Glyoxal bis(2-hydroxyanil) Anthrapurpurin Acenaphthene quinone-o-hydroxyanil (CHC13) Indirect: K4[Ni(NO&], antipyrine
Ro‘cks Silicates Cd
Ce co
... ... ... ... MnIalloy
... ... ... ...
...
...
... ... ...
... ... Gaiiium Steel Steel Steel Steel Steel Cr
... ... Tantalum
cu
... ...
...
... ... ...
... ... ...
156R
Glyoxal bis(2-hyd , - . . ale.) Xylenol orange [ s o ; 2.75 x 1041 l-(2-Pyridylazo)-2-naphthol Dithizone (C2H4C12) 2,2’-Bisbenzothiazoline (CHC13-C5HaN) p-Aminoacetophenone Simultaneous: Complexon 111, H202 5-(2-Pyridylazo)-2-e~hylamino-p-cresol ~ 3 0 7.4 ; x 1041 Di-2-pyridyl ketoxime x 1041 ~ 8 8 1.95 ; a‘-Azo-@-naphthol [580; 1.01 x 1041 N-Methylanabasine-a’-azo-a-naphthol (CHCb-isoamyl alc.) [650; 7.6 x 1031 Tartrate, H202 Thiocyanate, l-phenyl-4(phenylamino)-1,2,4triazolium chloride (C2H4C1?) 1,3-Dimethyl-4,5-diaminouracil Benzoyltrifluoroacetone, tri-n-octyl phosphine oxide [380; 3.7. x 1031 Succinimide [m;3.3 x 1041 Chrome azurol S, (hydroxydodecy1)trimethylammonium bromide [654; 1.09 X lo6] 4-(2-Triazolylazo)resorcinol [590; 3.53 x lo;] N-Methylanabasine-a’-azodiamminopyridine Acid monochrome green S (BuOH) [626; 3.2 x 1041 Ethyl bis[ (l-s0dio-1H-tetrazol-5-yl)azo] acetate ~490;1.21 x 1041 2-(2-Pyridylazo)-5-diethyl-m-aminophenol [570; 8.4 x 1041 Diphenyliolonium chloride (CHC13) 2,6-Diamino-3,2’-azopyridine [610; 2.82 X lo4] Picraminazo diaminopyridine ~590;3.53 x 1041 Xylenol orange ~530;1.9 x 1041 Chrome azurol S [556; 3.14 x 1041 Diphenylcarbazide Chrome azurol S 1600: 1.9 x 1041 Polyethylenimink [645;. 2.3.X lo2] Zephiramine copper(I1) thiocyanate (CHC13) Pyridine-2-aldoxime, ascorbic acid (BuOH) [ a o ; 7.3 x 1031 6,7-Dimethyl-2,3-bis(2-pyridyl)quinoxaline [5i4; 4.1 x 1031 Catalytic: ascorbic acid, isopolymolybdates [755; 3.3 x 1051 2-Quinolinecarboxaldehyde-2-quinoly lhydrazone (PhNOz) ~ 6 4.73 ; x 1041 Diphenyl dithioposphoric acid (C2H4C12) [420; 1.3 x 1041 2-Pyridinecarboxaldehyde-2-hydroxyanol ~454;7.8 x 1031 4-(2-N-Methylanabasinyl-azo)resorcinol [510; 4.14 X lo4] N-8-Quinolyl-p-toluenesulfonamide(CHC13) [370; 7.66 X lo3] Picramine CA [560; 1.34 X lo4] o-Salicylideniminophenol (MIBK) ~ 2 3 1.62 ; x 1041
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
Color Specification. A monograph o n colorimetry presents t h e fundamental principles of color measurement b y utilization of spectrophotometric data and of chromaticity coordinates (407). The fundamentals of spectrophotometry and tristimulus colorimetry is the subject matter of another review (183). An “Optical Resource Letter on Colorimetry” gives annotated references of general interest (634). In checking the (U*,V*, W*) system against the Munsell renotation system, a formula has been proposed for calculating color differences for pairs of similar colors (605). The measurement of t h e equivalent luminance of a color and the heterochromatic wide-field photometer designed for these measurements have been discussed (383). A new concept, “specific hue brilliance,” has been suggested to describe the relationship of gray content to the purity of a color of a given dominant wavelength, and the appearance of high-purity colors of constant luminance (160). Color discrimination under reduced visual conditions, small area, and low luminance (6.47) and luminance requirements for hue identification in small targets (126) have been investigated. CONCLUSIONS
One of the most significant improvements observed in reviewing the literature on light absorption spectrometry for the past biennium has been the increased frequency with which authors are reporting molar absorptivity values. illthough absorptivity values are somewhat dependent upon the particular spectrophotometer being used and on other experimental parameters, these values are indicative of the sensitivity of each method and an attempt has been made to cite the wavelength of maximum absorbance and corresponding molar absorptivity in Tables IJI, and 111. There has been a decrease in research on the development of spectrophotometric methods for organic constituents. T h e availability of gas-liquid chromatography, S M R spectrometry, arid mass spectrometry as alternate methods has undoubtedly been responsible. A scanning of the literature cited section of this review also indicates that the majority of contributions to this discipline can be attributed to the Russian and Japanese chemists with a pronounced decrease in papers from the U.S.A. I n the 1960 review there were twice the number of references to ANALYTICAL CHEMISTRY as cited in this review. This trend is attributed to the fewer number of people engaged in spectrophotometric method research as more attention has been directed to other spectrometric, chromatographic, and electrometric methods; and to instrumentation involving automation and computerization.
LITERATURE CITED
Table 1. (1) Abrazhanova, E. A., Butenko, G. A.,
Grzhegorzhevskii, A. S., Kalenshenko, T. Y., Zh. Anal. Khim, 23, 1418 (1968). (2) Adamiec, I., Chem. Anal. (Warsaw), 13, 147 (1968). (3) Adamovich, L. P., Vu VanSyen, Zh. Anal. Khzm, 23, 994 (1968). (4) Agarwala, B. V., Sangal, S. P., Dey, A. K., Mikrochim. Acta, 1968, 442. (5) Akhmedli, 31. K., Basargin, IC’.N., Shivinov, M. M., Zh. Anal. Khim, 24, 550 (1969). (6) Akhmedli, 31.K., Gambarov, D. G., ibid., 22, 1183 (1967). (7) Akhmedli, M. K., Granovskaya, R. B., Islamov, S. U., Uch. Zap. Azerb. Gos. [Jniv., 1, 16 (1967). (8) Akiyama, T., hlatsumura, S., Kazoto Yakka Daigaku Gakubo, 14,37 (1966). (9) Akmaeva, N. L., Dedkov, Y. &I., Khramov, V. P., Zh. Anal. Khim, 22, 1482 (1967). (10) Aleksandrov, A., Berka, A., Xauch. l’r. Vissh. Pedagog. Inst., Plovdiv, Mat., Fiz., Khim. Biol., 5 , 91 (1967). (11) Alimarin, I. P., Petrikova, 1 4 . N., Zh. Anal. Khim., 23, 161 (1968). (12) Alykov, Ii. M.,Fiz.-Khim. Zssled. Prir. Sorbentov Ryada Anal. Sist., 1, 52 (1966). (13) Amirkhanova, T. B., Podgornova, V. S.,Shesterova, I. P., Tr. Tashkent. L’niv. Eo. 288, 116 (1967). (14) Ibid., p 121. (15) Amos, R., Anal. Chim. Acta, 40, 401 (1968). (16) Antonovich, V. P., Nazarenko, V. A., Zh. Anal. Khim., 23, 1143 (1968). (17) Ibid., 24, 676 (1969). (18) Archer, V. S., Doolittle, F. G., Young, L. N., Talanta, 1 5 , 864 (1968). (19) Armeanu, V., Baloiu, L. &I., Anal. Chim. Acta, 44, 230 (1969). (20) Armeanu, V., Costinescu, P., Talanta, 14, 699 (1967). (21) Armeanu, V., Costinescu, P., Calin, C. G., Rev. Chzm. (Bucharest), 19, 290 (1968). (22) ASThl Committee, “Manual on Recommended Practices in Spectrophotometry,” 3rd Ed., 136 pp, American Society for Testing and Rlaterials, Philadelphia, Pa., 1969. (23) Avigad, G., Carbohyd. Res., 11, 119 ( 1969). (24) Ayres, AGres, G. H., Eastes, D . T., Anal. Chim. Acta, 44,67 (1969). (25) Azim, AI. A,, (25) A., Ayaz, A. A,, Mikrochim. Acta, 1969, 153. (26) Babenko, A. S.. S., Volodchenko. Volodchenko, T. T.. T., Zh. Anal. Khina., ’23, 23, 1237 (1968). P., ibid.. ibid., pD 637. (27) Babkin. (271 Babkin, hI. P.. Babko,’ A. K., K., hfaikova, Markova, L. V., (28) Babko, Rlaksiemenko, T . S., i b i d . p 1268. (29) Babko, A. K., Philipenko, A. T., ibid., 22, 1679 (1967). (30) Bagdabarov. Bagdabarov, K . K.. K., Akhmedova. Akhmedova, A., A., ibid., 35, 12 K. A : Totaev, 0. A.,’ (1969). (31) Bagdasarvo, K. N., Anisimova, L. G., Tataev, 0. A., ibid., 23, 1002
Constituent CU
... .. .. ...
...
... ... ... Alkaiis Alloys Kerosine Reagents Slags Fe
...
[Wavelength; molar absorptivity] 6-Methyl-2-pyridinecarboxamide oxime [405;. 7.2 x 1031 2-Thiobarbituric acid 1400; 6.357 X lo3] 6,7-Dimethyl-2,3-di-2-pyridyl quinoxaline, methyl orange (C2H&12) 1418: 2.93 X 1041 Zinc’dibenzyldithiocarbamate (CClr) 6,6 ’-Dimethyl-4,4’-diphenyl-2,2’-biquinoline [550; 1.13 X lo4] N-Methvlanabasine-a‘-azo-a-naphthol (CHCL) Picramine R 2-Quinolinecarboxaldehyde-2-quinolylhydrazone
References
(60) (188)
(1.4) (66)
(546)
[540; 2.7 X lo4] Biscgclohexamine oxalidihydrazone (327) 2-(2-Hydroxyl-l-naphthylazo)-2’-hydroxy-5’- (627) methylazo benzene (CCl,) 3,3‘-Dimethylene-4,4’-diphenyl-2,2’-biquinoline (602) ~ 5 5 9.8 ; x 1031 2,4-Dihydroxyacetophenone w o ; 2.10 x 1031 Di-2-pyridy ketoxime [534; 1.5 x 1031 l-(o-Carboxyphenyl)-3-hydroxy-2-phenyltriazine - ~ ICHC1,) ~ ~ Ferroin-thiocyanate (MIBK) [525; 2.05 x 1041 Chrome azurol S, cetytrimethylammonium chloride [630; 1.47 X 107 Chrome azurol S [575; 4.18 x 1041 Chrome azurol S, zephiramine [640; 8.5 X lo4] Bithionol = bis(2-hydroxy-3,5-dichlorophenyl)sulfide [484:5.6 X 1031 Bithionol ( C H c h ) Benzohydroxamic acid benzenesulfonamide [540; 2.65 x 1031 2-Thiobarbituric acid 3-Thiana~hthenovltrifluoroacetone(CHCla) [516; 5.6 x 1 0 3 1 ” Molybdotungstophosphoric acid, heteropoly hlue . ... [725; 1.39 x 1031 8-Quinolinol-7-sulfonic acid PAR [ ~ o o5.0 ; x 1041 Methvlthvmol blue (657) [ 5 1 0 ; 3 . 2 “ x 19’1 Pyridyl benzodiazepin-2-one Hydroxy-2-pyridylmethanesulfonic acid Sulfonated 2,6-bis (4-phenyl-2-pyridyl)-4phenylpyridine Crystal violet (CHCL) PAX (CHC13) Solochrome cyanine R [BO; 2.06 x 1041 CY-( h7-Methylanabasinazo)-a-naphthol 5 ,x 1031 1-(2-Pyridylazo)-2-naphthol Brilliant green (CBHB) Xylenol orange [ M O ; 1.65 x 1041 3,4-Dihydroxyazobenzene-2’-carboxylicacid Dark green S 1620; 1.5 x 1041 Hematein Phenylfluorone (CClr) [SOB; 1.6 x 1051 Bromopyrogallol [ j j o ; 2.05 x 1041 2’,3’,4’-Trihydroxychalcone Rhodamine B, molybdogermanic acid \ - - - - -
...
... ...
...
~
... ...
Ga
..
wo;
... ...
ilQfl8\ j - l _ _
(32) Bagdasarov, K . N., Kovalenko, P. N., Shemyakina, RI. A., ibid., 23, 515 (1968). (33) Baiulescu, G., Greff, C . , Danet, F., Analyst, 94, 354 (1969). (34) Balachandran, K., Bonerji, S. K., Microchem. J., 13, 599 (1968). (35) Balasiewicz, W., Bellen, Z., Chem. Anal. (Warsaw), 13, 1301 (1968). (36) Zbid., 14, 267 (1969). (37) Balenovic-Solter, A., Tomaskovic, R l . , Stefanac, Z., Nzkrochim. Acta, 1968, 344. (38) Bannard, L. G., Burton, J. D., Analyst, 93, 142 (1968).
Material
Photometric Methods for Metals (Continued) Method or Reagent
...
Aluminum Ge
... ...
ANAL.YTICAL CHEMISTRY, VOL. 42,
NO. 5, APRIL 1970
a
157 R
Table 1.
Constituent Ge Hf
Photometric Methods for Metals (Continued) Method or Reagent
Ir
[Wavelength; molar absorptivity] Ge tris(pyrogallolcarboxylate), brilliant green Reduced molybdosulfatohafnic acid [725; 6.7 x 1031 Xylenol orange Molybdate, ascorbic acid Molybdophosphoric acid, tin(I1) chloride 2-(2-Thiazolylazo)-4-methoxyphenol(CHC13) [638; 1.75 X lo4] Xylenol orange [590; 3.1 x 1041 Xylenol orange, hexamine 1590; 4.18 x 1041 Indirect: xylenol orange 4-Dimethylaminophenyl-4’-methylbenzylaminophenyl antipyrinylcarbinol (C&) ~ 5 8 5 4.7 ; .x. 1041 2,2’-Bipyridine-iron(II)-bromomercury(II) (C,H,ClII Dithizone -(CHCls) Methylene blue, iodide (CHCl,) 5-Nitrofurfural semicarbazone Solochrome cyanine R 1580: 1.03 X 10‘1 Chrome azurol S ’ Victoria blue B (CeH6) Xylenol orange [560; 2.0 x 1041 Hydrobromic acid, toluidine blue (C&-MeCOEt) [630; 2.87 X lo4] 3-Sulfo-5-chloro-2-hydroxyphenylazoderivative of salt of R acid hlethylthymol blue 4,4,~-~rifluoro-l(2-thienyl-lJ3-butanedione)
K
[440; 1.26 X lo3] Tin(I1) bromide, diantipyrylmethane (CHC13) Indirect: NaB Ph,, cuproine-Cu(I1) (CHCl,)
Hg
Material
...
... ... ... ... ... ... ... ... ... ... ... ...
In
...
...
... ... ... ...
(c6H6)
...
Sea water
La
...
... Li
... ... ... A1 alloys Nickel Nickel Rocks Steel >In
...
...
... ... ... ... ... ... ... ...
158R
Alizarine red S [520; 8.93 X lo3] Eriochrome cyanine R. C. Chrome azurol S [5io; 1.3 x 1 0 4 1 Arsenazo &I [640; 8.6 X lo4] 4- [ (2-Carboxy-4-nitrophenyl)azo]-3-methyl-lphenyl-2-pyrazolin-5-one (DMF) [530; 1.65 x 1041 Arsenazo 111. or uhosuhorazocethoron RIethylthymol bfue ~606;2.3 x 1041 Eriochrome black T (n-amvl alc.’, Eriochrome black T (BuOH) ’ I-(l-Hydroxy-4-methyl-2-phenylazo)-2naphthol-4-sulfonic acid Eriochrome black T Xylidyl blue Titan yellow Methylthymol blue NJ.V-Bis(2-hydroxy-5-sulfophenyl)-C-cyanoformazan 1695: 1.5 x 1041 io-Methoxybenzdthiohydroxamic acid (CHC13) [390; 1.25 X lo4] PAR 1500; 7.8 x 1041 Phenylazoxine S [400; 1.38 X lo4] Diacetyl, thiourea, tin(I1) chloride [ j g o ; 3.5 x 1 0 3 1 Alizarin red S, tetradecyldimethyl benzyl ammonium chloride (CtH<) Chromotropic acid Thiosulfate 5,7-Dibromo-8-quinolinol Zephiramine, thiocyanate (CHCL) 7-Iodo-8-quinolinol-5-sulfonic acid Sodium diethyldithiocarbamate (CHC13) 1-Pyrrolidine carbodithioate (CHC13) [388; 8.5 x 1031 (Continued)
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(39) Bansho, K., Umezaki, Y., Bunseki Kagaku, 16, 715 (1967). (40) Barkovskii, V. F., Khurtova, L. N., Zh. Ana?. Khim, 23, 691 (1968). (41) Barkovskii, V. F., Povet’eva, Z. N., Zavod. Lab., 35, 555 (1969). (42) Barra, F. T., Seeger, S. B., Rev. Real. Acad. Cienc. Exactas Fis., Natur., Madrid, 61, 827 (1967). (43) Basargin, N. N., Akhmedli, hl. K., Shirinov, AT. M., Zh. Ana?. Khim, 23, 1813 (1968). (44) Ibid., 24, 384 (1969). (45) Basargin, N. N., Men’shikova, V. L., Belova, Z. S., hlyasishcheva, L. G., ihid.. 23. 732 11968). (46j Bas&k< H.,Polak, K., Chem. Anal. (Warsaw), 12, 253 (1967). (47) Basson, R. A,, duPlessis, T. A., Analyst, 92,463 (1967). (48; Baughman, W. J., Waterbury, G. R., L . S. At. Enerou Comm.. 1968. LA384x9 pp. (49) Bausch and Lomb, Inc., Analytical Systems Division, Rochester, N. Y. Saectronic 70 (1969); Spectronic 100 I.,Yanaeva, V. Y., Mekhryusheva, L. I., ibid., 24, 632 (1969). (95) Bydalak, T. J., Poldoski, J. E., ANAL.CHEX. 40. .. 1878 11968) ~---~,. (96) Bzhasso, k.h., U.S.S.R. Patent 191,879 (Cl. COln; C07c) Jan, 26. 1967, Appl. July 8, 1965. (97) Cabrera-hiartin. A.. Peral-Fernandez, J. L., S’iceritk-Perez, S., BurrielJIarti, F., Talanlu, 16, 1023 (1969). (98) Calder, A. B., “Photometric Methods of Analysis,” American Islsevier, Sew York, 1969. (99) Calzolari, C., Farretto, L., Analyst, 93, 494 (1968). (100) Cameron, A. J., Gibson, N. A., Anal. C’him. Acta, 40, 413 (1968). (101) Capitan, F., Arrebola, A., ARS Pharm., 8 , 4 9 (1967); C.A., 68, 26706~. (102) Capitan, F., Roman, RI., Inform. Quinz. Anal. (>[adrid), 22, 65 (1968). (103) Carlson, XI., Talanta, 16, 144 (1969). (104) Challis, H. J. G., Analyst, 94, 94 (1969). (105) Chaprasova, L. F., Talipov, S. T., Dzhiyanbaeva, R. K., Nauch. Tr., Tcishkent. Gas. Univ., 284, 42 (1967). (106) Chechneva, A. N., Podchainova, V. N., Tr. U r d . Politech. Znst., 163, 47 (1967). (107) Chechneva, A. N., Radushev, A. V., Zh. ,4nul. Khim, 23, 1059 (1968). (108) Chechneva, A. S . ,Radushev, A. V., Kirenburg, V. L., Tr. LTral. Politech. Inst., 163, j 2 (1967). (109) Cheng, K. L., -4nal. Lett., 1 , 447 (1968). (110) Cheng, K. L., Talanta, 14, 875 ( I !367). (111) Cherkesov, A. I., Alykov, X. M., Knrib’yants, hl. A., iVov. Issled. Ana/. Primon. Org. Reagentov, 1967, 71. (112) Cherkesov, A. I., Alykov, X . M., Kazakov, B. I., Fit.-Khim. Issled. Prir. Sorbenior Ryada Anal. Sist., 2, 102 (1967). (113) Cherkesov, A. I., Kazakov, B. I., Shchepko, V. I., Zavod. Lab., 34, 786 I
I
( 1968).
(114) Cherkesov, A. I., Zadumina, E. A., Zh. dnal. Khim., 24, 941 (1969). (11.5) Chiaki, E., Tomita, Y., Ezawa, hi., Bunseki Kaaaku. 17. 8 11968). (116) Chindlei, N:, Tiu, ‘Ji.,-hetalurgia, 19, 271 (1967); C.*4., 68, 9022v.
Table I. Constituent MO
Material
... ... ... ... ... Alloy steel
Nb
Tungsten
... ...
JietalS Nb-Pt alloys Steel
Method or Reagent [Wavelength; molar absorptivity] Hydroxylamine, PAR l530: 2.74 X 1041 Salicylaldoxime ’ Rezarson = 7,4,4’-trihydroxy-3-arsono-Schloroazobenzene 1510; 1.34 x 1041 Benzoylacetanilide (MIBK) 2-Ethylhexyldihydrogen phosphate (C6H6)thiocvanate RIorfholi1iium-4-morpholinecarbodithioate r395: 4.3- ,. x -1031 Hyd;oxylamine, ’PAR S-Benzoyl-*V-phenylhydroxylamine (CsHjJIe) Pyridine-2-carboxaldehyde-2’-pyridylhydrazone Pyrocatechol tribenzylamine (CHC13) 4-(2-Pyridylazo)resorcinol Pvronallol [410,4.35 x 1031 4- (2-Pyridy1azo)resorcinol [536; 1.44 x 1041
References
Thiocyanate (Bu3PO4-E t20) Brompyrogallol red (isopentanol OAc) 1610; 2.50 x 1041 Phenylfluorone (RIIBK) i502; 2.81 x 1041 PAR Lumagallion (BuOH) Diantipyrinylmethane-dithiooxalate (CHCl,) ~505;3.2 x 1031 Dithiooxalate TALI = 6-(Thiazolylazo)-3-dimethylaminophenol (CHC13) 1520: 7.59 x 1041 2-Amino-I-cyclopeiitene-1-dithiocarboxylicacid (CHC1,) 4(2-Pyridylazo)resorcinol S-Jiethylanabasine-0’-azodiethylaminophenole 1-(2-Thiazolylazo)-2-naphthol hlonothioglycerol 1410: 2.76 X 1031 4-[(2-Pyridyl)azoithymol(CHCl,) [6io; 2.1 x 1 0 4 1 4-[(2-Quinolyl)azo] thymol (CHC13) 1640; 2.6 x 1041 [A~7-Jiethylanabasine)-a’azo] thymol (CHCl,) 1620: 2.26 X 1041 Dithizone, phenanthroline (CHCI,) TAX = 2-(thiazol-2-yl)naphthol (CHCl,) 3.8 x 1041 1-Phenyl-4-ethylthiosemicarbazide IO; 3.58 x 1031 Salcvlidene-o-aminoahenol [ a d ; 1.7 x 1 0 4 1 Xylenol orange [584; 3.7 x 1041 Lanthanum(III), alizarin fluorine blue (x = 550; 1.13 x 104) 1,Z-Cycloheptanedione dioxime Dimethylglyoxime (C& or CHC1,) Ethyl bis[ (l-sodio-1H-tetrazol-5-yl)azo]acetate [6io; 2.74 x 1041 -4rsenazo I11
(179)
(33.3) (486) (348) (501)
(298) i.342)
(3.32) (612) (100) (635) (68.1) (185) (134, 42Q,
569)
Steel Steel T a metal
Ni
Photometric Methods for Metals (Confinued)
Zr metal Zr minerals
...
... ...
... ... ...
... ... ...
... ... ...
...
... ...
(475) (297)
(4.71 (307) (451 ) (60.2) (281)
(645)
(240) (367) (628) (59 1
(,386)
(Q85) (585)
(568) (279) (262) (214
A
...
... CdC03 Fe ores Steel NP os
... ...
3-Sitroso-2,6-pyridinediol [550; 2.4 x 1041
...
...
...
... ... ... Pb Pd
Alioi steel
...
.,. ... .
.
I
PAN [56.5; 1.1 X lo4] 3-1iercapto-5-hydroxy-1,2,4-triazine 4-(2-Thiazolylazo)resorcinol Thenoyltrifluoroacetone (C&) Thiocyanate [470; 1 X 1041 p-Aminohippuric acid 5-1Iercapto-1,3,4-thiadiazolidiiie-2-thio11e Dithizone Arsenazo I11 Arsenazo 111, or palladiazo (BuOH) Diantipyrinylmethane (C2HaC12) a-Benziloxime (CHCI,) [435; 1.98 x 1041 Chrome azurol S [6io; 4.34 x 1041
(77)
(.‘41 1 (507 1 (525)
(171) (70) (360) (86 1
(3341 (259) (478)
(473,
538) (470)
(200)
(496)
1510) (439 ) (454 1 (599) (242)
(Continued)
ANALYTICAL CHEMISTRY, VOL. 42. NO. 5, APRIL 1970
159R
(117) Christian, G. D., Talanta, 16, 255 Table 1.
Constituent Pd
Material
...
...
... ... ... ... ...
... ...
... ... Alloys Rocks Ti alloy Pt
... ...
... ... Catalysts Dimethyl sebacate Pu
...
Rare earths
... ... ... ...
Re
... ...
...
... ...
...
...
Molybdenite Pu-Re alloys
Photometric Methods for Metals (Continued) Method or Reagent
[Wavelength; molar absorptivity] 2,2 ’-Dipyridylglyoxime 2,2 ’-Pyridylmonoxime K,N’-Bis (0-aminoacetophenone) ethylenediamine (isoamyl alc.) Bisazo deriv. of chromotropic acid Isonitrosoacetophenone (C6H6) Indirect: 2,1,3-benzoselenadiazole 4,4’-Ethylidenebis (2-methy1-2-isoxazolin-5-one) Dimethylsulfonazo I11 Dimethylglyoxime (CHCl3) 5-Mercapto-1,3,4-thiadiazolidine-2-thione Phenyltetrazoline-5-thione (CHC13) a’-(N-Methy1anabasinazo)-1-naphthalene+ sulfonic acid Sodium 1,2-dihydroxyanthraquinone-3sulfonate Tropaeolin 0, or tropaeolin 000 8-Quinolinol (CHCl,) ~435;7.15 x 1031 RIethyloxinate (CHC13) 1428: 7.5 x 1031 2-Thiouracil . Pyridine-2-carboxaldehyde-2 ’-pyridylhydrazone (o-dichlorobenzene) 4(2-Pyridylazo)-l-naphthol(PhMe) [640; 1.37 X lo4] Disodium 4,4’-bis(p-ethoxyphenylazo)stilbene 2,2’-disulfonate [5io; 2.4 x 1041 p-Nitroso dimethylaniline Dimethylglyoxime (CHCL) 1,4-Diphenylthiosemicarbazide(CHC13) [ n o ; 3.4 x 1041 1,4-Diphenylthiosemicarbazide (n-BuOH) [750; 2.8 x 1041 5-Mercapto-1,3,4-thiadiazolidine-2-thione 1-Phenyltetrazoline-5-thione (CHCL) 1480: 7.4 x 1031 h ’-1,2,4-Triazoli;e-3-thione ~ 8 5 8.7 ; x 1031 Ternary complex: ammonia,; 2,4,j17-tetrabromofluorescein ethyl ester 1555; 8 x 1041 Tin(I1) chloride Dithizone (c6H6)
Arseno-amino-e-acid (BuOH) Aq. or BusPO1-dodecane Xylenol orange, cetylpyridinium bromide Arsenazo AE Arsenazo &‘I Calcium-M3+-8-quinolinol (CHC13) RIethylene blue (C2H4C12) 1645: 1.1 x 1051 Slethyl green ( C ~ H ~ ) [640; 1.09 x 1051 Orange R (C6H6) [ ~ o o 1.9 ; x 1041 Orange 3RL (CsH6) [492;2.0 x 1041 - ‘ Red violet FRR (C6H6) [564; 4.1 x 1041 a-Furildioxime (CHCL) ~530;2.9 x 1041 Thioacetamide, tin(I1) [ ~ o o 7.0 ; x 1031 Toluidine blue (C2H,C12) [ a o ; 9.1 x 1041 Thiocyanate (iso-Pr2O) Fuchsine (PrOAc) 1-Phenyl-2-thiourea 3-Phenyl-5-(2-fury1)pyrazolinecarbodithioate (CHC13-isoamvlalc.) [370; 5.3 x 1041 Diacetylmonoxime [joo; 1.9 x 1041 Thiosalicylic acid [410; 6 X lo4] Thiocyanate Flurildioxime [532; 4.01 X lo4]
~~
160R
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(33)
(673)
(107,’ 108) (474)
( 1$69 ) . (125) Collinson, W. J., Boltz, D. F., ANAL.CHEM.,40, 1896 (1968). (126) Connors, hl. >I., J . Opt. SOC. Amer., 59, 91 (1969). (127) Corbett, J. A., Analyst, 93, 383 11968). (l28j Cresser, M. S., West, T. S., Talanta, 16, 416 (1969). (129) Croitoru, V., Popa, Gr., An. Univ. Bucaresti. Ser. Stiint. Satur.., 15., 119 (1966). ’ 1130) Croitoru, V., RUN, V., ibid., 16, 43 11967). (131)‘Dahl, W. E., ANAL. CHEM., 40, 416 (1968). (132) Dahlby, J. W., Waterbury, G. R., U . S . At. Energy Comm. Rept., LA-3711, 10 pp (1967). (133) Danchik, R. S., Boltz, D. F., AXAL.CHEM.,40,2215 (1968). (134) Danielsson, L., Jernkontorets Ann., 151, 325 (1967). (135) Danilova, V. X., Lisichenok, S. L., Zavod. Lab., 34, 1284 (1968). (136) Das Gupta, B. R., Boroff, D. A., ANAL.CHEM.,40, 2060 (1968). (137) Davis, W. F., Talanta, 16, 1330 11969)
(382) (419) (140) (91 (511 1 ($88) (578) (577,
580) (312)
1566)
(Idij-Deguchi, AI., Bunseki Kagaku, 18, 159 (1969). (139) DeSousa, T. L. C., Kerbyson, J. D., ANAL.CHEM.,40, 1146 (1968). (140) DeWet, W. J., Behrens, G. B., ibid., p 200. (141) Devyatnin, V. A., Parfenova, V. N., Khim.-Farm. Zh., 1, 53 (1967); C.A., 68, 2677f. (142) Devyatova, T . >I., Yampol’skii, ;If. 2.. Zh. Anal. Khim.. 23. 1468 (143) Djordjevic, C., Tambina, B., ANAL. CHEM.,40, 1512 (1968). (144) Doadrio, A., hlarono, C. B., An. Real. SOC.Espan. F i s . Quim., Ser. B , 63, 557 (1967). (145) Dobkina, B. hl., Zabynina, K. B., RIalyutina, T. ll.,Sazikova, G. B., Zh. ,4nal. Khzm., 22, 1510 (1967). (146) DuPont de Nemours and Co., E. I., Instrument Products Division, Wilmington, Delaware. (147) Durrum Instrument Corp., Palo Alto, Calif. 94303, Bulletin. (148) Duval, L., Chim. Anal. (Paris), 49, 307 (1967). (149) Dwivedi, C. D., Dey, A4. K., Makrochim. Acta, 1968, 708. (150) Dzhiyanbaeva, R. K., Abdurakhmanov, RI., Talepov, S. T., ;Vauch. Tr., Tashkent. Gos. Univ., 284, 70 (1967). (151) Dziemko, V. AT., Zelichenok, S.L., Markovich, I. S., Zh. Anal. Khim., 23, 170 (1968). (152) Eden, C., Feilchenfeld, H., RIanor, S., ANAL.CHEM.,41, 1150 (1969). (153) Elbeih, I. I. SI., Abou-Elnega, R I . A., Can. J . Chem., 46, 1379 (1968). (154) Elbeih, I. I. hl., Abou-Elnega, RI. A., 2. Anal. Chem., 237, 172 (1968). (155) El-Ghamry, 31. T., Frei, R. W., ANAL.CHEM.,40, 1986 (1968).
(156) El-Ghamry, &I. T., Frei, R. W., Talanta, 16, 235 (1969). (157) Embry, W. A., Ayres, G. H., ANAL. . CHEM.,40, 1499 (1968). (158) Emmet, R. T., ibid., 41, 1648 (1969). (159) Escarilla, A. hl., Maloney, P. F., Maloney, P. hl., Anal. Chim. Acta, 45, 199 (1969). (160) Evans, R. AI., Swenholt, B. K., J . Opt. Sac. Anzer., 59, 628 (1969). (161) Evans, W. H., Analyst, 93, 306 (1968). (162) Ezerkaya, N. A., Solovykh, T. P., Zh. Anal. Khim., 24, 422 (1969). (163) Fadrus, H., Maly, J., 2. Anal. Chem., 246,239 (1969). (164) Farrand Optical Co., Commercial Products Div., M t . Vernon, N. Y., Bnlletin. ..~ (165) Flaschka, H., Weiss, R. H., M Q m chem. S.,14, 318 (1969). (166) Florence, T. hl., Johnson, D. A,, Farrar. Y. J., ANAL.CHEM.. . 41.. 1652 (1969). (167) Fogg, A. G., Gray, A., Burns, D. T., Anal. Chim. Acta, 45, 196 (1969). (168) Ibid., 47, 151 (1969). (169) Fogg, A. G., Higgens, C. T., Burns, D. T., Mikrochim. Acta, 1969, 546. (170) Foster. D.. Trusell. F. C.. Anal. ' Chim. Acta. 47'. 154 11969,. (171) Frumina, g.S., Goryunova, N. llustafin, I. S., Zh. Anal. Khim., 1.523 (1967). (172) Frumina, S . S., illustafin, I. Nikurashina, 11. L., Vechera, &I. Talanta, 16, 138 (1969). (173) Fuentes-Duchemin. J.. Casassas., , ' Anal. Chim. Acta, 44,'462 (1969). (174) Fullerton, F., Yamamura, S. S., c'. S.At. Energy Comm. Repl., IN-1159, 22 pp (1968). (173) Furakawa, M., Sasaki, S., Goto, K., Karnata, E., Sakashima, R., Shibata, S., h'agoya Kogyo Gijutsu Shikensho Hokoku. 17. 161 (1968). (176) Gagliaidi, E., Ilmaier, B., Mikrochim. Acta, 1968, 1259. (177) Gagliardi, E., Khadem-Awal, M., zbid., 1969, 882. (178) Gagliardi, E., Wolf, E.,,ibid., p 888. (179) Ganago, L. I., Buzina, N. I., Koltashkina. S. F.. Izv. Vwssh. Zaved.. Khina. Khzm. Tekhol, 10,-861 (1967): (180) Ganchev, N., Atanasova, D., C. R. Acad. B d g . Sci., 21, 359 (1968). (181) Gandhi, hI. N., Desai, hl. K., Anal. Chzm. Acta, 43, 338 (1968). (182) Ganpolo'skii, V. I., Vestn. Akad. A'auuk. Belarus SSR., Ser. 52-Mat. Sauuk, 1, 98 (1968). (183) Garg, B. S., Trikha, K. C., Singh, It. P., Anal. Chim. Acta, 42, 343 ~~
~
~
Table 1.
Con-
stituent Rh
Ru
Material Re-W alloys
... ... ... ,.. ... ...
... .. .*.
~
... ... Sb
sc
... Arsenic GeOz Iron Talc
... ... ...
*..
... ... ... ... ... ..*
... Sn
...
...
... ..* Po't&sium Niobium
~
Niobium Steel Th
Ti
Tan06
*..
... ... ... ... ...
Method or Reagent [Wavelength; molar absorptivity] Thiourea Diantipyrinylmethane (C2&Cl2) 1,2(Pyridylazo)-2-naphthol (CHCla) Chrome azurol S SQuinolinol (CHCla) 1.0 x 1041 Thoron 2,3-Diaminopyridine [572; 1.2 x 1041 Chrome azurol S Peroxy-bis (EDTA) Thoron Xylenol orange [wo; 1.2 x 1041 2,4,6-Tri-2-pyridyl-s-triazine 4(2-Thiazolylazo)resorcinol Dithiooxamide ~ 6 5 4 ;1.11 x 1041 4-(2-Pyridylazo)-m-(diethylamino)phenol 3,4',5,7-Tetrahydroxyflavone 1420: 1.09 x 1041 Rh0damine.B (c6'"s) Victoria blue (C&) Safranine T (CeH6) Rhodamine B (iso-PmO) Chrome azurol S Stilbazochrome ~ 5 7 5 ;2.3 x 1041 Eriochrome cyanine R. C. hlethylthymol blue K,N '-Bis (2-hydroxy-5-sulfophenyf)-Ccyanoformazan [590; 1 . 3 , 1041 ~ Glvoxal bis(2-hvdroxvanil) 3,4',5,7-Tetrah;drox; flavone [4i5; 8.4 x 1031 Xylenol orange Glycine cresol red [490; 2.1 x 1041 Chrome azurol S, zephiramine 1625: 1.37 X 1051 Morin, antipyrenk, perchlorate (CHC11) 3.12 x 1041 Lumogallion = 5-chloro-2,2',4'-trihydroxyazobenzene-3-sulfonic acid ~500;1.75 x 1041 (4-(Djmethy1amino)phenyll i4-benzylmethylamino)phenyl]antipyrinyl carbinol, thiocyanate IO; 4.3 x 1041 ~
Iron Pb alloys Zinc Ta
Photometric Methods for Metals (Continued)
Morin ~.~~
...
11968\ l-lll,.
(184) Garg, B. S., Trikha, K. C., Singh, It. P., Talanta, 16, 462 (1969). 11863 Geissler. &I.. Lorenz., G.., 2. Anal. C'hem., 244,235 (1969). (186) Gerard, J., Holland, W. J., Reel, A. E. Bozic, J., Mikrochim. Acta, 1969, 724. (187) Gershkovich, I. A., Polotebnova, K. A., Sguyon, S. Q., Zavod. Lab, 35, 32 (1969). (188) Gershuns, A . L., Dmitrieva, T. G., C%r. Khim. Zh., 34, 165 (1968). (189) Gibalo, I. AI., Alimarin, I. P., Erernina, G. V., Stanovova, L. A,, Zh. Anal. Khim., 23, 1821 (1968). (190) Gilford Instrument Laboratories, Inc., Oberlin, Ohio, Bulletin. (191) Goldman, H. D., Hargis, L. G., ANAL.CHEM.,41, 490 (1969). (192) Goszczynska, H., Kowalczyk, M., Chem. Anal., (Warsaw), 12, 1261 (1967). (193) Got,o, H., Kakita, Y., Atsuga, I., Sei. Rep. Res. Inst., Tohoku Univ., Ser. A , 19, 50 (1967).
~
[415-20; 2.74 X lo4] Quercetin (EtAcOAc-CClr) Phenylfluorone Gallein PAR 1~51~5:4.85 x 1041 Brilliant-green (C',H~) [MO; 1.2 x 1051 4-(2-P.yridylazo)resorcinol = PAR [545; 3.48 x 1 0 4 1 Pyrogallol Phenylfluorone Meldola blue (PhClZ) [mo; 2:89 x 1041 Malachite green (C&) Nile blue A [645; 3.11 X lo4] Differential; methyl violet (C&) Bromopyrogallol red [645; 5.0 x 1041 Heteropoly blue of Th-molybdophosphoric acid 1690; 3.3 x 1041 Quinalizarin, butyl Cellosolve PAR = 4-(2-Pyridylazo)resorcinol, H202 [5io; 5.1 x 1041 Molybdate, ascorbic acid 1-(o-Carboxyphenyl)-3-hydroxy-3-phenyltriazene (CHCl,) Disodium 2-[bis(carboxymethyl)aminomethyl]1,8-dihydroxynaphthalene-3,6-disulfonate (Continued)
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
161 R
Table 1.
Constituent
Material
... ...
.. Ferroniobium Steel
Steel
Zr alloy T1
*.. ... ... ...
Photometric Methods for Metals (Continued) Method or Reagent
[Wavelength; molar absorptivity]
Trichromin [470; 1.025 X lo4] Tipyrogin [370; 1.25 X lo4] Thiocyanate, triethylamine (CzH,ClZ) N-Acetylsalicyloyl-N-phenylhydroxylamine Diantipyrinylmethane Diantipyrinylmethane [mo; 1.4 x 1041 Molybdotungstophosphoric acid, heteropoly blue Diantipyrinylmethane Gallium(II1) iodide-zephiramine (CzHdX) 2,2’-Bipyridine-iron(II) (CZH&lz) Methyl violet (PhMe) Solochrome cvanine R
*..
... Cadmium
Tm
*..
U
... ... ... ... ... .. .. ... *..
*..
..
v
*.. ...
...
... *.. ... ... *..
...
... *.. ... ... ...
Aluminum Ores Silicates Slags Steel Steel, ores
162R
- - - - I
(1969). \----,
(199) Grahl, R., Dedek, W., ,&id., 231, 196 (1967). (200) Gregorowicz, Z., Klima, Z., ibid., 239, 87 (1968). (201) Grekov, A. P., Malyutenko, S. A., Zh. Anal. Khim., 23, 639 (1968). (202) Grimaldi, F. S., Schnepfe, M. M., 73.S. Geol. Sum., Prof. Pap., 575-C, 141 (1967). (203) Grinstead, R. R., Snider, S., Analyst, 92, 532 (1967). (204) Grossmann. 0.. 2. Anal. Chem., ~~
-8-quinolinol
...
(194) Goto, H., Kakita, Y., Takada, K., Bunseki Kagaku, 18, 52 (1964). (195) Goyal, S. S., Tandon, J. P., Mikrochim. Artn , 1060. 237 (196) Go1q.8;1, S. S., Tandon, J. P., Talanta, 15, 895 (1968). (197) Goyal, S. S., Tandon, J. P., Z. Naturforsch., 623, 142 (1968). (198) Graffmann. G.. Jackwerth. E.. Lohmar, J., 2. Anal. Chem., 246, 12
4(2-Pyridylazo)resorcinol 1.520: 2 x 1041 Thiosalicylami’de (CHC13) p60; 5.1 x 1031 Malachite green (C6H6) Methylthymol blue [608; 2.1 x 1041 Thenovltrifluoroacetone (PhPliIe) [395; 1.9 x 1041 Crystal violet (PhMe) [6io; 6.9 x 1041 1-(2’-Hydroxynaphthaleneazo)-2-hydroxynaphthalene-4-sulfonic acid [540; 1.87 X lo4] Rhodamine C (CeH6-Me~CO) Thenoyltrifluoroacetone, Rhodamine S (CeHe) N-Benzylaniline (CHCh), 4-(2-pyridylazo)resorcinol 8-Quinolinol (CHCL) [383; 6.82 X lo3] Methylthymol blue [ s o ; 1.06 x 1041 Arsenazo I11 [655; 7.1 X lo4] Propyl 2,3,4-ti-ihydroxybenzoate Ammonium-1-pyrrolidinecarbodithioat e (CHC13) 2-(2-Pyridylazo)-5-diethylaminophenol [564; 7.61 X lo4] N-Benzoyl-N-phenylhydroxylamine(CHC13) 5,7-Dibromo-8-quinolinol
3,3’-Dimethylnaphthidine 3,4-DinitrocatecholJ diphenylquanidine (CHCL) [39’0; 2.03 x 1041 7-Amino-l-naphthol-3,6-disulfonicacid Arsenazo I [GOO; 1.9 x 1041 Morin (isoamyl alc.) [4i8; 2.65 x 1031 2-(2-Pyridylazo)-5-(diethylamine)phenol (CzHdClz) [j70; 5.45 x 1041 Quercetin sulfonic acid I-(o-Carboxyphenyl)-3-hydroxy-3-phenyltriazine (CHCL) PAR, HzOz Catechol, diphenylquanidine (CHCls) Vandox = 2,2’-dicarboxydiphenylamine Pyrogallol Propyl 2,3,4-trihydroxybenzoate(t-pentanol) Tungstovanado hosphoric acid N-Benzoyl-N-pienylhydroxylamine (CHCls) N-Benzoyl-o-tolylhydroxylamine 5-(2-Pvridvlazo )-Z-rnonoethvlamino-p-cresol [560; “3.8 “X 1041 3,3’-Dimethylnaphthidine N-Furylphenylhydroxylamine (CHCb) [ s o ; 5.65 x 1031
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(205) ‘Grzegrzolka, E., Rozycki, C., Chem. Anal. (Warsaw), 12, 1319 (1967). (206) Gusev, S . I., Kiryukhina, N. N., Zh. Anal. Khim., 24, 210 (1969). (207) Gusev, S. I., Kiryukhina, N. N., Bitout, Z. A., ibid., 23, 889 (1968). (208) Gusev, S. f I., Poplevina, L. V., ibid., d., p 541. (209) Gusev, S. I., Shalamova, G. G., ibid., 22, 1357 (1967). (210) Ibid., 23, 686 (1968). (211) Gusev, S. I., Vin’kova, V. A., ibid., 22, 1039 (1967). (212) Guyon, J. C., Marks, J. Y., ANAL. CHEM.,40, 837 (1968). (213) Hadjiiannou, T. P., Valkana, C. G., Chim. Chron., 32, 89 (1967). (214) Hajima, I., Einaga, H., Bull. Chem. SOC.Jap., 42, 1558 (1969). (215) Hanocq, M.,Molle, L., Anal. Chim. Acta, 40, 13 (1968). (216) Hareis. L. G.. ANAL.CHEM., . 41,. 597 (1963): (217) Hargis, L. G., Anal. Lett., 1, 471 ( 1968). (218) Hashitani, H., Yoshida, H., Motojima, K., Bunseki Kagaku, 18, 136 (1969). (219) Hashmi, M. H., Adil, A. S., Ajmal, A, I., Mikrochim. Acta, 1969, 921. (220) Hashmi, M. H., Ajmal, A. I., Adil, A. S., ibid., p 778. (221) Hashmi, M. H., Iftikhar, A. A., Rashid, A., Qureshi, T., ibid., p 100. (222) Hashmi, 31.H., Rashid, A., Ali, S., Ebsen, A., ibid., 1968, 608. (223) Hauser, T. R., Kolar, RI. H., ANAL. CHEM.,40, 231 (1968). (224) Havel. J.. Chem. Listv. 62, 1250 ’ (1968). ’ (225) Haworth, D. T., Munroe, J. H., ANAT.. -.... CHEM.,41, 529 (1969). (226) He24th ... Company, Benton Harbor, Mich., Buflietin: “701” Spectrophotometer. (227) Heller, H. R., Jr,, Guyon, J. C., ANAL.CHEM.,40, 773 (1968). (228) Hi son, H. G.,, Raimondo, R. F., Tunst& E. W., ibzd., 41, 1474 (1969). (229) Hnilickova, pvl., Sommer, L., Talanta, 16, 83 (1969). (230) Hodnik, J., Rud.-Met. Zb., 1966, 559. (231) Hofer, A., Heidinger, R., Z . Anal. Chem., 230, 95 (1967). (232) Ibid., 233, 415 (1968). (233) Zbid., 246, 125 (1969). (234) Hofmann, K. K., Hamm, R., ibid., 232, 167 (1967). (235) Holland, W. J., Bozic, J., Talanta, 15. 843 11968). (236); Holland, W. J., Bozic, J., Gerard, J., Anal. Chim. Acta, 43, 417 (1968). (237) Holland. W. J.. Soules. D.. Anal. ‘ L;tt.;2, 167’(1969).’ ~
(238) Holland, W. J., Stupavsky, S., ibid., 2, 71 (1969). (239) Holzbecher, Z., Collect. Czech. Chern. Commun., 32, 4393 (1967). (240)Horiuchi, Y., Ham, S., Iwate Diagaku Kogakubu Kenkyu Hokoku, 19, 97 (1966). (241) Horiuchi, Y., Xishida, H., Bunseki Kagaku 16, 769 (1967). (242)Ibid., 16, 1018 (1967). (243)Ibid., 17, 1486 (1968). (244)Ibid., p 756. (245)Ibid., p 1233. (246)Hunter Associates Laboratory, Inc., Fairfax, Va., Bulletin (1969). (247)International Sales Associates, Langhorne, Pa. 19047. (248)Iordanov, S. D., Ivanov, C. P., C. R. Acud. Bulg. Sci., 21, 451 (1968). (249)Irving, H. M. N. H., Tomlinson, W. P., Talanta, 15, 1267 (1968). (250)Isagai, K., Isagai, K., Nippon Kagaku Zasshi, 88, 1292 (1967). (251)Isai, S.V.,Vas'kovskii, V. E., Zzv. S i b . Otd. Akad. 1Vauk. SSSR., Ser. Khim. Nauk, 1969, 142. (252) Ishibashi, K., Kohara, H., Abe, K., Bunseki Kagaku, 17, 154 (1968). 1253) Ishibashi. N.. Kohara.' H.. Fuka' michi. K.. ibid..~'1524. (254)-Ishida, R., ' H o k k a i d o Kyoiku Diagaku Kiya, Sec. 24, 17,94 (1967). (255)Ishida, R., Sawaguchi, T., Bunseki Kagaku, 16, 590 (1967). (256)Ishihara, Y., Naniwa, T., Yokokura, S., Uchida, S., ibid., 17, 991,(1968). (257)Ishii, H., Einaga, H., ibzd., 18, 230 (1969). (258) Issopoulos, P. B.,Chim. Chron., A., 33, 75 (1968). (259)Ivanov, V. ?VI., Busev, A. I., Popova, L. V., Bogdanovich, L. I., Zh. Anal. Khim., 24, 1064 (1969). (260) Iwasaki, I., Ozawa, T., Yamaya, K., Obmori, T., Kogyo Yosai, 96, 40 (1966). (261)Jacob, D. R., Anal. Chim. Acta, 44, 449 (1969). (262)Janik, B., Holiat, D., Chem. Anal. (Warsaw), 14, 357 (1969). (263)Jarrell-Ash Division, Fisher Scientific Co., Waltham, Mass. 02154. (264)Jasim, F., Talanta, 16, 752 (1969). (265)Jeffery, P. G., Kerr, G. O., Analyst, 92, 763 (1967). (266)Jensen, R. E., Gergman, X . C., Helvig, R. J., AXAL.CHEM.,40, 624 (1968). 12671 Jones, J. C. H.. Analust, , 93, 214 (1968). ' (268)Joshi, A. P., hIunshi, K. N., Microchem. J., 12, 447 (1967). (269)Kaessner, B., Angermann, W., 2. Chem., 7, 438 (1967). (270)Kagawa, M., Bunseki Kagaku, 16, 669,671 (1967). (271)Kai. F.. Anal. Chim. Acta, 44, 242 (1969). (272)Kajiyama, R., Watanabe, &I.,Bunseki Kagaku, 15, 153 (1966). (273)Kajiyama, R., Yamaguchi, K., ibid., 16, 908 (1967). (274) Kalb, A. J., Ehrlich-Rogozinsky, S., Microchem. J.,14, 478 (1969). (275)Kalt, XI.'B.,.Boltz, D. F., ANAL. CHEM.,40, 1086 (1968). (276)Kamaeva, G., Talipov, S. T., Dzhiganbaeov, R. K., Usb. Khim. Zh., 11, 14 (1967). (277)Kaneko, K., Tatsuno, T., Kaneko, H.. Goseki. S.. Bunseki Kaaaku, 16, 1364 (1967j. ' (278)Karvanek, M., Curda, D., Kelarova, A., Sb. Vys. Sk. Chern.-Technol. Praze, Potravina. 19, 45 (1967). (279)Kasi-ura, K., Chem. A'nal. (Warsaw), 14, 375 (1969). (280) Kasiura, K., Olesiak, K., ibid., p 139.
Table I.
Constituent W
Y
Material
... *..
... ...
Zn
... ...
... ... ... ...
...
Aluminum Cadmium Iron oxide Water Zr
~
[Wavelength; molar absorptivity] Heteropoly acid Kinetic: H202, iodide Thiocyanate, tin(I1) chloride, zephiramine benzyldimethyltetradecylammonium
... ... ... .*. ... ... ... Rutiie Steel U alloy Zr alloy
bromide (CHCl3) Methythymol blue [605;2 x 1041 Chrome azurol S Eriochrome cyanine R. C. MolvbdoohosDhoric acid reduction Chrome azurdl S, zephiramine ~510;4.4x 1041 Dye MAAH-S-1, diphenylquanidine (CHCIa) N,h'-Bis(2-hydroxy-5-sulfophenyl)-C-cyanoformazan (615;3.7 x 1041 Xvlenol orange Orotic acid " Dithizone (CClr) PAN Dithizone (CHCL) 4-(6-Methoxy-3-methylbenzothia-3-oliumazo )K-methyldiphenylamine, thiocyanate (CeHa-BuaPO,) Gallocyanine XIS [620;2.4 X lo4] Pyrocatechol violet [625;3.5 x 1041 Alizarin red S, trien-actylammonium chloroacetate (PhMe) 1538: 2.7 x 1041 blvcinecresol red [4io;1.5 x 1041 Picraminaxo H [619;1.39 X lo4] Robinetin 3,5,6,7,3',4'-Hexahydroxyflavone 1,5-Bis(2-hydroxy-5-sulfophenyl)-3-cyanoformazan 1.32 x 1041 2-(l-Hydroxy-4,6-dinitro-2-phenylazo)-1,8dihydroxynaphthalene-3,6-disulfonate Xylenol orange Alizarin red S Pyrocatechol violet PAN (PhMe) [555;3.6 X 1U4] 4-[ (2-N-hlethylanabasinyl)azo] resorcinol (CHCh) [530;2.7x 1041
Table II.
~
I
Photometric Methods for Metals (Continued) Method or Reagent
Constituent
As
,
B
Material
Mio&
Lead Phosphor us
... ...
...
..* Ni alloys Soils Steel Steel Steel Steel Tin UaOs Zirconium
... ...
Photometric Methods for Nonmetals Method or Reagent
Ref[Wavelength; molar absorptivity] erences Silver p-sulfamoylbenzoic acid (120) Heteropoly blue (430) Heteropoly blue (192) Indirect: molybdoarsenic acid, thiocyanate (326) Cur cumin (203) Curcumin; proprionic anhydride, oxalyl (605) chloride Rhodamine B-tetrafluoroborate (BuOAc) (422) ~555;1.2 x 1031 Malachite green-tetrafluoroborate (314 1 [645; 1.2 x 1041 Ferroin 1PhXO2) (410) [ ~ 53.6 ; x 1031 Quinalizarin 1629) c 1'-Dianthrimide (374) Curcumin (587) Curcumin (MeCOEt-CHCL) (194) Quinalizarin (116) 1-Hydroxy-4-p-toluidineanthraquinone (64) Methylene blue-tetrafluoroborate (CZH~CL) (340) Methylene blue (CZHICL) (423) Methylene blue (C2H4C12) (567) Indirect: cuproin-Cu(1) (CHIC1 or PhCl) (641) Ferroin (n-butyronitrile) (18) (Continued)
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
163R
Table II.
Photometric Methods for Nonmetals (Continued) Method or Reagent
Material
... ...
Gas
Organics
... *..
... CN -
... ...
..*
F-
HF HzOz
I-
Organics Plutonium Welding fluxes Pickling baths
... ... *.
.. .. Tellurium
... ... ... ... water
NO NOz-
Nz04
... ...
... Nos-
... ...
... ...
...
P
Cu alloys Ferro alloys Ferromagnetic film Iron Metals, alloys Methyltrichlorosilanes Nb steel Steel Steel Tricresylphosphate, P-glycerophosphoric acid
S 52-
HzS
164R
Metals Organics Steel
... ...
Ref[Wavelength; molar absorptivity] erences Mercury(I1)-methylthymol blue (414) Bromate, fuchsin (366) Iodide, dimethylamino-pphenylenediamine (433, 588 ) Mercury (11)-methylthymol blue Indirect: mercury(I1) thiocyanate, iron(II1) Indirect: Reo4--furildioxime Indirect: ReO4--furildioxime Indirect: perchlorato-bis(2,9-dimethy1-1,10phenanthroline) copper(1) (EtOAc) Indirect: cuproin-copper(1) (CHCls or PhCl) Tris( 1,10-phenanthroline)-iron(II)triiodide Chloramine T, pyridine-2-thiobarbituric acid Indirect: mercury(II), dithizone ( C c h ) Ce(III)-(1,2-dihydrox anthraquinone-3ylmethylamine-N,ddiacetic acid (MezSO) [625; 1.53 X lo4] Ta-malachite green (CEHE) Eriochrome cyanine R Differential: cerium(II1) alizarin Iron(II1) acetyiacetonate 1,2-Di-4-pyridylethylene [442; 3.65 x 1041 Xylenol orange; Ti p-Dimethylaminobenzaldehyde Indirect: silver diethvldithocarbamate: copper(I1) (CC14) “ ~435;2.3 x 1041 Catalytic: 3,3’-dimethylnaphthidine,HzOz, HCOzH Mercury(I1) methylthymol blue Catalytic; Ce(1V) As(III), Fe(II), sulfosalicylic acid Mercaptobenzothiazole, bis-2-benzothiazolyl disulfide (CHCl, :CCLl ~400; 1.3 X 1041 Bis(2,4,6-tri-2-pyridyl-5-triazine)-iron(II) Benzhydrazide Nesslers [436; 1 X lo8] Thymol-chloroamine T (isoamyl d c . ) o-Phenylphenol, hypochlorite Turbidimetric: 12-molybdophosphoric acid (158; Indophenol blue 515) Nz03 (63.2) ‘ Diazotization, 2-naphthol-&sulfonic acid (290) [480; 1.2 ,x 1041 Pararosaniline methanesulfonic acid (353) Acylsulfoxonium (CEHE) (6601 Brucine (163) Nitrato bis(2,9-dimethyl-l,lO-phenanthro- (643) line) copper(1) (MIBK) Reduction, Griess (408) Indirect: cuproin-copper(1) (MIBK) (6411 Brucine (16s) Heteropoly blue (357) Molybdovanadophosphoric acid (hexanone)
+
(5%5)
Crystal violet, molybdo hosphate Heteropoly blue (MIBZ) Heteropoly blue (BuOAc) Heteropoly blue (isoamyl alc.)
(3611 ( 427 )
Heteropoly blue Heteropoly blue Molybdovanadophnsphoric acid Heteropoly blue [725; 2.15 X lo4]
(359) (230) (520) (2941
or
(266)
(29)
Molybdophosphoric acid (amyl OAc) [380; 2.5 X lo1] Methylene blue (570) Methylene blue ($48) Decolorized methyl violet, formaldehyde (600) Indirect: silver diethyldithiocarbamate, cop (303) per(1I) (CHCla) 1435; 1.1 x 1041 N,N-Dimeth 1 pphenylenediamine, (2341 iron(II1) &:ride (Continued)
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
(281) Kasiura, K., Sytniewska, Z., ibid., 13, 177 (1968). (282) Katyal, M., Goel, D . P., Singh, R . P., Talanta, 15, 711 (1968). (283) Katyal, M., Gupta, B. P., Bhardwaj, D. K., Singh, R. P., Anal. Chem. Acta, 42, 173 (1968). (284) Katyal, M., Trikha, K. C., Singh, R. P., Z. Anal. Chem., 230, 107 (1967). (285) Kawashima, T., Tanaka, M., Anal. Chim. Acta, 40, 137 (1968). (286) Kaye Scientific Corp., Stamford, Conn., Bulletin. (287) Keil. R.. Z. ilnal. Chem.. 244. ‘ 165 (1969). ’ (288) Keil, R., ibid., 245, 362 (1969). (289) Khovyakova, R. F., Blokhin. V. E.. Zhuikova, L. K., Marenkova,-’I. Tu’.: Tr. Urol. Politekh. Inst., 163, 28 (1967). (290) Kieruczenko, A., Chem. Anal. (Warsaw), 12, 1031 (i967). (291) King. H. G. C.. Pruden. G.. Analust. ‘ 94; 39,(i969). ’ (292) Ibzd.. D 43. (293j Kiri,’ hf., Suzuki, J., Fukala, DECHEMA (Deut. Ges. Chem. paralewesen) Monogr. 62 (1102-1 I 9 (1968). (294) Kirsten, W. J., Microchem. J., 12, 307 (1967). f295) Kislh, P. P., Onoshchenko, Y. K., Zh. Vses. Khim. Obshebest. 14, 355 \-
I
,
“
I
(1969).
P., Zimomrya, I. I., Zavod.
7 ) Kitano, Y., Ishiba S., Bunseki Kagaku (298) Kletenik, Y. I. A.. Sekretova. L. V..’Zh. k 24, 707 (1969).‘ (299) Klofutar, C., Podobnik, B., Krasovec, F., Stular, V., Mikrochim. Acta, 1060. _ _ 758. ._ (300) Klug, 0. N., Metlenko, S., Kobasz, Lapok, 99, 400 (1966). (301) Kohava, H., Ishibashi, N., Hanamura, Y.. Urno. K.. Bunseki Kaaaku, 15, 938 (1966). (302) Kollmorgen Color Systems, Marketing Division, Attleboro, Mass. (303) Komatsu, S., Nomura, T., Ito, T., Nippon Kagaku Zasshi, 90, 171 (1969). (304) Komatsu, S., Piomura, T., Salto, M., ibid., 88, 1124 (1967). (305) Komatsu, S., Nomura, T., Usui, Y., ibid., p 1164. (306) Kominami, B., Ono, H., Bunseki Kagaku, 18, 578 (1969). (307) Konusova, V. V., Opochanskaya, L. D., Tsykhanskii, V. D., Zh. Anal. Khim., 24, 400 (1969). (308) Korenman, I. &I.,Karakina, L. N., Tr. Khim. Khim. Tekhnol., 1967, 114. (309) Korenman, I. M., Kochetkova, T. M., ibid., p 111. (310) Korenman, I. >I., Sheyanova, F. R., Boyarkina, V. V., ibid., p 129. (311) Korenman, I. M., Sheyanove, F. R., Kalugin, A. A., ibid., 1968, 127. (312) Korenman, I. M., Sheyanova, F. R., Karyakina, L. N., ibid., 1, 109 (1967). (313) Korenman, I. M., Sheyanova, F. R., Maslennikova, S. N., Zavod. Lab, 34, 1300 (1968). (314) Korenman, I. M., Sidorenko, L. V., T r . Khim. Khim. Tekhnol, 1968, ,
I
I
.
-1-2i.
(315) Korenman, I. M., Vorontsova, T. E., ibid., p 131. (316) Korenman, I. M., Zimina, G. M., ibid., 1967, 107. (317) Korenman, Y. I., ibid., p 113. (318) Korol’kova, V. S., Put,nims, J., Gudrinieca, E., Latv . PSR Zinat Akud. Vestis, Kim. Ser. 1967,. 266;. C.A., 67, 12194%. (319) Ifprtum, G., “Reflectance Spectroscopy, Springer-Verlag, New York, 1969.
(320) Kosolapova, S. N., Podgornova, V. S., Talipon, S. T., Zh. Anal. Khim., 24, 880 (1969). (321) Kotsuji, K., Yoshimura, Y., Ueda, S., Anal. Chim. Acta, 42, 225 (1968). (322) Kovalenko, P. N., Shchemeleva, G. G., Sekolova, L. S., Zh. Anal. Khim., 22. 1845 (19671. (323) Kowaliski,’P., J . Opt. SOC.Amer., 59, 125 (1969). (324) Kozlicka, XI., Kubica, M., Chem. Anal. (Warsaw), 12, 1315 (1967). (325) Kristalev, P. V., Kristaleva, L. B., Shor, N. A., Tr. Kom. Anal. Khim., Akad. iVauk SSR. Inst. Geokhim. Anal. Khim., 16, 19 ’(1968). (326) Kuznetsova, V. K., ibid., p 33. (327) Lambdin, C. E., Wesley, V., Jr., ANAL.CHEM.,40, 2196 (1968). (328) Lambert, J. L., Manzo, D. J., ibid., p 1354. (329) Lapid, Y., Pickholtz, Y., Israel J . Chem., 7, 159 (1969). (330) Lara, S. H., Bernasconi, G. F., Woerner, V. R., Balbanoft, K. L., Rev. Real. Acad. Cienc. Exactas, Fis. Natur. Madrid, 61, 107 (1967); C . B . , 68, 908614. (331) Lasarev, A. I., Zh. Anal. Khim., 23, 1050 (1968). (332) Lassner, E., Pueschel, R., Katzengruber, K., Mikrochim. Acta, 1969, 527. (333) Lassner, E., Pueschel, R., Katzengruber, K., Schedle, H., ibid., p 134. (334) Lazar, C., Popa, G., Cristescu, C., Anal. Chim. Acta, 47, 166 (1969). (335) Lazarev, A. I., Lazareva, V. I., Zh. Anal. Khim., 23, 36 (1968). (336) Leblond, A. M., Boulin, R., Chim. Anal. (Paris), 50, 171 (1968). (337) Lee, K. S., Lee, D. W., Hwang, J. Y., ANAL. CHEM.,40, 2049 (1968). (338) Lehmann, G., Gerhard, W., 2. Anal. Chem., 238, 415 (1968). (339) Leibman, K . C., Ortiz, E., ANAL. CHEM.,40, 251 (1968). (340) Lel’chuk, Y. L., Ivashina, V. A., Izv. Tomsk. Polztekh. Inst., 148, 157 (19671
(34i)-Leonard, M. A., Pr’agi, F. I., Talanta, 16, 1104 (1969). (342) Likussar, W., Beyer, W., Wawschinek, O., Mikrochim. Acta, 1968, 735. (343) Likussar, W., Wawschinek, O., Beyer, W., Anal. Chim. Acta, 40, 538 (1968). (344) Lingane, P. J., ibid., 47, 529 (1969). (345) Lozanovskeya, I. N., Petrashen, V. I., Zh. Anal. Khim., 22, 1196 ( 1967). (346) Luke, C. L., ibid., 39, 447 (1967). (347) Lukin, A. &I., Petrova, G. S., Etingen, N. B., Molot, L. A,, Arkhangel’skaya, A. S., U.S.S.R. Patent 213,405, 1968. (348) Lukin, A. RI., Petrova, G. S., Kalina. N. A.. Zh. Anal. Khim.., 24., 39 (1969). (349) Lumina, G. E., Zavod. Lab, 34, 1307 11968’1. (3iO) &Donald, C. W., Carter, R., Jr., ANAL.CHEM.,41, 1478 (1969). (351) McKaveney, J. P., ibid., 40, 1276 (lQ68) ,----,.
(352) Ma, T. S., Nazimowitz, W. L., Mikrochim. Acta, 1969, 345. (353) IJIachora, I., Dikladalova, J., Chem. Tech. (Berlin), 19, 767 (1967). (354) Macovsch, M. E., Talanta, 16, 443 (1969’). (355) hiad%on, B. L., Guyon, J. C., ANAL. CHEM.,39, 1706 (1968). (356) Madison, B. L., Guyon, J. C., Anal. Chim. Acta, 42, 415 (1968). (357) Naekawa, S., Kato, K., Bunseki Kaguku, 15, 967 (1966). (358) Ibid., 16, 422 (1967). (359) Ibid., p 485. (360) Ibid., 17, 70 (1968).
Table
Constituent SO2
II.
Photometric Methods for Nonmetals (Continued)
Method or Reagent Ref[Wavelength; molar absorptivity] erences p-Nitroaniline (103) Pararosaniline hydrochloride ( 29%) Indirect: tris( 1,lO-phenanthroline) iron(I1) (639) chloranilate (PhNOz) Turbidimetric: BaS04 (628) Barium-nitchromazo (45) Mercury (I1)-methylthymol blue (413) [620; 1.40 X lo4] Perrhenate, tin(I1) chloride (400) Indirect: copper(II), pyridine (CHCls) (133) Dithizone (CCla) (524) ~415;7.11 x 1041 Cyclohexanone (1288) Iodide, malachite green, or brilliant green (477) Multiplication: 3,3’-diaminobenzidine (109) 2-Mercaptobenzothiazole (57) Catalytic; reduction of 1,4,6,11-tetraazo(285) naphthacene Na-p-hydrazinebenzenesulfonate (485) Heteropoly blue (isoamyl alc.) (428) Bromide (392)
Material
Soh2-
... ... ...
SCN -
... ...
Se
... ... ...
...
...
...
... ... ... Si Te
Ge and GeO2 Cu alloys
...
Table 111.
Constituent Acetyl Acids, organic Acrylamide Alcohols
Photometric Methods for Organic Compounds
Material Sugars
...
... ... ... ...
Alcohols, ... polyhydric Alcohol Fumarate esters Aldehydes Benzoic acid D-Allose ... ... Allyl isothiocyanate Amines ...
Amines, sec. aromatic p-Amines, aromatic Amines, heterocyclic m-Aminophenol p- Aminophenol Aminopyridine Aniline Benzene Benzyl alcohol Benzyl benzoate Biphenyl Carboxylic acid, aromatic Carboxylic acid, hydrazides Carboxyl Carbonyls Citric acid Cyclo alkanols Cysbeine Dialkyl hydrazines Dimethylamine Diphenylamine Formaldehyde Glycolaldehyde
Method or Reagent Iron(II1)-acetylhydroxamic acid Iron(III)-5-nitrosalicylate 4-Dimethylaminocinnamaldehyde Vanadium(V) maltolate Bis(8-hydroxyquinolyl)orthovanadate Nitrition, Griess reagent Lead(1V) acetate, chromotropic acid
...
Vanadium oxinate 2,4-Dinitrophenylhydrazine - Anthrone 3,6-Dinitrophthalic acid Pinacolonylpyridinium bromide Bis(4-dimethylaminopheny1)- [ 1-(p-
...
methanol Quinone dichlorodiimide
...
References
sulfophenyl)-3-methylpyrazolon-5-yl]-
9-Chloroacridine 3,5-Dinitrobenzoyl chloride
...
Iodate Silver nitrate-acetone ,.. Diazotization, naphthol ... Diazotization, 8-quinolinol ... Reduction; diazo reagent Cerium(IV), ferroin Benzoic acid Iron(II1) hydroxamate Benzoic acid Formaldehyde, iron(II1) But lrhodamine, or rhodamine 6 Zh. ) . &b ? ( Copper (11) Aniline
...
PoijAers
... ...
Dimethyl formamide
...
... ...
Glycols
...
Glyoxal Hydroperoxides, organic
...
... ...
Cerium(IV), ferroin 2,4-Dinitrophenylhydrazine,MeSOaH Iron(II1) Phenol, sulfuric acid Catalytic: reduction of silver(1) Reduction of nitrilotriacetoferrate(II1); 1,lO-phenanthroline Mercury(I1) oxidn, detn of aldehyde CS2 and copper(I1) [445; 4.25 X lo:] pNitrobenzenediazonium fluoroborate Phenylhydrazine Oxidn-HC104; 2,4-dinitrophenylhydrazine (CeH6) [560; 4.7 X,104] Periodate oxidn, 2,4-dinitrophenylhydrazine (CHC4) 3-Methyl-2-benzothiaxolinonehydrazine Griess reagent Zr naphthenate (catalyst); benzoyl (53) leuco methylene blue (Continued)
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
165 R
Table 111.
Photometric Methods for Organic Compounds (Continued)
Constituent Hydroxyl, phenolic a-Hydroxy-B,Pdimethvl-vbutyrofacione Ketones Malic acid Malonaldehvde Methanol Methylamines Naphthols 1-Naphthylamine rl’aphthylamines Kitrophenols Phenols Phenylenediamine m-Phenylenediamine Phthalic acid Phthalic acid esters Pyridine
Material Polymers
... Phenol
2,4-Dinitrophenylhydrazine Glyoxal 2,4-dinitrophenylhydrazine ... 2-Methvli nl ~ - n~d----, - PM Oxidn: n o a sulfite, chromotropic Lactic acid acid ... p-Benzoquinone ... Kinetic; methyl orange, bromatebromide 2-Naphthylamine Nitrosoantipyrine Diazotization, 1-na hthol Cationic red violet (&He) Amidopyrine, K3Fe (CN)6 Kinetic: bromination, methyl orange 1,3-Propanediol Ruthenium(II1) chloride-PPh (C6He) ... ... Chloranil, CuClz-Ph3P
...
... Aromatics
Pyrrolizidine alkaloids Resorcinol Starch Sulfamines Tartaric acid 1,3,5-Thiadiazine2-thiones Toluidines Urea
Method or Reagent Titanium(1V) chloride Hydroxylamine, iron(II1) chloride
...
Citric acid
...
\ - - - - ,
166R
(261)
(141) (239)
(96) (liit7\
&‘6j (665’)
(87)
(317) (308)
(313) (443) (487) (281)
(280)
Resorcinol, zinc(I1) chloride (119) Hydroxamate (338) Cyanogen bromide; 4,4’-diamino-2,2’- (173) stilbenedisulfonic acid Cyanogen bromide; p-phenylenedi(219) amine 4-(Dimethy1amino)benzaldehyde (66 ) Diazotization, p-nitroaniline Anthrone o-Diacetylbenzene 2-Naphthol Periodate oxidn, iodine liberation Copper(I1) salts
(438) (376) ($70) (117) (418)
Diazotization, 1-naphthol Hypochlorite, phenol
(309) (168)
(361) Ibid., p 597. (362) Majumdar, A. K., Saba, S. C., Anal. Chim. Acta, 44, 85 (1969). (363) Nalik, W. U., Sharma, C. L., Z. Anal. Chem., 244, 317 (1969). (364) RIanku, G. S., Bhat, A. N., Jain, B. D., Talanta, 14, 1229 (1967). (365) Mareva, S., Puzdrenkova, I., Stoyanova, T., Izv. Inst. Obshta JVeorg. Khim., Bulg. Akad. Xauk, 5 , 5 (1967). (366) Martin, F. XI., Vayreda, M. X., Inform. Quim.Anal., 21, 171 (1967). (367) Martirosov, A. E., Talipov, S. T., Dzhiyanbaeva, R. K., Usb. Khim. Zh., 12, 23 (1968) (368) Math, K . S., Bhatki, K. S., Freiser, H., Talanta, 16, 412 (1969). 1369) Matsuo, H., Cha ki, S., Bunseki Kagaku, 16; 551’(1967). (370’1 hlatsuo. H., Chaki, S., H[ara, S., ‘ ibid., 15, 125 (1966). (371) Ibid., 17,, 752 (1968). (372) Matsuo, T., Shida, J., Sacjaki, T., ibid., 16, 546 (1967). (373) SIattocks, A. R., ANAL.CHEM.,46, 1347 (1968). (374) llaurice, J., Ann. Agron., 19, 699 11968’1. (375) blaute, R. L., Benson, R. H., AIartelli, E., ANAL.CHEM.,40, 1380 (1968). (376) Medvedeva, A. P., Zavod. Lab., 34, 413 (1968). (377) Mellon. RI. G., ANAL.CHEM.,17, ‘ 81’11945). ‘ (378)‘Ibid.i 21, 3 (1949); 22, 2 (1950); 23. 2 (1951); 24, 2 (1952), 26, 2 (1954). (379); Mellon, h l . G., Boltz, D. F., Ibid., 28, 559R (1956); 30, 354R (1958); 32, 194R (1960); 34, 232R (1962). (380) Mesnard, P., Devaux, G., Fauguet, J., Bull. SOC.Pharm. Bordeax, 106, 191 (1967). ~
References
(199)
(381) Mikhel’son, P. B., Kalibina, L. V., Zh. Anal. Khim., 24, 261 (1969). (382) Milyukova, M. S., Savvin, S. B., ibid., 22, 751 (1967). (383) Minczewski, J., Rozycki, C., Z. Anal. Chem., 239, 158 (1968). (384) Minin, A. A., Barmina, G. A., Filippova, L. P., Uch. Zap., Perm. Gos Univ., 141,247 (1966). (385) Mirzakasimov, T. M., Rakhmatullaev, K. Z., Talipov, S. T., Uzb. Khim. Zh., 12, 29 (1968). (386) Rlisovic, J., Jovanovic, M. M., Glas. Hem. Drus.. Beoarad.. 32. 429 (1967). (387) ?doeller, G., Z. Anal. Chem., 245, 155 (1969). (388) Moskuin, A. F., Rzhevska a, N. N., Basner, M. E., Zh. Prakl. ipektrosk., 9, 33 (1968). (389) hlotojima, K.! Yamamoto, T., Kato. Y.. Bunsekz Kaaaku. ” , 18.. 208 (1969). ’ (390) Mukhedkar. A. J.. Kulkarni. S. B.. Chaphalkar, K’. P., ‘ J . Univ. ’Poona; Sci. Technol., 1966, No. 32, 47. (391) Munshi, K. N., Srivastava, S. C., Dey, A. K., J . Indian Chem. SOC.,45, 817 (1968). (392) Murashova, V. I., Bakunina, V. I., Sushkova, S. G., Tr. Ural. Politekh. Inst., 163, 42 (1967). (393) Murashova, V. I., Sushkova, S.G., Zh. Anal. Khim., 24, 729 (1969). (394) hfushran, S. P., Prakash, O., Awasthi, J . N., Microchem. J . , 14, 29 (1969). (395) Mustafin, I., Molot, L. A., Arkhangel’skaya, A. S., Zh. Anal. Khim., 22, 1808 (1967). (396) Mustafin, I. S., Shchukina, V. S., ibid., p 1338. (397) Muto, G., Migashita, H., Takata, Y., Bunseki Kagauk, 16, 946 (1967). \ -
ANALYTICAL CHEMISTRY, VOL. 42,
- I
NO. 5, APRIL 1970
(398) Nakamoto, K., McCarthy, P. J., Ed., “Spectroscopy and Structure of Metal Chelate Compounds,” 382 pp, Wiley, New York 1968. (399) Nazarenko, v‘. A., Antonovich, V. P., Zh. Anal. Khim., 24, 358 (1969). (400) Neas, R. E., Guyon, J. C., ANAL. CHEM.,41, 1470 (1969). (401) Neef, B., Doega, H. G., Proc. Conf. Appl. Phys.-Chem. Methods Chem. Anal., Buduvest. 1966. 105. (402) Nembdruk; A. A., Bezrogova, E. V., Zh. Anal. Khim., 23, 388 (1968). (403) Neumann, F. W., ANAL. CHEM., 41, 2077 (1969). (404) Neverovsky, E., Rev. Brasil, Quim. (Suo Paulo) 63, 331 (1967). (405) Nevzorov, A. N., Bychkov, L. A,, Sovrem. Metody Khim. Spektrol. Anal. Mater. 1967, 180; C.A., 68, 18414b. (406) Nicol, D. R., Rev. Sci. Instrum., 40, 1300 (1969). (407) Nimeroff, I., Nut. Bur. Stand. ( U . S.) Monogr., No. 104 47 pp, (1968). (408) Nishimura, M., datsunaga, K., Bunseki Kagaku, 18, 154 (1969). (409) Nishimura. M.. Nakava. S.. ibid.. 16: 463 11967): ’ (410j Ibid.’ 18, ’148 (1969). (411) Nisdioka, I., Matsuo, R., Okura, Y., h‘lomose, T., Yakugaku Zasshi, 88, 1281 (1968). (412) Nisli, G., Tounshend, A., Talanta, 15, 1480 (1968). (413) Nomura, T., Nippon KagakuZasshi, 88, 961 (1967). (414) Nomura, T., Komatsu, S.,ibid., 90, 168 (1969). (415) Nordschow, C. D., Tammes, A. R., ANAL.CHEM.,40, 465 (1968). (416) Nowicka-Jankowska, T., Proc. Conf. Avvl. Phus.-Chem. Methods Chem. Anal.. Bibpest; 1966, 187. (417). Obrenovic-Paligoric, I., Gal, I. J., Vajgand, V., Anal. Chim. Acta, 40, 534 (1968). (418) Obtemperanskaya, S. I., Chalenko, E. G., Moroz, N. S., Vestn. Mosk. Ilniv., Khim., 24, 83 (1969). (419) Ochsenfeld, W., Schmieder, H., U . S . At. Energy Comm. Rept. (KFK610), 23 pp (1967). (420) Okhanova, L. A.,Bol’shakova,L. A., Savvin, S. B., Zh. Anal. Khim., 23, 1562 (1968). (421) Okubo, T., Kojima, H., Bunseki Kagaku, 16, 1082 (1967). (422) Onishi, H., Nagai, H., ibid., 17, 345 (1968). (423) Zbid., 18, 164 (1969). (424) Onosova, S. P., Kuntsevich, G. K., Lisienko, D. G., Zh. Anal. Khim., 22, 1469 (1967). (423) Oskotskaya, E. R., Yampol’skii, M. Z., ibid., 23, 1307 (1968). (426) Ozawa, T., Bunseki Kagaku, 16, 435 (1967). (427) Pakalns, P., Anal. Chim. Acta, 40, 1 11968’1. (428) Ibid., p 328. (429) Ibid., 41, 283 (1968). (430) Ibid., 47, 225 (1969). (431) Pakalns, P., Ivanfy, A. B., ibid., 40, 517 (1968). (432) Paletta, B., Mikrochim. Acta, 1969, 956. (433) Parkhomenko, G. V., Teploukhova, G. S.,Tr. Metrol. Inst. SSSR, 96, 158 “
I
I
~
(1968). \----,.
(434) Patrovsky, V., Talanta, 16, 456 11969). (435) Pelczar, T., Mikrochim. Acta, 1968, 1295. (436) Pemberton, J. R., Diehl, H., Talanta, 16, 542 (1969). (437) Zbid., 16, 392 (1969). (438) Penn, R. Z., Shapiro, I. L., Zzv. Vyssh. Ucheb. Zavod. Khim.-Khim. Tekhnol, 11, 677 (1968).
(439) Perez-Bustamante, J. A,, Morell, G. C., Burriel-Marte, F., Anal. Chim. Acta, 44, 95 (1969). (440) Perkin-Elmer Corp., Norwalk, Conn., Data Sheet (1969). (441i Perkin-Elmer Cora.. Norwalk, Conn., Instrument New’s,‘ 19 (4), 11
I., (498) Sangal, S. P., Chemist-Analyst, 56, Anal. Chim. Acta, 46, 155 (1969). 101 (1967). (540) Short, W. A., Woods, J. W., Baker, (499) Sangal, S., Chim. Anal. (Paris), 50, B. R., Anal. J . M o d . Sci., 4, 279 131 (1968). (1967). (500) 321 (541) Shrivastawa, S. C., Munshi, K. N., Dey, A. K., Microchem. J., 14, 37 (1969). (542) Shuster, Y. A., Zaitsev, P. M., Antonenko, N. S., Zh. Anal. Khim., 22, 1388 (1967). (543) Sikorska-Tomicka, H., Chem. Anal. (503j Sarma, V. B., Suryanarayana, ?*I., (Warsaw), 12, 1291 (1967). 2. Anal. Chem., 240, 6 (1968). (544) Sikorska-Tomicka, H., Microchim. (504) Sarry, B., Lange, A., ibid., 241, Acta, 1969, 718. 186 (1968). (505) Sato, M., Hioki, R., J. Opt. SOC. (545) Sikorska-Tomicka, H., Z . Anal. Chem., 234, 414 (1968). Amer., 59, 349 (1969). (546) Sims, G. G., Ryan, D. E., Anal. (506) Savariar, C. P., Joseph, J., Anal. Chim. Acta, 44, 139 (1969). Chim. Acta, 47, 347 (1969). (547) Sinha, S. N., Sangal, S. P., Dey, (507) Savostina, V. M.,Kobyakova, S. A. K., Microchim. Acta, 1968, 899. O., Peshkova, U. M., Zh. Anal. Khim., (548) Skorko-Trybula, Z., Dobska, B., 23, 938 (1968). Chem. Anal. (Warsaw), 13, 557 (1968). (508) Savvin, S. B., Alimarin, I. P., (549) Slovak, Z., Fischer, J., Borak, J., Belova, T. Y., Okhanova, L. A., ibid. p 1117.‘ Talanta, 15, 83! (1968). (550) Soczewinski, E., Urban, T., Wolslki, (509) Savvin, S. B., Petrova, T. V., T., Chem. Anal. (Warsaw), 12, 1231 ibid., 24, 177 (1969). (1967). (510) Savvin, S. B., Propistova, R. F., Okhanova, L. A., Talanta, 16, 423 (551) Somidevamma, G., Sarma, M. S., (1969). Talanta, 14, 861 (1967). (511) Savvin, S. B., Propistova, R. F., (552) Sommer, L., Kuban, V., Anal. Strol’nikova, R. V., Zh. Anal. Khim., Chim. Acta, 44, 333 (1968). 24, 31 (1968). (553) Spacu, P., Mavrodin, M., Rev. (512) Sawicki, E., Engel, C. R., Elbert, Roum. Chim., 12, 1223 (1967). W. C., Talanta, 14, 1169 (1967). Spinco Division of Beckman Instru(513) Saxena, K., Dey, A. K., ANAL. (554) ments, Palo Alto, Calif. 94304, Bulletin. CHEM..40. 1280 (19681. (555) Spitz, H. D., Goudie, A. J., J . (514) Saxen;, K., Deyi’A. K., Indian J. Pharm. Sci., 56, 1641 (1967). Chem., 7, 7i 75 (1969). (556) Srivastava, K. C., Banerji, 8. K., (515) Schach, H. G., Limonologica, 4, Microchem. J., 13, 699 (1968). 431 (1966); C.A., C.A., 08, 68, le(4;JUU. 18430d. (557) Zbid.. D 621. (516) Scherz, H., Stehlik, G., Bancher, E., Kaindl, K., Mikrochim. Acta, 1967, (558) Srivastava, S. C., Dey, A. K., Chim. Anal. (Paris), 51, 131 (1969). 915. I
.
~
ANALYTICAL CHEMISTRY, VOL. 42, NO. 5, APRIL 1970
167 R
(559) Staats, G., Brueck, H., Z . Anal. Chem., 230, 271 (1967). (560) Stantor, N. B., Analyst, 93, 802 (1968). (561) Steams, E. I., “The Practice of Absorption Spectrophotometry,” WileyInterscience, New York, 1969. (562) Stewart, J. T., Shaw, T. D., Ray, A. B., ANAL.CHEM.,41, 360 (1969). (563) Stolyarov, K. P., Amantova, I. A., Talunta, 14, 1237 (1967). (564) Stolyarov, K. P., Pogodaeva, V. G., Kuz’minova, N. E., Vestn. Leningrad Univ., Fiz. Khim., 23, 133 (1968). (565) Strandjord, P. E., Clayson, K. J., ANAL.CHEM.,40, 2072 (1968). (566) Subbaraman, P. R., Indian J . Chem., 5,436 (1967). (567) Sudo, E., Ikeda, S., Bunseki Kagaku, 17, 1197 (1968). (568),Suten, A., Manin, C., Rev. Roum. Chzm., 13, 1201 (1968). (569) Syamasundar, K., Proc. Indian Acad. Sci., Sec. A , 67, 90 (1968). (570) Takeuchi, T., Fujishima, I., Yamada, hf., Bunseki Kagaku, 16, 1354 (1967). (571) Talipov, S.T., Podgornova, V. S., Kosolapova, S. N., Zh. Anal. Khim., 24, 409 (1969). (572) Talipova, L. I., Abramova, E. L., ParDiev. N. A.. Uzb. Khim. Zh.,. 11,. 21 (1967). (573) Talwar, U. B., Haldar, B. C., -4nal. Chim. Acta, 39, 264 (1967). (574) Tanaka, M., Kojima, I., ibid., 41, 75 (1968). (575) Tmanoiko, LI. AI., Lozovik, A. S., Zh. Anal. Khim., 24, 844 (1969). (576) Tarayan, V. M., Gaibakyan, A. G., Arm. Khim. Zh., 22, 471 (1969). (577) Tarayan, V. M., Vartanyan, V. V., ibid., 20, 932 (1967). (578) Tarayan, V. M., Vartanyan, S. V., Dokl. Akad. Nauk. Arm. SSR, 45, 121 (1967). (579) Tarayan, V. XI., Vartanyan, S. V., ibid., 47, 214 (1968). (580) Tarayan, V. M., Vartanyan, S. V., Eliazyan, L. A,, Zh. Anal. Khim., 24, 1040 (1969). (581) Tataev, 0. A., Akhmedov, S. A., Akhmedova, K. A,, ibid., p 834. (582) Tataev, 0. A,, Beschetnova, E. T., Yarysheva, E. A,, Guseinov, V. K., ibid., p 255. (583) Teploukhova, G. A,, Zavod. Lab., 33, 565 (1967). (584) Thierig, D., Umland, F., Z. Anal. Chem., 240, 19 (1968). (585) Tikhonov, V. N., Zh. Anal. Khim., 22. 886 (1967). (586)’ Tinari, R. D., Pande, U. C., Microchem. J . , 14, 138 (1969). (587) Tolk, A,, Tap; W. A., Lingerek, W. A,, Talanta, 16, 111 (1969). (588) Tolubara, A. I., Usatenko, Y. I., Khim. Technol, 9, 76 (1967). (589) Tomioka, H., Terajima, K., Bunseki Kagaku, 16, 698 (1967). (590) Tonosaki, K., Sakai, T., Bull. Chem. SOC.Jap., 42, 456 (1969). (591) Traub, A., Boltz, D. F., Mikrochim. Acta, 1969, 749. (592) Trautwein, N. L., Guyon, J. C., ANAL.CHEM.,40, 639 (1968). (593) Trautwein, N. L., Guyon, J. C., Anab. Chim. Acta, 41, 275 (1968).
168R
(594) Trusell, F. C., McKenzie, W. F., ibid., 40, 350 (1968). (595) Tselinskii, Y. K., Lapitskaya, E. V., Metodu Anal. Khim. Reaktivon Pr0.n.. 15. s --i (1968). (596) Tserkovnitskaya, I. A,, Kustova, N. A., Zh. Anal. Khim., 23, 72 (1968). (597) Turner, Associates, Palo Alto, Calif. 94303, Bulletin (1969): (598) Uchiumi, A., Iida, H., Nippon Kaoaku Zasshi. 89. 776 11968). (599)“Ueda, K.,’ Yimamoto, Y., Ueda, S., ibid., 88, 1177 (1967). (600) Ueki, K., Nagaoka Kogya Tanki Daigaku Koto Semmon Gakko Kenkyu K i G , 4, 155 (1968). (601) Uhlemann. E., Plath, M.,’ Anal. ‘ Chim. Acta, 44, 442 (1969): (602) Uhlemann, E., Waiblinger, K., ibid., 41. ~.~ 161 (1968). (603) Ujihira, Y., Roy, J. C., Can. J . Chem., 46, 1233 (1968). (604) Uno, T., Yamamoto, M., Bunseki Kagaku, 17, 306 (1968). (605) Umstrom. L. R.. Anal. Chim. Acta, 43, 47Y (isssj. (606) Usatenko, Y. I., Arishkevich, A. M., Moroz, A. A., Zh. Anal. Khim., 22, 1
,
I
~~
\ - - - - ,
(608) Vasilenko, V. D., Shanya, M. V., Bolbas, V. I.,Zh. Anal. Khim., 22, 1818 (1967). (609) Vasilikiotis, G. S., Tossidis, J. A., Microchem. J., 14, 380 (1969). (610) Vasyntinskii, A. I., Kisel, N . A., Matveeva, E. N., Zh. Anal. Khim., 23, 1847 (1968). (611) Vickers Instruments, Inc., Malden, Mass. 02148, Bulletin (1968). (612) Villarreal, R., Barker, S. A., ANAL. CHEM.,41, 611 (1969). (613) Villarreal, R., Krsul, J. R., Barker, S. A., ibid., p 1420. (614) Visreswariah, K., Jayaran, M., Microchem. J., 14, 448 (1969). (615) Vogel, J., Guentor, A., Vinzelbeg, B., Fischer, P., Koch, O., Waltz, N., German Patent 1,282,330, 1968. (616) Von Kuiawa. R.. Mikrochim. Acta. ‘ 1969, 193. (617) Vrchlabskyi, M., Bocek, P., Spisy Prirodoved. Fak. Univ. Brno N o . 480, 63 (1967). (618) Wada, H., Nakagawa, G., Anal. Lett., 1, 687 (1968). (619) Waggener, W. C., Weinberger, A. J., Stoughton, R. W., Appl. Spectrosc., 22, 545 (1968). (620) Walker, H. H., Poole, J. A., Talanta, 16, 739 (1969). (621) Walker, S., Straw, H., “Spectroscopy, Vol. 2: Ultra-violet, Visiblg! Infra-red and Raman Spectroscopy, 386 DD. Barnes and Noble. New York, 1967: ‘ (622) Warner and Swasey Co., Flushing, N. Y. 11354, Bulletin. (623) Weichelselbaum, T. E., Plumpe, W. H., Jr., Mark, H. B., Jr., ANAL. CHEM.,41 (3), 103A (1969). (624) Wendlant, W. W., Ed., “Moder: Aspects of Reflectance Spectroscopy, 254 pp, Plenum, New York, 1968. (625) West, W., Ed., “Chemical Applications of Spectroscopy, Vol. IX, ,2nd Rev. Ed., Part One, 486 pp, Wiley, New York, 1968.
ANALYTICAL CHEMISTRY, VOL. 42,
.
,
I
A
NO. 5, APRIL 1970
(626) Wheeler, G. L., Andrejack, J., Wiersma, J. H., Lott, P. F., Anal. Chim. Acta, 46, 239 (1969). (627) Wietoska, E., Chem. Anal. (Warsaw), 13, 413 (1968). (628) Wimberley, J. W., Anal. Chim. Acta, 42, 327 (1968). (629) Wojtowica, hI., Kubica, M., Chem. Anal. (Warsaw), 13, 65 (1968). (630) Wood, D. F., Jones, J. T., Anal. Chim. Acta, 47, 225 (1969). (631) Wood, D. F., Jones, J . T., Analyst, 93, 131 (1968). (632) Wright, C. M., Orr, A. A,, Balling, W. J., ANAL.CHEY.,40, 29 (1968). (633) Wu, A,, Smith, W. T., Jr., ibid., p 1578. (634) Wyszecki, G., J . Opt. SOC.Amer., 59, 129 (1969). (635) Yagnyatinskaya, G. Y., Nazarenko, V. A., Zavod. Lab., 34, 1047 (1968). (636) Yagodin, G. A., Chekmarev, A. M., Zh. Anal. Khim.. 22. 1345 11967). (637) Yamaguchi, ’ R.: Machida,’ T., Yakugaku Zasshi, 88, 1383 (1968). (638) Yamamoto, K., Nishio, T., Sippon Kaqaku Zasshi, 89, 1214 (1968). (639)-Yamamoto, Y:, Hiiro, K., Tanaka, T., Bunseki Kagaku, 17, 206 (1968). (640) Yamamoto, Y., Kikuchi, S., Hayashi, Y., Kumamorn, T., ibid., 16, 931 (1967). (641) Yamamoto, Y., Okamoto, N., Tao, E., Anal. Chim. Acta, 47, 127 (1969). (642) Yamamoto, Y., Okamoto, N., Tao, E., Bunseki Kagaku, 16, 1034 (1967). (643) Yamamoto, Y., Okamato, N., Tao, E., Nippon Kagaku Zasshi, 89, 399 ( 1968). (644) Yamamoto, Y., Tsubouchi, RI., Okimura, I., Bunseki Kagaku, 16, 1176 (1967). (645) Yokoyama, RI., Tokeshima, T., ANAL.CHEM.,40, 1344 (1968). (646) Yonekubo, T., Satake, M.,Matsumoto,T., BunsekiKagaku, 18,640(1969). (647) Yonemura, G. T., Kasuya, M., J . Opt. SOC.Amer., 5 9 , 131 (1969). (648) Yotsuyanagi, T., Goto, K., Nagayama, M.,Bunseki Kagaku, 18, 184 (1969). (649) Yotsuyanagi, T., Goto, K., Nagayamo, hf., Aomura, K., ibid., p 477. (650) Yusupov, M., Dzhiyanbaeva, R. K., Talipov, S. T., Nauch. Tr. Tishkent. Gos. Univ., 284, 61 (1967). (651) Zak, B., Epstein, E., Baginski, E. S., Microchem. J., 14, 155 (1969). (652) Zhantalai, B. P., Sukbareva, Z. I., Zavod. Lab., 34, 25 (1968). (653) Zhivopistsev, V. P., Selezneva, E. A , , Bragina, Z. I., Lipchina, A. P., Zh. Anal. Khim., 23, 1391 (1968). (654) Zhivopistsev,. V.. P., Selezneva, E. A., Bragina, 2. I., Lipchina, A. P., Uch. Zap. Perm. Gos. Univ., 141, 213 (1966). (655) Ziegler, M., Ziegeler, L., Talunta, 14, 1121 (1967). (656) Zimmermann, M., “Photometric Metal and Water Analvsis with Filter Photometers and Spectrophotometers,” 3rd Ed., Wissenschaft, Verlag Stuttgert, Germany 1967. (657) Zolotov, Y. A., Bagreev, V. V., Zh. Anal. Kham., 22, 1423 (1967).