8 Insertion Reactions of Metal Complexes RICHARD F. HECK
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
Hercules Powder Co., Wilmington,
Del., 19899
The
insertion reaction
is e n c o u n t e r e d
with
surprising frequency in organometallic c h e m istry.
Many
undergo metal
types
the
compounds.
containing
of unsaturated molecules
reaction
with
For
many
example,
metal-hydrogen,
different compounds
metal-carbon,
metal-oxygen, metal-nitrogen, metal-halogen, a n d metal-metal bonds have reacted or
more
of t h e
pounds:
carbon
acetylenes,
with
one
following unsaturated commonoxide,
carbonyl
olefins, dienes,
compounds,
and
cya-
n i d e s . T h e r e are still m a n y g a p s i n o u r k n o w l e d g e o f t h e i n s e r t i o n r e a c t i o n , but a l r e a d y i t has
been
applied in
numerous
unusual
and
useful chemical syntheses.
J h e r e a c t i o n m e c h a n i s m of t h e v a r i o u s m e t a l c o m p l e x e s c l e a r l y h a v e m u c h i n common.
T h e r e c e n t l y recognized
i n s e r t i o n r e a c t i o n a p p e a r s t o be a p a r t i
c u l a r l y g o o d e x a m p l e of a r e a c t i o n w h i c h is g e n e r a l a m o n g t h e m e t a l
compounds.
I n t h e f o l l o w i n g d i s c u s s i o n I i n t e n d t o p o i n t o u t t h e g e n e r a l i t y of t h e i n s e r t i o n reaction w i t h examples from the literature a n d from our o w n work. c o m p l e t e series of s u b s t a n t i a t e d c a r b o n y l complexes,
insertion reactions
involves
T h e most
the
organocobalt
a n d these r e a c t i o n s w i l l f o r m t h e n u c l e u s of t h e d i s c u s s i o n .
T h e i n s e r t i o n r e a c t i o n is t h e a d d i t i o n of a c o v a l e n t m e t a l c o m p o u n d , M - X , t o a neutral unsaturated molecule,
: Y , forming a new complex where the unsaturated
m o l e c u l e h a s i n s e r t e d i t s e l f between t h e m e t a l a n d t h e a t o m w h i c h w a s i n i t i a l l y bonded to the metal. M-Z T h e unsaturated molecule
+
:Y
->
(1)
M - Y - Z
: Y m a y be c a r b o n m o n o x i d e , a n olefin, a
diene, a n acetylene, a carbonyl compound,
various unsaturated
c o m p o u n d s , o r p r o b a b l y a n y of s e v e r a l o t h e r u n s a t u r a t e d m a t e r i a l s . p a r t of t h e c o v a l e n t m e t a l c o m p o u n d
is u s u a l l y a m e t a l - h y d r o g e n ,
metal-oxygen, metal-halogen, metal-nitrogen, or metal-metal group.
conjugated
carbon-nitrogen T h e reactive metal-carbon, T h i s reaction
181
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
182
i s a c t u a l l y a s p e c i a l case of a n a d d i t i o n r e a c t i o n i n w h i c h t h e m o l e c u l e t h a t i s a d d i n g is a covalent metal compound.
Since the covalent m e t a l c o m p o u n d is completely
a d d e d i n one s t e p , a c i s a d d i t i o n i s e x p e c t e d . T h e i n s e r t i o n r e a c t i o n i s u s u a l l y m o r e c o m p l i c a t e d t h a n e q u a t i o n (1) w o u l d indicate.
T h e e v i d e n c e n o w a v a i l a b l e suggests t h a t M - X m u s t be c o o r d i n a t e l y
unsaturated i n order t o react w i t h : Y .
T h e r e f o r e , before t h e i n s e r t i o n r e a c t i o n c a n
occur, a p r e l i m i n a r y step is often required to f o r m M - Z f r o m a coordinately s a t u r a t e d species.
F u r t h e r m o r e , t h e i n s e r t i o n r e a c t i o n m a y n o t go t o c o m p l e t i o n o r
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
m a y n o t e v e n go a t a l l , unless t h e r e i s a n o t h e r l i g a n d m o l e c u l e p r e s e n t t o f o r m a s t a b l e , c o o r d i n a t e l y s a t u r a t e d c o m p o u n d f r o m M - Y - Z as t h e final p r o d u c t .
Carbon
Monoxide
Insertion
Metal H y d r i d e s . reduction
Reaction
T h e simplest reactions i n this group are the various catalytic
reactions
of
carbon
monoxide.
Methane
or
higher
hydrocarbons,
m e t h a n o l o r h i g h e r a l c o h o l s , a n d a v a r i e t y of o t h e r o x y g e n a t e d o r g a n i c c o m p o u n d s m a y be f o r m e d , d e p e n d i n g u p o n t h e c a t a l y s t a n d r e a c t i o n c o n d i t i o n s (23).
There
i s l i t t l e e v i d e n c e a b o u t t h e m e c h a n i s m of these r e a c t i o n s , b u t t h e i n i t i a l s t e p i n e v e r y example is p r o b a b l y a carbon monoxide insertion i n t o a m e t a l hydride, followed b y reduction reactions. Ο ΜΗ
+
CO
^±
Ο
M C H
M H
+
H C H
(2)
O M H
+
H C H
^±
MCH OH — ^
M H
2
+
(3)
CH3OH
T h e h y d r i d e i n v o l v e d i s p r o b a b l y o n t h e s u r f a c e of t h e c a t a l y s t . A s i m i l a r m e c h a n i s m m a y e x p l a i n t h e f o r m a t i o n of f o r m a t e esters i n t h e h y d r o f o r m y l a t i o n r e a c t i o n (90, 64). Ο
I HCo(CO)
4
+
CO
^
Ο
HCCo(CO)
(4)
4
Ο
II
li
HCCo(CO)
4
-f
ROH
Metal-Carbon Compounds.
-»
HCOR
+
HCo(CO)
(S)
4
T h e e x i s t e n c e of t h e i n s e r t i o n r e a c t i o n a n d , i n
f a c t , t h e first c o n v i n c i n g e x a m p l e of i t , w a s r e p o r t e d b y C o f f i e l d a n d c o - w o r k e r s i n 1957.
T h e y showed that alkylmanganese pentacarbonyls would absorb
monoxide,
sometimes
reversibly, to
form acylmanganese
T h e y f u r t h e r s h o w e d i n 1959 (17), b y m e a n s of C
1 4
carbon
pentacarbonyls
(16).
labeled C O , t h a t w i t h m e t h y l -
manganese pentacarbonyl, a coordinated carbon monoxide inserted rather t h a n the incoming carbon monoxide. / - C O
/
I
CH —Mn(CO) 8
4
+
C*0
-
CH COMn(C*0) 3
5
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
(6)
8.
HECK
Insertion
Reaction*
183
These reaction rates have been measured, but the d a t a do not distinguish between t w o l i k e l y m e c h a n i s m s (14).
A n i m p o r t a n t q u e s t i o n , therefore, i s u n a n s w e r e d :
does t h e c o o r d i n a t e d c a r b o n y l g r o u p i n s e r t before t h e n e w C O is a d d e d o r does t h e i n c o m i n g C O push the coordinated c a r b o n y l i n t o the a c y l position? T h e m e c h a n i s m of t h e reverse r e a c t i o n , t h e e l i m i n a t i o n of C O f r o m a n a c y l m e t a l c a r b o n y l to form a n a l k y l m e t a l c a r b o n y l , is also not clear.
T w o possibilities exist:
the acylmetal carbonyl m a y s i m p l y dissociate into a coordinately unsaturated a c y l m e t a l complex a n d C O a n d then rearrange to the a l k y l m e t a l c a r b o n y l :
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
-co RCOMn(CO)
^ ~
5
RCOMn(CO)
4
->
RMn(CO)
(7)
5
or, t h e a c y l c a r b o n y l m a y b e c o m e a c o o r d i n a t e d c a r b o n y l as a n o t h e r c a r b o n y l g r o u p departs.
i f RCOMn(CO) ^^-"^
— R M n ( C O )
4
T h e a l k y l c o b a l t tetracarbonyls react completely monoxide, forming acylcobalt tetracarbonyls RCo(CO)
+
4
T h e r e a c t i o n is r e v e r s i b l e (33).
CO
(8)
6
analogously w i t h
carbon
(43).
^±
RCOCo(CO)
(9)
4
T h e cobalt derivatives are considerably more
reactive t h a n the corresponding manganese compounds.
Acetylcobalt tetracar-
b o n y l dissociates a b o u t 2250 times more r a p i d l y t h a n the corresponding a c e t y l m a n g anese p e n t a c a r b o n y l does (33). T h e g e n e r a l i t y of t h e c a r b o n m o n o x i d e i n s e r t i o n r e a c t i o n is c l e a r f r o m r e p o r t s t h a t m e t h y l c y c l o p e n t a d i e n y l i r o n d i c a r b o n y l (16), num
t r i c a r b o n y l (66),
ethylcyclopentadienylmolylbde-
alkylrhenium pentacarbonyls
c a r b o n y l b i s p h o s p h i n e s (34),
alkylrhodium dihalo
(50),
a l l y l n i c k e l d i c a r b o n y l h a l i d e s (35),
and
mono-and
d i - a l k y l d e r i v a t i v e s of t h e n i c k e l , p a l l a d i u m , a n d p l a t i n u m b i s p h o s p h i n e h a l i d e s (9), also undergo the reaction.
T h e r e a c t i o n of G r i g n a r d reagents (24), a n d of b o r o n
a l k y Is (51) w i t h c a r b o n m o n o x i d e p r o b a b l y t a k e s p l a c e b y t h e same m e c h a n i s m . W h e t h e r c o o r d i n a t i o n of t h e c a r b o n m o n o x i d e is r e q u i r e d before i n s e r t i o n c a n t a k e p l a c e i n a l l these e x a m p l e s is n o t c l e a r .
B u t since i t is r e q u i r e d i n t h e a l k y l -
m a n g a n e s e p e n t a c a r b o n y l r e a c t i o n , i t is n o t u n r e a s o n a b l e t o e x p e c t t h e same t o be t r u e i n t h e o t h e r cases. A s expected, coordinating molecules other t h a n C O can react a n d result i n the s h i f t of a c o o r d i n a t e d C O t o a n a c y l C O . with
alkylmanganese pentacarbonyls
to
C y c l o h e x y l a m i n e , for e x a m p l e , r e a c t s produce acylmanganese
tetracarbonyl
c y c l o h e x y l a m i n e c o m p l e x e s (59). RMn(CO)
6
+
C H NH 6
U
->
2
RCOMn(CO) (C H NH ) 4
6
u
2
(10)
S i m i l a r l y , a l k y l c o b a l t t e t r a c a r b o n y l s r e a c t w i t h t r i p h e n y l p h o s p h i n e (44, 45)
or
w i t h p h o s p h i t e s (36) t o g i v e h i g h y i e l d s of a c y l c o b a l t t r i c a r b o n y l t r i p h e n y l p h o s phines or phosphites. RCo(CO)
4
+
PR
3
—
RCOCo(CO) PR 3
3
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
(11)
184
M E C H A N I S M S O F I N O R G A N I C REACTIONS Metal-Oxygen Compounds.
A
few
examples
of t h e
m o n o x i d e i n t o m e t a l - o x y g e n g r o u p s h a v e been r e p o r t e d .
i n s e r t i o n of
carbon
T h e best k n o w n i s t h e
r e a c t i o n of m e c u r i c a c e t a t e i n m e t h a n o l s o l u t i o n w i t h c a r b o n m o n o x i d e , f o r m i n g m e t h o x y c a r b o n y l m e r c u r i c a c e t a t e (83) w h i c h p r o b a b l y i n v o l v e s t h e f o l l o w i n g s t e p s (32): CH COOHgOCOCH 3
+
3
CH OH 3
CH COOHgOCH 3
+
3
—
CH COOHgOCH 3
CO
->
+
3
HOCOCH
CH COOHgCOOCH 3
(12)
3
(13)
3
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
T h e f o r m a t i o n of f o r m a t e esters i n t h e h y d r o f o r m y l a t i o n r e a c t i o n (90, 64) m a y b e e x p l a i n e d b y a C O - a l k o x i d e i n s e r t i o n r e a c t i o n as w e l l a s b y t h e C O - h y d r i d e insertion mechanism mentioned above.
A l d e h y d e s formed i n the h y d r o f o r m y l a t i o n
r e a c t i o n c a n be r e d u c e d b y c o b a l t h y d r o c a r b o n y l (27) p r e s u m a b l y b y w a y of a n a d d i t i o n of t h e h y d r i d e t o t h e c a r b o n y l g r o u p (90, 2).
If the intermediate i n the
reduction is a n a l k o x y c o b a l t c a r b o n y l , carbon monoxide
insertion followed
by
h y d r o g é n a t i o n w o u l d g i v e f o r m a t e esters (90, 64). RCHO
+
RCH OCHO
+
2
HCo(CO)
HCo(CO)
^±
RCH OCo(CO) II llCO
(CH ) COCo(CO) 3
3
4
|CO (CH ) COCOCo(CO) P(C H ) 3
3
3
6
5
3
+
C O
2
CO
ROH
CH2=CHC00R
+
2
~CH =CHCONi(CO) X
CO
CH2=CHC0X
(53)
HNi(CO) X
+
Ni(CO)
CH2=CHC0X
2
2
4
+
ROH
CH2=CHCOOR
+
H X
(54)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
I t h a s been v e r y d i f f i c u l t t o o b t a i n d i r e c t e v i d e n c e o n t h e m e c h a n i s m of t h e a c r y l a t e s y n t h e s i s because t h e i n t e r m e d i a t e c o m p o u n d s a r e e x t r e m e l y r e a c t i v e . B o r o n (13) a n d a l u m i n u m h y d r i d e s (104) a d d cis t o a c e t y l e n e s , f o r m i n g s u b stituted vinylmetal compounds.
H y d r o l y s i s of these c o m p o u n d s p r o v i d e s a r o u t e
t o cis-olefins. "" B He
+
2
2
1
6C HÔC=CC H5 2
C H5~]
C2H5
/
2B — C = C
*
2
\ H
I
(55)
H+
C H§
C2H5
2
\
/
/
c=c
\
H
H
Metal-carbon compounds
Metal-Carbon Compounds. also.
J;
add
to
acetylenes
A l k y l - or acyl-cobalt carbonyls undergo insertion reactions readily w i t h a
large v a r i e t y of a c e t y l e n e s .
D i s u b s t i t u t e d acetylenes a n d highly branched mono-
a c e t y l e n e s g i v e m a i n l y a single t y p e of p r o d u c t , τ τ - b u t e n o l a c t o n y l c o b a l t t r i c a r b o n y l d e r i v a t i v e s (34).
F o r example, acetylcobalt t e t r a c a r b o n y l a n d 3-hexyne react i n a
few h o u r s a t r o o m t e m p e r a t u r e t o g i v e a g o o d y i e l d of 2,3-diethyl-x-(2, 4 ) - p e n t e n o 4-lactonyl cobalt tricarbonyl, I X .
T h e r e a c t i o n seems t o i n v o l v e t h e i n s e r t i o n
of t h e a c e t y l e n e b e t w e e n t h e a c e t y l a n d c o b a l t t r i c a r b o n y l g r o u p s , p e r h a p s b y w a y of a n i n t e r m e d i a t e ττ-complex ( V ) , t o g i v e c o m p l e x V I .
T h i s complex can then undergo
a C O i n s e r t i o n r e a c t i o n , f o r m i n g V I I w h i c h p r o b a b l y e x i s t s as t h e 7 r - a c r y l y l t y p e complex ( V I I I ) .
T h e latter c o m p o u n d can then cyclize b y a t h i r d insertion reac
tion ; this t i m e the terminal a c y l c a r b o n y l inserts between the other a c y l group a n d the cobalt tricarbonyl group, producing the observed product, I X .
CH COCo(CO) 3
^
4
CH COCo(CO) 3
3
+
(56)
CO
C H§C= CC He 2
2
1 CH COCo(CO) 3
3
+
C H C=CC H 2
6
2
6
^
|_CH COCo(CO) J 3
3
V
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
196
M E C H A N I S M S O F I N O R G A N I C REACTIONS (57) C2H5C2H5
CH COC=C—Co(CO) 3
3
VI C H5C Hg
C2H5C2H5
2
CH COC=CCo(CO) 3
+
3
CO
^
2
CH COC=CCOCo(CO) 3
3
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
VII Ο COCH
C2H5 QHg
1
/ 0 Ηδ
CH
2
3
/ l \ CO
c
\
C H C 2
Co(CO)
5
Co CO
3
\ /
\ CO
3
/
c
IX
(58)
ο
T h e final p r o d u c t c a n be i s o l a t e d e a s i l y as t h e t r i p h e n y l p h o s p h i n e c o m p l e x . VIII T h i s r e a c t i o n is a l s o general as f a r as t h e a c y l c o b a l t c a r b o n y l is c o n c e r n e d , b u t t h e y i e l d s v a r y w i d e l y d e p e n d i n g u p o n w h i c h a c e t y l e n e i s u s e d (34).
Presumably, the
presence of s u b s t i t u e n t s o n t h e a c e t y l e n e f a v o r s t h e c y c l i z a t i o n step r a t h e r t h a n t h e f o r m a t i o n of l i n e a r p r o d u c t s . t h e c y c l i z a t i o n becomes. compounds formed.
T h e larger t h e s u b s t i t u e n t s t h e m o r e f a v o r a b l e
If c y c l i z a t i o n does n o t t a k e place r e l a t i v e l y r a p i d l y , l i n e a r
a n d p o l y m e r s of a c e t y l e n e ,
o r of a c e t y l e n e
a n d C O are
probably
T h u s , these r e a c t i o n s d e m o n s t r a t e t h e i n s e r t i o n r e a c t i o n of b o t h a c e t
ylenes a n d ketonic c a r b o n y l groups. A n o t h e r c l e a r e x a m p l e of a n a c e t y l e n e i n s e r t i o n r e a c t i o n w a s r e p o r t e d C h i u s o l i (15).
H e observed
by
t h a t a l l y l i c halides react c a t a l y t i c a l l y w i t h n i c k e l
c a r b o n y l i n a l c o h o l i c s o l u t i o n , i n t h e presence of C O a n d a c e t y l e n e , t o f o r m esters of cis-2,5-hexadienoic
acid.
T h e intermediate i n this reaction is v e r y p r o b a b l y a
i r - a l l y l n i c k e l c a r b o n y l h a l i d e , X , w h i c h t h e n undergoes a c e t y l e n e i n s e r t i o n f o l l o w e d b y C O i n s e r t i o n a n d a l c o h o l y s i s o r a c y l h a l i d e e l i m i n a t i o n (35).
Acetylene is
o b v i o u s l y a c o n s i d e r a b l y b e t t e r i n s e r t i n g g r o u p t h a n C O i n t h i s r e a c t i o n since w i t h a c e t y l e n e a n d C O , t h e h e x a d i e n o a t e is t h e o n l y p r o d u c t , w h e r e a s , w i t h o n l y C O , t h e 3 - b u t e n o a t e ester is f o r m e d (15).
[See R e a c t i o n 59].
R e a c t i o n 59 differs f r o m t h e c o b a l t - a c e t y l e n e i n s e r t i o n m e n t i o n e d a b o v e b e cause t h e c o b a l t prefers t o i n s e r t C O before t h e a c e t y l e n e , a n d t h e n i c k e l t h e reverse. W h e t h e r o r n o t t h i s difference results f r o m specific effects of t h e i r - a l l y l n i c k e l s y s t e m is n o t k n o w n ; b u t i t is a g o o d p o s s i b i l i t y since t h e a l l y l i c d o u b l e b o n d i s p r o b a b l y c o o r d i n a t e d t o t h e n i c k e l t h r o u g h o u t the r e a c t i o n .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Insertion
CH2=CHCH X
+
2
Reactions
Ni(CO)
197
^±
4
CH2==CHCH Ni(CO) X 2
+
2
2C0
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
—CO H
CH —CH=CH 2
\
2
/ CH
2
X/
CO
\
CH
2
X
X
CH2=CH—CH
COOR
2
2COI
\
/
/
c=c
Η CH =CH- CH 2
r
+
HX
+
Ni(CO)
\ Η
COX
2
\
/ G=C
Η
+
Ni(CO)
4
Η
IROH CH2=CH—CH
COOR
2
\ / Η
c=c
+
HX
/ \ Η
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
4
(59)
198
M E C H A N I S M S O F I N O R G A N I C REACTIONS T h e f o r m a t i o n of t h e b u t e n o l a c t o n e c o m p l e x , X I I , b y t h e a c t i o n of c a r b o n
m o n o x i d e o n a c e t y l e n e d i c o b a l t h e x a c a r b o n y l c o m p l e x e s , X I , (89) seems t o be a closely related reaction.
I t p r o b a b l y involves the following steps :
R (CO) Co-
-Co(CO)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
3
3
+
R
I I
3CO
(CO) CoCOC=CCOCo(CO) I* 4
c
8
ι ι
R
(60)
XI R R—C-
-C=0
I
_ R — C
R—C
• \
Ο
\ /
R—C
c
c
Co(CO)
/ \
(CO) Co
Co(CO)
3
Co(CO)
3
3
c I ο
/ \
(CO) Co
4
c
-c=o
R—C-
I
COCo(CO)
4
3
\ /
cο XII U n d e r more vigorous conditions, complex X I I can a p p a r e n t l y a d d more acetyl ene a n d c a r b o n m o n o x i d e , f o r m i n g a b i f u r a n d i o n e , X I I I ( I , 79, 82).
A reasonable
m e c h a n i s m for t h e d i o n e f o r m a t i o n w o u l d be a C O i n s e r t i o n , t h e n a n a c e t y l e n e i n sertion, a n d another C O insertion, followed b y cyclization b y ketone insertion, a n d finally
a Co2(CO) elimination. 8
XII
+
CO
H—cH—c
H—C
-c=o b
C H 2
(co)^^ \:ocorco)8
C=0
« 2
H—C
A O
y
(CO)4Co
^ COCH=CHCo(CO)t CO
-c=o
H—C-
II H—C Cos(CO)
8
+
\
C
/
H—C-
(CO)4Co^C
c
XIII
/ /
C—Co(CO)4
ο / \ co=
CH
(62)
3
I 1,3,5-(CH ) C H C=CHCH 3
3
6
2
3
Trimethylchromium reacts with diphenylacetylene to give hexaphenylbenzene and tetraphenylcyclopentadiene.
T h e latter compound may have been formed by
insertions and a cyclization reaction (97).
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
Several cyclopentadienyl (alky 1)metal carbonyl derivatives have reacted with acetylenes. the
In some examples, insertion reactions may also be involved, although
mechanisms
have
not
been
investigated.
Cyclopentadienyl (methyl)iron
dicarbonyl with diphenylacetylene gave a 1 0 % yield of cyclopentadienyltetraphenylcyclopentadienyliron (71). CO
I Fe—CH
3
+
C H C=CC H e
5
e
6
-
I CO CeHi
,
y
CgHe
\
I
/ CeHs Similarly, acetylene itself gave ferrocene.
(63)
ι CeHs
Cyclopentadienyl(methyl)molybdenum
tricarbonyl reacted with diphenylacetylene to produce some tetraphenylcyclopen tadiene.
T h e corresponding ethylmolybdenum derivative gave some tetraphenyl-
methylcyclopentadiene.
T h e cyclizations involved in these reactions and
the
trimethylchromium reaction above are quite unusual and certainly deserve further study. Wilke has shown that aluminum alkyls add readily to acetylenes, giving the expected adducts (105). (CîHe),Al
+
HC==CH
->
(C H )2A1CH=CHCH CH 2
5
2
3
(64)
T h e reported addition of triphenylaluminum to diphenylacetylene to form 1, 2, 3triphenylbenzaluminole (22) is another clear example of an acetylene insertion, this one being followed by a cyclization reaction. C H —C— e
C H CsCC H 6
6
e
6
+
(C H ) Al e
6
3
-
6
C H —C e
II
6
I
(65)
\ / V Al
I CeHg T h e polymerization of acetylene by Ziegler catalysts very likely involves metal alkyl-acetylene insertion reactions also (26).
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O f I N O R G A N I C REACTIONS
200
#-Butyllithium has been added to diphenylacetylene, but the reaction is com
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
plicated by metalation of the aromatic system (69).
COt 2-n-C H»Li 4
+
C H C=CC H 6
6
e
5
(66)
C H 4
9
Ο
COOH
^X/Vc.H.
+
V
Metal-Oxygen Compounds.
Clear examples of the addition of transition
metal alkoxides to acetylenes are not known; however, the addition of trialkyltin alkoxides has been reported.
Triethyltin methoxide,
for example, reacts with
dimethyl acetylenedicarboxylate to give the vinyltin derivative X V I (C H )3SnOCH3 2
6
+
CH OCOC=CCOOCH 3
(63).
-*
3
COOCH
8
(C H ) SnC=C—COOCH3 2
5
8
OCH, (67)
XIV Metal-Halogen Compounds.
Mercuric salts react readily with acetylenes,
forming various products, depending upon the salt and reaction conditions.
Mer
curic chloride appears to undergo a clean insertion reaction with acetylene, giving aj-2-chlorovinylmercuric chloride in the vapor phase (72,
73).
CI 120°C. HgCl
2
+
HC=CH
HgCl \
•
/
(68)
c=c / Η
\ Η
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Insertion
Reactions
201
In solution, the trans isomer is produced, presumably because external chloride ion is adding to the acetylene-mercuric chloride x-complex (72, Compounds
with M e t a l — M e t a l Bonds.
metal-metal bonds to acetylenes are rare.
Additions
of
73). compounds
with
Perhaps the addition of acetylenes to
cobalt octacarbonyl (29) should be considered an insertion reaction even though the metal-metal bond is not broken since the acetylene finally is bonded to both metal
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
atoms.
RC=CR
+
Co (CO) 2
/ \
(CO) Co-
8
8
\
-Co(CO)
-1-
8
2C0
(69)
c I R
Similar acetylene
addition reactions
carbonyl dimer (93).
take place with bis-cyclopentadienylnickel
Changing from carbonyl to cyanide ligands seems to allow
the formation of a true vinyl derivative.
T h u s , potassium
pentacyanocobaltate,
which may react as a dimer with a cobalt-cobalt bond (20), reacts with acetylene to give the adduct X V (31).
T h e product was thought to be the trans isomer, but
the data were not conclusive. (CN) Co
H
B
\ K [Co(CN) ] e
6
+
2
HC^CH
K
/ C (70)
e
C
/ \ H
Co(CN) J 6
XV If it is the trans isomer, the product m a y be formed b y a radical rather than insertion reaction.
Insertion
Reactions
of Carbonyl
Metal Hydrides.
Compounds.
It is likely that the reduction of aldehydes to alcohols by
cobalt hydrocarbonyl (27) is an example of a carbonyl insertion reaction with a metal hydride.
It is not clear which way the hydrocarbonyl adds to the carbonyl groups
—whether it forms a cobalt-carbon bond (2), or a cobalt-oxygen bond Ο
OH
I
RCH
(90).
HCo(CO)4
I
+
HCo(C0)
8
^
R—C—Η
>
I Co(CO)
8
RCH OH 2
+
Co (CO) 2
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
7
(71)
202
M E C H A N I S M S O F I N O R G A N I C REACTIONS
or Ο
OCo(CO)
I
RCH
+
HCo(CO)
—
4
3
HCo(CO)4
I
R—C—Η
>
Η RCH 0H
+
2
Co (CO) 2
(72)
7
A k n o w n r e a c t i o n of c o b a l t h y d r o c a r b o n y l suggests t h a t t h e c o b a l t - c a r b o n m a y be p r e f e r r e d .
bond
I t has been reported that, under rather vigorous conditions,
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
acetaldehyde or formaldehyde react w i t h C O a n d a cobalt catalyst to give α-hydroxy a c i d s o r esters i n a l c o h o l s o l u t i o n (7).
T h e intermediate w i t h the
carbon-cobalt
b o n d p r o b a b l y is u n d e r g o i n g a C O i n s e r t i o n r e a c t i o n , f o l l l w e d b y a h y d r o l y s i s o r alcoholysis reaction. OH
OH
I
I
R—C—H
+
CO
—
ROH
R—C—Η
I
•
I
Co(CO)
CO
3
I Co(CO)
3
OH
I R—CHCOOR
+
HCo(CO)
(73)
3
If t h e f o r m a t i o n of f o r m a t e esters u n d e r h y d r o f o r m y l a t i o n c o n d i t i o n s i n v o l v e s t h e c a r b o n y l a t i o n of a n a l k o x y c o b a l t c a r b o n y l as suggested p r e v i o u s l y (90),
this
w o u l d be e v i d e n c e t h a t c o b a l t h y d r o c a r b o n y l a d d s t h e reverse w a y t o a c y l g r o u p s . S i n c e t h e f o r m a t i o n of f o r m a t e esters c a n be e x p l a i n e d as w e l l b y a C O i n s e r t i o n i n t o a c o b a l t - h y d r o g e n g r o u p f o l l o w e d b y a l c o h o l y s i s , h o w e v e r , t h e d a t a w o u l d be e x p l a i n e d best i f a c o b a l t - c a r b o n b o n d w a s f o r m e d i n t h e h y d r i d e r e d u c t i o n of a c y l compounds. O f course, m a n y p t h e r n o n t r a n s i t i o n m e t a l h y d r i d e s w h i c h reduce
carbonyl
c o m p o u n d s a r e k n o w n ; b u t t h e r e is l i t t l e c o n c l u s i v e e v i d e n c e o n t h e m e c h a n i s m o f these r e a c t i o n s . Metal-Carbon Compounds.
W e l l - k n o w n e x a m p l e s of t h e i n s e r t i o n r e a c t i o n of
a c y l c a r b o n y l groups between m e t a l a n d a l k y l groups include the G r i g n a r d reaction a n d a l k y l l i t h i u m reactions.
T h e r e is evidence t h a t the c a r b o n y l c o m p o u n d a n d
t h e G r i g n a r d reagent c a n f o r m a 1:1 c o m p l e x before r e a c t i n g .
T h u s , 4-methoxy-2',
é ' - d i m e t h y l b e n z o p h e n o n e f o r m e d a 1:1 c o m p l e x w i t h m e t h y l m a g n e s i u m b r o m i d e w h i c h was observed spectroscopically.
T h e r a t e of d i s a p p e a r a n c e of t h e c o m p l e x
w a s e q u a l t o t h e r a t e of a p p e a r a n c e of G r i g n a r d r e a c t i o n p r o d u c t
(87),
Ο C H
3
- ^
/
>
~
C
CH
~
H
\
^ — O C H
+
3
CH MgBr
->
3
1:1 c o m p l e x
(74)
3
OMgBr
c
h
°
-
0
—
CH,
?
— C
H
^
s
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
C
H
i
8.
HECK
Insertion Reactions
203
A s t r u c t u r e for t h e i n t e r m e d i a t e has n o t been p r o p o s e d , b u t a c a r b o n y l ττ-complex is a good possibility. T w o e x a m p l e s of t h e a d d i t i o n of c o b a l t - c a r b o n c o m p o u n d s t o c a r b o n y l g r o u p s were g i v e n a b o v e u n d e r a c e t y l e n e r e a c t i o n s , s u g g e s t i n g t h i s r e a c t i o n is a l s o g e n e r a l l y important. Metal-Oxygen Compounds.
T r i a l k y l t i n a l k o x i d e s a r e r e m a r k a b l e for
the
v a r i e t y of a d d i t i o n r e a c t i o n s t h e y u n d e r g o w i t h c a r b o n y l a n d t h i o c a r b o n y l c o m pounds.
B l o o d w o r t h a n d D a v i e s h a v e r e p o r t e d r e a c t i o n s of t r i - w - b u t y l t i n a l k o x i d e s
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
w i t h isocyanates, carbon dioxide, sulfur dioxide, isothiocyanates, carbon bisulfide, chloral, a n d ketene.
T h e r e a c t i o n s o b s e r v e d were as follows : R
I (w-C H ) SnOCH 4
9
3
+
3
(w-C H ) SnOCH 4
9
3
3
(w-C H ) SnOCH 4
9
R N = C = 0
3
3
->
(w-C H ) SnNC0 CH 4
9
3
2
+
C0
2
->
(w-C H ) SnOC0 CH
+
S0
2
->
(w-C H ) SnOS0 CH
4
9
4
3
9
2
3
2
(75)
3
(76)
3
(77)
3
R
I (n-C H ) SnOCH 4
9
3
+
3
(w-C H ) SnOCH 4
9
3
R N = C = S +
3
CS
2
—
-+
(w-C H ) SnNCSOCH 4
9
3
(w-C H ) SnSCSOCH 4
9
3
(78)
3
(79)
3
OCH
3
I («-C H ) SnOCH 4
9
3
(w-C H ) SnOC H 4
9
3
2
5
+
3
+
CC1 CH0
(«-C H ) SnOCHCCl
3
CH2=C=0
4
->
9
3
(80)
3
(n-C H ) SnCH C0 C H 4
9
3
2
2
2
5
(81)
S i n c e these r e a c t i o n s t a k e p l a c e i n n o n p o l a r s o l v e n t s u n d e r m i l d c o n d i t i o n s , i n s e r t i o n m e c h a n i s m s m a y be o p e r a t i n g (8). Metal-Nitrogen Compounds. r e a c t i o n s of
V e r y l i t t l e w o r k has been d o n e o n a d d i t i o n
metal-nitrogen compounds.
The
trimethyltin
dimethylamide ap
p a r e n t l y does u n d e r g o r e a c t i o n s a n a l o g o u s t o t h o s e of t h e t r i a l k y l t i n a l k o x i d e s j u s t discussed.
F o r e x a m p l e , t h e f o l l o w i n g r e a c t i o n s were o b s e r v e d w i t h c a r b o n d i o x i d e ,
c a r b o n d i s u l f i d e , a n d p h e n y l i s o c y a n a t e (57) : (CH ) SnN(CH ) 3
3
3
(CH ) SnN(CH ) 3
3
3
+
2
2
C0
+
CS
-*
2
2
(CH ) SnOCON(CH ) 3
3
3
(CH ) SnSCSN(CH ) 3
3
3
(82)
2
(83)
2
CeHs
I
S i m i l a r r e a c t i o n s h a v e been r e p o r t e d for t h e r e l a t e d s i l i c o n c o m p o u n d s , t h e d i a l k y l (CH ) SnN(CH ) + C H N=C=0 -+ (CH ) SnNCON(CH ) (84) a m i n o t r i m e t h y l s i l i c o n e s (10). S i n c e these r e a c t i o n s a r e c a t a l y z e d b y a m i n e s , t h e y 3
3
3
2
6
5
3
3
are p r o b a b l y ionic.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
3
2
204
MECHANISMS OF INORGANIC
Insertion
Reactions
of Carbon-Nitrogen
REACTIONS
Groups
M e t a l Hydrides a n d M e t a l - C a r b o n C o m p o u n d s .
Numerous
examples
of
r e d u c t i o n s a n d a d d i t i o n s of m e t a l h y d r i d e s o r a l k y l s t o u n s a t u r a t e d c a r b o n - n i t r o g e n compounds are k n o w n .
I shall mention only two examples pertinent to this discus
sion. T h e S c h i f f bases f r o m s u b s t i t u t e d b e n z a l d e h y d e s a n d a n i l i n e s w i l l c a r b o n y l a t e i n t h e presence of c o b a l t c a r b o n y l , as c a t a l y s t a t 225°C. p r o d u c i n g p h t h a l i m i d i n e
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
d e r i v a t i v e s , X V I , i n g o o d y i e l d (70, 52).
T h i s r e a c t i o n m a y be e x p l a i n e d as a n
C H = N
+
CO (85)
a d d i t i o n of c o b a l t h y d r o c a r b o n y l , f o r m e d b y d e h y d r o g e n a t i o n r e a c t i o n s , t o t h e carbon-nitrogen double bond t o give a cobalt-nitrogen b o n d w h i c h then undergoes C O insertion.
T h e c a r b o n y l cobalt derivative then m a y a d d to the a r o m a t i c system
and eliminate cobalt hydrocarbonyl, giving the observed product, X V I .
A related
Co(CO) C H = N
4
CH —Ν 2
+
HCo(CO)
4
(86)
CO
COCo(CO)
4
Ν—CH —Ν 2
xvi
4
m e c h a n i s m i n v o l v i n g t h e a d d i t i o n of c o b a l t o c t a c a r b o n y l t o t h e c a r b o n - n i t r o g e n d o u b l e b o n d as t h e i n i t i a l s t e p has been p r o p o s e d b y S t e r n b e r g a n d W e n d e r
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
(90).
8.
HECK
Insertion
Reactions
205
S i m i l a r r e a c t i o n s a r e p r o b a b l y i n v o l v e d i n t h e c a r b o n y l a t i o n r e a c t i o n s of o x i m e s (80), o x i m e ethers (53), n i t r i l e s (81), a n d of d i a z o c o m p o u n d s (53). T h e w e l l - k n o w n a l k y l a t i o n of f e r r o c y a n i d e i o n t o f o r m i s o c y a n i d e i r o n c o m p l e x e s (48) c a n be e x p l a i n e d b y a n i n s e r t i o n m e c h a n i s m i f t h e m e t a l i s a l k y l a t e d i n i t i a l l y , a n d t h e n m e t a l a l k y l a d d s across a c y a n i d e g r o u p .
T h i s mechanism also explains
h o w e x t e r n a l r a d i o a c t i v e c y a n i d e i o n c a n e n t e r t h e i s o c y a n i d e l i g a n d s (48). [Fe(CN ]6
+
4
R X
->
[RFe(CN) ]~ 6
+
2
R
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
I Ν II II C 6
Carbene Insertion
I
^
2
+
C N ~
R 1 1 Ν π II C
1
[RFe(CN) ]-
X "
CN"
[Fe(CN) ]4
^
2
J-
[Fe(CN) ]5
8
Reactions
D i a z o m e t h a n e i s k n o w n t o r e a c t w i t h a large v a r i e t y of m e t a l h a l i d e d e r i v a t i v e s , to
produce
halomethylmetal compounds
These
(107).
reactions
m a y well be
methylene insertion reactions. MX*
+
wCH N 2
->
2
M(CH X)» 2
+
(88)
nN
2
M o r e r e c e n t l y , d i c h l o r o c a r b e n e h a s been a d d e d t o d i i s o p r o p y l m e r c u r y t o g i v e a n i n s e r t i o n p r o d u c t , l , l - d i c h l o r o - 2 - m e t h y l - l - p r o p y l ( i s o p r o p y l ) m e r c u r y (62). CI
I [(CH ) CHj Hg 3
2
2
+
C 1 C : -> 2
(CH ) CHCHgCH(CH ) 8
2
3
2
(90)
I CI Conclusion T h e l i s t of g r o u p s o r m o l e c u l e s f o r w h i c h s o m e e v i d e n c e e x i s t s t h a t i n s e r t i o n r e a c t i o n s c a n t a k e place, i n c l u d e s c a r b o n m o n o x i d e , olefins, dienes, a c e t y l e n e s , a c y l g r o u p s , c e r t a i n c a r b o n - n i t r o g e n g r o u p s , a n d carbenes.
Perhaps the list should be
e x t e n d e d t o i n c l u d e m o l e c u l a r o x y g e n since s e v e r a l m e t a l a l k y l s a r e k n o w n t o f o r m peroxides w i t h o x y g e n .
R e c e n t l y oxygen has even been shown t o f o r m a coordina
t i o n c o m p o u n d w i t h a t r a n s i t i o n m e t a l , i r i d i u m (100).
T h e examples
discussed
s t r o n g l y suggest t h a t t h e i n s e r t i o n r e a c t i o n i s v e r y g e n e r a l l y i m p o r t a n t a m o n g transition metals as w e l l as nontransition m e t a l compounds. w o r k r e m a i n s t o s u b s t a n t i a t e t h e g e n e r a l i t y of t h e r e a c t i o n .
Obviously, much
B u t t h e r e a l v a l u e of
t h i s c l a s s i f i c a t i o n i s t h a t i t suggests n e w c h e m i s t r y t o i n v e s t i g a t e .
One can imagine
t h e e v e n t u a l d e v e l o p m e n t of s y n t h e t i c m e t h o d s , b a s e d u p o n t h e i n s e r t i o n m e c h a n i s m , f o r c o m b i n i n g c a r b o n m o n o x i d e , olefins, dienes, acetylenes, k e t o n e s , e t c . , i n a v a r i e t y of l i n e a r a n d c y c l i c c o m b i n a t i o n s .
C l e a r l y , t h e r e a c t i o n offers t h e p o s s i
b i l i t y of d i s c o v e r i n g m a n y n e w c a t a l y t i c syntheses of o r g a n i c c o m p o u n d s a s w e l l a s new methods for t h e p r e p a r a t i o n of organometallic
complexes.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
206
MECHANISMS
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
Literature
O F I N O R G A N I C REACTIONS
Cited
(1) A l b a n e s i , G., T o v a g l i e r i , M., Chim. Ind. (Milan) 41, 189 (1959). (2) A l d r i d g e , C. L., Jonassen, H. B., J. Am. Chem. Soc. 85, 886 (1963). (3) A n d e r s o n , M. M., H e n r y P . M., Chem. and Ind. (London) 1961, 2053. (4) B a r t l e t , P . D., F r i e d m a n , S., Styles, M., J. Am. Chem. Soc. 75, 1771 (1953). (5) B a w n , C . Ε. H., Chem. and Ind. (London) 1960, 388. (6) B e s t i a n , H., Clauss, K., Angew. Chem. 75, 1068 (1963). (7) B h a t t a c h a r y y a , S. K., " A c t e s d u Deuxieme Congres I n t e r n a t i o n a l de C a t a l y s e , " p. 2401, E d i t i o n s T e c h n i p , P a r i s , 1961. (8) B l o o d w o r t h , A. J., D a v i e s , A. G., Proc. Chem. Soc. 1963, 315. (9) B o o t h , G., C h a t t , J., Ibid. 1961, 67. (10) B r e e d e r v e l d , H., Rec. Trav. Chim. 81, 276 (1962). (11) B r o w n , H. C., S u b b a R a o , B. C., J. Org. Chem. 2 2 , 1136 (1957). (12) B r o w n , H. C., Zweifel, G., J. Am. Chem. Soc. 81, 5832 (1959). (13) B r o w n , H. C., Zweifel, G . , Ibid. 81, 1512 (1959). (14) C a l d e r a z z o , F., C o t t o n , F. Α., Inorg. Chem. 1, 30 (1962). (15) C h i u s o l i , G. P., Chim. Ind. (Milan) 41, 503 (1959); Angew. Chem. 72, 74 (1960). (16) Coffield, T. H., K o z i k o w s k i , J., Closson, R . D., J. Org. Chem. 22, 598 (1957). (17) Coffield, T. H., K o z i k o w s k i , J., Closson, R . D., Chem. Soc. (London) Spec. Publ. No. 13, 126 (1959); Coates, G. E., " O r g a n o m e t a l l i c C o m p o u n d s , " p. 281, 2 n d e d . , W i l e y , N e w Y o r k , 1960. (18) C o o k e , D. J., N i c k l e s s , G., P o l l a r d , F. H., Chem. and Ind. (London) 1963, 1493. (19) C r o w e , B. F., Chem. and Ind. (London) 1960, 1000. (20) D e V r i e s , B., J. Cat. 1, 489 (1962). (21) D o z o n o , T., S h i b a , T., Bull. Japan. Petrol. Inst. 5, 8 (1963); C. Α. 59, 5829 (1963). (22) E i s c h , J. J., Kaska, W. C., J. Am. Chem. Soc. 84, 1501 (1962). (23) E m m e t t , P. H., "Catalysis," Vol. III, C h a p t e r 8, Vol. V, C h a p t e r 3, R e i n h o l d , N e w Y o r k , 1957. (24) Fischer, F. G., Stoffers, O . , Ann. 500, 253 (1933). (25) G a y l o r d , N. G., Mark, H. F., "Linear a n d Stereoregular P o l y m e r s , " p. 66, I n t e r science, N e w York, 1959. (26) Ibid., p. 219. (27) G o e t z , R . W . , O r c h i n , M., J. Org. Chem. 27, 3698 (1962). (28) G o l d f a r b , I. J., O r c h i n , M., " A d v a n c e s i n C a t a l y s i s , " Vol. IX, A d a l b e r t F a r k a s , Ed., p. 609, A c a d e m i c , New York, 1957. (29) Greenfield, H., Sternberg, H. W., F r i e d e l , R. Α., W o t i z , J . Α., M a r k b y , R . , W e n d e r , I., J. Am. Chem. Soc. 78, 120 (1956). (30) Greenfield, H., W o t i z , J. Α., W e n d e r , I., J. Org. Chem. 22, 542 (1957). (31) G r i f f i t h , W. P., W i l k i n s o n , G., J. Chem. Soc. 1959, 1629. (32) H a l p e r n , J., Kettle, S. F. Α., Chem. and Ind. (London) 1961, 668. (33) H e c k , R. F., J. Am. Chem. Soc. 85, 651 (1963). (34) H e c k , R. F., U n p u b l i s h e d results. (35) H e c k , R. F., J. Am. Chem. Soc. 85, 2013 (1963). (36) Ibid., p. 1220. (37) Ibid., p. 3116. (38) Ibid., p. 1460. (39) Ibid., p. 3381. (40) Ibid., p. 3383. (41) Ibid., p. 3387. (42) H e c k , R. F., Breslow, D. S., Ibid., p. 2779. (43) Ibid., 84, 2499 (1962). (44) Ibid., 82, 4438 (1960). (45) Ibid., 84, 2499 (1962). (46) Ibid., 83, 4023 (1961). (47) Ibid., p. 1097. (48) H e l d t , W . Z . , ADVAN. CHEM. SER. No. 37, 99 (1963). (49) H e n r y , P. M., U n p u b l i s h e d results. (50) H i e b e r , H., B r a u n , G., B e c k , W . , Chem. Ber. 93, 901 (1960). (51) H i l l m a n , M. E. D., J. Am. Chem. Soc. 84, 4715 (1962). (52) H o r i i e , S., M u r a h a s h i , S., Bull. Chem. Soc. Japan 33, 247 (1960). (53) H o r r i e , S., M u r a h a s h i , S., Ibid., p. 88. (54) I m p a s t a t o , F., I h r m a n , K. G., J. Am. Chem. Soc. 83, 3726 (1961). (55) Johnson, M., J. Chem. Soc. 1963, 4859. (56) Johnson, A. W., M e r v y n , L., S h a w , N., S m i t h , E. L., Ibid., p. 4146.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8. HECK Insertion Reactions
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
CHEM.
T.,
C.A.
207
(57) Jones, K., L a p p e r t , M. F., Proc. Chem. Soc. 1962, 358. (58) K a a b e , H. J., Ann. 656, 204 (1962). (59) K e b l y s , Κ. Α., F i l b e y , A. H., J. Am. Chem. Soc. 82, 4204 (1960). (60) K o s t e r , R., Angew. Chem. 71, 520 (1959). (61) K w i a t e k , J., M a d o r , I. L., Seyler, J. K., J. Am. Chem. Soc. 84, 304 (1962); ADVAN. SER. N o . 37, 201 (1963). (62) L a n d g r e b e , J. Α., M a t h i s , R. D., J. Am. Chem. Soc. 86, 524 (1964). (63) L u t s e n k o , I. F., P o n o m a r e v , S. V., P e t r i i , O. P., Zh. Obshch. Khim. 32, 896 (1962); C.A. 5 8 , 3455 (1963). (64) Markó, L., Chem. and Ind. (London) 1962, 2 6 0 ; Proc. Chem. Soc. 1962, 67. (65) M c C l e l l a n , W. R., H o e h n , H. H., C r i p p s , Η. N., M u e t t e r t i e s , E. L., H o w k , B. W., J. Am. Chem. Soc. 83, 1601 (1961). (66) M c C l e v e r t y , J. Α., W i l k i n s o n , G., J. Chem. Soc. 1963, 4096. (67) M e t l e s i c s , W., W h e a t l e y , P. J., Zeiss, H., J. Am. Chem. Soc. 84, 2327 (1962). (68) M e t l e s i c s , W., Zeiss, H., Ibid. 81, 4117 (1959). (69) M u l v a n e y , J. E., G a r d l u n d , Z. G., G a r d l u n d , S. L., J. Am. Chem. Soc. 85, 3897 (1963). (70) M u r a h a s h i , S., H o r i i e , S., J o , T., Bull. Chem. Soc. Japan 33, 81 (1960). (71) N a k a m u r a , Α., Mem. Inst. Sci. Ind. Res., Osaka Univ. 19, 81 (1962); C.A., 59, 8786 (1963). (72) N e s m e y a n o v , A. N., Bull. Acad. Sci. U.S.S.R., Classe Sci. Chim. 1945, 2 3 9 ; C.A. 40, 2122 (1946). (73) N e s m e y a n o v , A. N., F r e i d l i n a , R. K., B o r i s o v , A. E., Ibid., p. 137; C.A. 40, 3451 (1946). (74) P i n o , P . , M i g l i e r i n a , Α., J. Am. Chem. Soc. 74, 5551 (1952). (75) P i n o , P., P u c c i , P., P i a c e n t i , F., Chem and Ind. (London) 1963, 294. (76) P o d a l l , Η. E., Foster, W. E., J. Org. Chem. 23, 1848 (1958). (77) Quane, D., B o t t e i , R. S., Chem. Rev. 63, 403 (1963). (78) R e p p e , W., Ann. 582, 1 (1953). (79) R e p p e , W., G e r m a n P a t e n t 1,071,077 (1950). (80) R o s e n t h a l , Α., A s t b u r y , R. F., H u b s c h e r , Α., J. Org. Chem. 23, 1037 (1958); R o s e n t h a l , Α., Can. J. Chem. 38, 457, 2025 (1960). (81) R o s e n t h a l , Α., G e r v a y , J., Chem. and Ind. (London) 1963, 1623. (82) Sauer, J. C., C r a m e r , R. D., E n g l e h a r d t , V. Α., F o r d , T. Α., H o l m q u i s t , Η. E., H o w k , B. W., J. Am. Chem. Soc. 81, 3677 (1959). (83) Schoeller, W., S c h r a u t h , W., Essers, W., Ber. 46, 2864 (1913). (84) S c h u l t z , R. G., Tetra. Letters 6, 301 (1964). (85) S h a w , B. L., Chem. and Ind. (London) 1962, 1190. (86) S h a w , B. L., J. Chem. Soc. 1963, 4806. (87) S m i t h , S. G., Tetra. Letters 7, 409 (1963). (88) S t a i b , J. H., G u y e r , W. R. F., a n d Slotterbeek, O. C., U.S. P a t e n t 2,864,864 (1958). (89) Sternberg, H. W., S h u k y s , J. G., D o n n e , C. D., M a r k b y , R., F r i e d e l , R. Α., W e n d e r , J. Am. Chem. Soc. 81, 2339 (1959). (90) Sternberg, H. W., W e n d e r , I., Chem. Soc. (London) Spec. Publ. N o . 13, 35 (1959). (91) Sternberg, H. W., W e n d e r , I., F r i e d e l , R. Α., O r c h i n , M., J. Am. Chem. Soc. 75, 3148 (1953). (92) S t i l l e , J. K., Chem. Rev. 58, 541 (1958). (93) T i l n e y - B a s s e t t , J. F., Mills, O. S., J. Am. Chem. Soc. 81, 4757 (1959). (94) T r a y l o r , T. G., B a k e r , A. W., Ibid. 85, 2746 (1963). (95) T r e i c h e l , P. M., P i t c h e r , E., Stone, F. G. Α., Inorg. Chem. 1, 511 (1962). (96) T s u j i , J., M o r i k a w a , M., Kiji, J., Tetra. Letters 16, 1061 (1962). (97) T s u t s u i , M., Zeiss, H., J. Am. Chem. Soc. 81, 6090 (1959). (98) V a n D e r K e r k , G. J. M., L u i j t e n , J. G. Α., N o l t e s , J. G., Chem. and Ind. (London) 1956, 352; J. Appl. Chem. 7, 356 (1957); Angew. Chem. 70, 298 (1958). (99) V a r g a f t i k , M. N., M o i s e e v , Ι. I., S y r k i n , Y. K., Izv. Akad. Nauk. SSSR 1963, 1147; 59, 5830 (1963). (100) V a s k a , L., " P r o c e e d i n g s 7th ICCC," p. 266, J u n e 2 5 - 2 9 , 1962, S t o c k h o l m a n d U p p s a l a , Sweden. (101) W a r d , G., H e n r y , P. M., U n p u b l i s h e d results. (102) W a t t e r s o n , K. F., W i l k i n s o n , G., Chem. and Ind. (London) 1960, 1358; J. Chem. Soc. 1961, 2738. (103) W i l f o r d , J. B., T r e i c h e l , P. M., Stone, F. G. Α., Proc. Chem. Soc. 1963, 218. (104) W i l k e , G., Müller, M., Chem. Ber. 89, 444 (1956). (105) W i l k e , G., Müller, M., Ann. 629, 222 (1960). (106) W i t t e n b e r g , D., Angew. Chem. 75, 1124 (1963).
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
208
MECHANISMS OF INORGANIC
(107) W i t t i g , (108) Ziegler, (109) Ziegler, (110) Ziegler, (111) Ziegler, (112) Ziegler, (1954).
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
RECEIVED
REACTIONS
G., Scharzenback, K., Ann. 650, 1 (1961). K., Angew. Chem. 6 4 , 323 (1952); Ibid., 6 8 , 721 (1956). K., Bähr, Κ., Chem. Ber. 6 1 , 253 (1928). K., Crössmann, F., K l e i n e r , H., Schäfer, O., Ann. 4 7 3 , 1 (1929). K., G e l l e r t , H. G., U . S . P a t e n t 2,699,457 (1955). K., G e l l e r t , H. G., M a r t i n , H., N a g e l , K., Schneider, J., Ann. 589, 91
A p r i l 3, 1964.
Discussion R i c h a r d F. H e c k :
T h e p u r p o s e of m y p a p e r h a s been t o p o i n t o u t a r e a c t i o n
w h i c h appears more w i d e l y i n the periodic table t h a n most people realize.
This
g e n e r a l r e a c t i o n i s t h e i n s e r t i o n r e a c t i o n a n d i t m i g h t be u s e d m o r e w i d e l y t o m a k e s o m e o r g a n o m e t a l l i c c o m p o u n d s w h i c h are n o t a v a i l a b l e n o w . T h e m e c h a n i s m of t h i s r e a c t i o n i s n o t w e l l u n d e r s t o o d . or four-center a d d i t i o n . [L M
-
n
L
I t i s a k i n d of t h r e e -
S o m e v a r i a t i o n s of t h i s m e c h a n i s m a r e : Ζ
= Ligand,
M
=
L
+
= Metal,
L
n
-
M
1
-
Z]
Ζ = M o n o v a l e n t group
Y
i
L L
[L
n
-
1
n - 1
M
M
-
—
Ζ
+
n
-
1
M
Y:
-
=
Ζ
L
n
-
1
M
-
Υ
Y:
= U n s a t u r a t e d molecule
Y
—
Z
+
L
=
L
n
M
-
-
Ζ
Υ
-
Ζ]
Y
I orL _jM n
-
Ζ
+
L
Figure A.
;=±
L
n
M
-
Y
-
Ζ
The insertion reaction
T h e r e is c o n s i d e r a b l e e v i d e n c e t h a t a t l e a s t m a n y of t h e s e r e a c t i o n s r e q u i r e coordinately unsaturated compounds
to proceed.
s t e p m a y be t h e first p a r t of t h e r e a c t i o n .
I n t h o s e cases, a d i s s o c i a t i o n
T h e n these c o o r d i n a t e l y u n s a t u r a t e d
c o m p o u n d s r e a c t w i t h a n u n s a t u r a t e d m o l e c u l e — i t c a n be m o s t a n y t h i n g a s l o n g a s i t h a s a n a v a i l a b l e p a i r of e l e c t r o n s — a n d t h i s i n s e r t i n g m o l e c u l e goes i n b e t w e e n t h e m e t a l a t o m a n d one of t h e g r o u p s i n i t i a l l y b o n d e d t o t h e m e t a l . m a t e r i a l is c o o r d i n a t e l y u n s a t u r a t e d , so i s t h e p r o d u c t .
If t h e s t a r t i n g
A final s t e p m u s t be t h e
f o r m a t i o n of a c o o r d i n a t e l y s a t u r a t e d p r o d u c t b y s o m e final r e a c t i o n , e i t h e r w i t h a n o t h e r l i g a n d o r b y d e c o m p o s i t i o n of t h i s i n s e r t i o n p r o d u c t . T h e r e is c o n s i d e r a b l e c o n t r o v e r s y as t o w h e t h e r o r n o t t h i s r e a c t i o n i n v o l v e s a TT-complex as a t r u e i n t e r m e d i a t e .
T h e r e seems t o be n o r e a l p r o o f t h a t ττ-com-
plexes a r e t r u e i n t e r m e d i a t e s a l t h o u g h i t seems c l e a r t h a t t h e y are p r e s e n t i n these
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Discussion
reaction mixtures. more
209
I f these x - c o m p l e x e s a r e r e a l l y i n t e r m e d i a t e s , t h e m e c h a n i s m i s
complicated.
I t i s p o s s i b l e t h a t t h e s e c a n be f o r m e d d i r e c t l y f r o m
co-
o r d i n a t e l y s a t u r a t e d c o m p o u n d s b y a d i s p l a c e m e n t of one of t h e o r i g i n a l l i g a n d s b y this Y molecule.
I t i s a l s o p o s s i b l e t h a t i n s e r t i o n w i l l n o t t a k e p l a c e unless
a n o t h e r l i g a n d is present t o m o v e t h i s Y group i n t o the insertion p o s i t i o n .
T h e r e is
o n l y one case t h a t I k n o w of i n t h e l i t e r a t u r e w h e r e i t h a s b e e n s h o w n c o n c l u s i v e l y t h a t a c o o r d i n a t e d l i g a n d i s t h e one t h a t i n s e r t s .
T h i s is the well k n o w n manganese
carbonyl carbonylation,
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
CO CH —Mn(CO) 3
Figure B.
4
+
CO
?±
CH COMn(CO) 3
The manganese carbonyl carbonylation
6
(5)
T h i s is well k n o w n d a t a b u t u n f o r t u n a t e l y i t has never been p u b l i s h e d . given at the L o n d o n C o o r d i n a t i o n Conference.
It was
T h e reaction involved the addition
of r a d i o a c t i v e c a r b o n m o n o x i d e t o m e t h y l m a n g a n e s e p e n t a c a r b o n y l .
T h e carbon
m o n o x i d e e n t e r i n g d i d n o t go i n t h e a c y l p o s i t i o n b u t w e n t e x c l u s i v e l y i n a c o o r d i n a tion position.
I t seems t h a t a t l e a s t i n t h i s one e x a m p l e i t i s a c o o r d i n a t e d l i g a n d
that is inserting. I a m i n c l i n e d t o t h i n k t h a t t h i s s a m e k i n d of m e c h a n i s m i s o p e r a t i n g i n m a n y o t h e r cases, t h a t i s , t h a t t h e i n s e r t i n g m o l e c u l e m u s t be c o o r d i n a t e d a n d t h e n i t c a n insert.
B u t I k n o w of n o e v i d e n c e f o r t h i s i n a n y o t h e r cases.
In the
figures
I h a v e s u m m a r i z e d s o m e of t h e i n s e r t i o n r e a c t i o n s f r o m t h e
literature w h i c h we s t u d i e d . H—M
R—M
RMo(CO) Cp RMn(CO) RRe(CO)* RFe(CO) Cp RCo(CO)4 RRhX (CO)(PR's)
HCo(CO)4(?)
3
6
2
Figure C.
6
RPdX(PR's) RPtX(PR' ) RLi RMgX RsB 3
2
2
RiN—M
RO—M
[τγ—C H NiX]t
8
2
ROCo(CO)4 ( [τ—C8H4CH 0]Fe (CO)s} 2
2
[ R 2 N — C o (CO) 4]
Fe Cu
Carbon monoxide insertion reactions
Figure C shows carbon monoxide insertion reactions.
T h e r e a r e a n u m b e r of
r e d u c t i o n r e a c t i o n s of c a r b o n m o n o x i d e c a t a l y z e d b y t r a n s i t i o n m e t a l s , a n d these, I b e l i e v e , a l l i n v o l v e a n i n s e r t i o n of c a r b o n m o n o x i d e i n t o a m e t a l h y d r i d e as a n initial step.
C o b a l t h y d r o c a r b o n y l r e a c t s w i t h c a r b o n m o n o x i d e t o give f o r m a t e
derivatives.
T h i s is p r o b a b l y a n insertion reaction also.
M a n y t r a n s i t i o n m e t a l a l k y l s react w i t h c a r b o n monoxide to give a c y l c o m pounds.
I n a l l t h e s e cases t h e a c y l d e r i v a t i v e s c a n be d e t e c t e d a t l e a s t b y i n f r a r e d
m e t h o d s a n d i n m o s t cases i s o l a t e d .
M o l y b d e n u m , manganese, r h e n i u m , iron,
cobalt, r h o d i u m , n i c k e l , p a l l a d i u m , a n d p l a t i n u m a l k y l s , G r i g n a r d reagents, a n d b o r a n e s , a l l r e a c t w i t h c a r b o n m o n o x i d e , a n d one c a n e x p l a i n t h e p r o d u c t s f r o m these o n t h e b a s i s of c a r b o n m o n o x i d e i n s e r t i n g i n t o t h e m e t a l a l k y l . T w o a l k o x i d e d e r i v a t i v e s a l s o seem t o i n s e r t c a r b o n m o n o x i d e .
T h e products
o b t a i n e d w h e n these a l k o x i d e s a r e f o r m e d i n t h e presence of c a r b o n m o n o x i d e h a v e C O inserted between the oxygen a n d the m e t a l .
T h e s e t w o p r o d u c t s c a n a l s o be
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
M E C H A N I S M S O F I N O R G A N I C REACTIONS
210
e x p l a i n e d o n t h e b a s i s of t h e a l k o x i d e a t t a c k i n g a c o o r d i n a t e d c a r b o n
monoxide.
H e n c e , these cases c e r t a i n l y are n o t c l e a r . T h e r e are a n u m b e r of a m i n e - c a t a l y z e d c a r b o n y l a t i o n r e a c t i o n s w h i c h a r e catalyzed by cobalt carbonyl and iron carbonyl.
I t seems t o m e t h a t these a r e i n
s e r t i o n r e a c t i o n s of m e t a l a m i d e s , w h e r e c a r b o n m o n o x i d e is i n s e r t e d a n d t h e n s o m e k i n d of a r e d u c t i o n o r s u b s e q u e n t r e a c t i o n gives t h e o b s e r v e d p r o d u c t s , u r e a d e r i v a tives or carbamates i n alcohols.
W e d o n o t k n o w t h e s t r u c t u r e of t h e i r o n c o m
p o u n d ; i t i s p r o b a b l y s i m i l a r t o t h e c o b a l t species s h o w n .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
C o p p e r s a l t s , c u p r i c O r c u p r o u s a l s o w i l l c a t a l y z e t h e c a r b o n y l a t i o n of a m i n e s . P i p e r i d i n e , for e x a m p l e , gives a u r e a d e r i v a t i v e w i t h c a r b o n m o n o x i d e , a n d i t , t o o , is p r o b a b l y a m e t a l a m i d e — c a r b o n monoxide insertion reaction. H—M Η Μη ( C O ) s HCo(CO) H Mg H B HA1R HGeR (?) HSnR (?)
R—M RTiCl R Cr RMn(CO) RCOCo(CO) RLi RK R Mg RsAl
4
6
2
2
3
3
X—M X Pd X Hg
2
3
2
6
RO—M Pd+ T1+* (RCOO) Hg
3
M—M Co (CO)
2
2
8
2
2
4
2
Figure D.
Olefin insertion reactions
F i g u r e D s h o w s s o m e olefin i n s e r t i o n r e a c t i o n s . have been k n o w n for a long w h i l e .
H y d r i d e a d d i t i o n s t o olefins
A m o n g these m a n y e x a m p l e s ,
manganese
hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, a l k y l a l u m i n u m h y d r i d e s , g e r m a n i u m a n d t i n h y d r i d e s a l l a d d q u i t e r e a d i l y t o olefins. T h e s e l a s t t w o cases are q u e s t i o n a b l e because t h e m e c h a n i s m i s n o t c l e a r .
S o m e of
these a d d i t i o n s o c c u r w i t h o u t a c a t a l y s t ; s o m e a r e s p e e d e d u p b y u l t r a v i o l e t l i g h t ; some are catalyzed b y G r o u p V I I I metals.
S o i t i s n o t c l e a r w h e t h e r a l l these
r e a c t i o n s are t h e s a m e o r w h e t h e r t h e r e are s e v e r a l different m e c h a n i s m s . A n u m b e r of m e t a l a l k y l s a d d r e a d i l y t o d o u b l e b o n d s .
These include the
titanium alkyls, c h r o m i u m aryls and alkyls, the alkylmanganese carbonyls, a c y l cobalt carbonyls, a l k a l i m e t a l a l k y l s , the magnesium a l k y l s , a n d a l u m i n u m a l k y l s . A m o n g some m e t a l oxygen compounds w h i c h a d d , p a l l a d i u m and t h a l l i u m ion b o t h o x i d i z e olefins a n d a p p a r e n t l y t h e i n i t i a l s t e p i s t h e a d d i t i o n of a m e t a l h y d r o x i d e across t h e olefin d o u b l e b o n d .
T h e i n t e r m e d i a t e s h a v e n o t been i s o l a t e d
because t h e y go o n t o o t h e r p r o d u c t s ; b u t k i n e t i c a n d o t h e r e v i d e n c e i n d i c a t e s t h a t t h e a d d i t i o n of t h e h y d r o x i d e i s t h e i n i t i a l s t e p .
I n the well k n o w n mercury acetate
a d d i t i o n t o olefins i n a l c o h o l s o l u t i o n one c a n i s o l a t e t h e / S - h y d r o x y o r a l k o x y ethylmercury derivatives. T w o m e t a l h a l i d e s h a v e been f o u n d t o r e a c t w i t h olefins b y w h a t a p p e a r s t o be insertion reaction. olefins.
P a l l a d i u m chloride a n d mercury chloride both will a d d
to
T h e p a l l a d i u m a l k y l s c a n o t be i s o l a t e d , b u t t h e y go o n t o p r o d u c t s w h i c h
c a n be a c c o u n t e d for b y a n i n i t i a l a d d i t i o n . O n e c o m p l e x w i t h a m e t a l — m e t a l b o n d t h a t h a s been a d d e d t o a n olefin i s cobalt octacarbonyl.
I t r e a c t s w i t h t e t r a f l u o r o e t h y l e n e a n d i t seems reasonable
t h a t t h i s i s a n i n s e r t i o n r e a c t i o n ; b u t a g a i n i t has n o t been p r o v e d . F i g u r e Ε s h o w s s o m e c o n j u g a t e d diene i n s e r t i o n r e a c t i o n s . compounds
A s e x p e c t e d , these
r e a c t s i m i l a r l y t o t h e o l e f i n s — t h e same reagents a d d .
Manganese
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
211
Discussion RO—M
X—M
(RCOO) Hg
X Pd
R—M
H—M HMn(CO) HCo(CO) HCo(CN) HeB HSnR (?)
RCOCo(CO) [R2C0]
5
4
4
2
2
4
3
2
3
Figure E.
Conjugated diene insertion reactions
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
hydrocarbonyl, cobalt h y d r o c a r b o n y l , the cobaltpentacyanide hydride, diborane, and, again, the a l u m i n u m a n d t i n hydrides a d d . e x a m p l e s is s t i l l u n c e r t a i n .
T h e mechanism i n the last two
T w o a l k y l - o r a c y l - c o b a l t c o m p o u n d s h a v e been a d d e d .
T h e a c y l c o b a l t t e t r a c a r b o n y l s a d d t o give 7 r - a l l y l c o b a l t d e r i v a t i v e s .
Dialkylcobalt
c o m p o u n d s , w h i c h h a v e n o t been i s o l a t e d b u t p r o b a b l y are p r e s e n t i n t h e r e a c t i o n m i x t u r e , a d d t o dienes i n a s i m i l a r w a y , p r o b a b l y g i v i n g ττ-allyl i n t e r m e d i a t e s . M e r c u r y a c e t a t e a d d s t o dienes j u s t as i t does t o olefins, a n d so does p a l l a d i u m chloride.
H e r e a g a i n a ? r - a l l y l d e r i v a t i v e is o b t a i n e d .
T h e f o r m a t i o n of t h e i r - a l l y l
d e r i v a t i v e , I t h i n k , o c c u r s a f t e r t h e i n i t i a l a d d i t i o n a n d p r o b a b l y has n o t h i n g t o d o w i t h t h e first i n s e r t i o n s t e p . II—M
RO—M
R—M
HMn(CO) HCo(CO) [HNi(CO) X] HeB HA1R 5
4
2
2
2
RMo(CO) Cp R Cr RFe(CO) Cp RCOCo(CO) [*—C H NiX] RLi R A1
M—M
X—M
Co (CO) K [Co(CN)5] (?)
X Hg
ROSnR'a
3
2
2
8
e
3
2
2
4
3
5
2
3
Figure F.
Acetylene insertion reactions
Figure F shows some acetylene insertion reactions. the olefin i n s e r t i o n r e a c t i o n s . add.
T h e s e , t o o , are s i m i l a r t o
T h e manganese a n d cobalt hydrocarbonyls again
C h l o r o n i c k e l c a r b o n y l h y d r i d e , w h i c h I b e l i e v e is a n i n t e r m e d i a t e i n m a n y of
t h e n i c k e l c a r b o n y l - c a t a l y z e d r e a c t i o n s , a d d s t o olefins.
Diborane a n d the a l u m i
n u m hydrides also a d d . A g a i n several alkyls a d d — m o l y b d e n u m , c h r o m i u m , iron, cobalt, nickel, the alkali metal a l k y l s and a l u m i n u m a l k y l s react.
A t i n a l k o x i d e h a s r e c e n t l y been
studied b y R u s s i a n workers a n d found to add to acetylenes.
M e r c u r y c h l o r i d e , of
course, adds a n d t w o c o b a l t — c o b a l t bonded c o m p o u n d s a d d to acetylene.
The
s e c o n d i s q u e s t i o n a b l e because i t d i s s o c i a t e s i n s o l u t i o n a n d t h e r e a c t i o n m a y be a r a d i c a l r e a c t i o n , one c o b a l t a d d i n g t o e a c h e n d of t h e t r i p l e b o n d . H—M HCo(CO) H B HA1R 6
4
2
2
R—M
RO—M
RLi RMgX R*A1
ROSnR'
Figure G. RCHO,
2
2
2
Carbonyl insertion reactions;
R C = 0, R—N 2
R N—M R N—SnR' ( R N ) As
3
= C = 0, C0
2l
CII = C = 0 2
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
3
3
212
M E C H A N I S M S O F I N O R G A N I C REACTIONS F i g u r e G s h o w s s o m e i n s e r t i o n r e a c t i o n s of c a r b o n y l c o m p o u n d s .
I n the iso-
c y a n a t e a n d k e t e n e cases, t h e a d d i t i o n t a k e s p l a c e , n o t t o t h e c a r b o n y l d o u b l e b o n d , b u t to the carbon—nitrogen or the c a r b o n — c a r b o n double b o n d . C o b a l t h y d r o c a r b o n y l , d i b o r a n e , a n d a l u m i n u m h y d r i d e s a d d , I t h i n k , t o a l l of these c a r b o n y l c o m p o u n d s .
O f course, there is t h e w e l l k n o w n G r i g n a r d reagent
a n d the a l k y l l i t h i u m additions to carbonyl compounds.
Aluminum alkyls add,
a n d we c o u l d h a v e l i s t e d a l l t h e o t h e r a l k a l i m e t a l a l k y l s .
R e c e n t w o r k has s h o w n
t h a t t h e t i n a l k o x i d e s a d d r e a d i l y t o a l l these d e r i v a t i v e s , a n d s i m i l a r l y , a t i n a m i d e
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
a d d s t o m o s t of these c a r b o n y l c o m p o u n d s . R e c e n t l y a n arsenic amide d e r i v a t i v e has reacted w i t h a n isocyanate, a d d i n g across t h e c a r b o n — n i t r o g e n d o u b l e b o n d .
I t h i n k t h i s is t h e first e x a m p l e of a
g r o u p V e l e m e n t w h i c h seems t o be u n d e r g o i n g a n i n s e r t i o n r e a c t i o n .
\ C=N—
\ C=S
/
/
\
—C=N
/
o
— N = N Figure H.
s=o 2
Miscellaneous insertion reactions
F i n a l l y , i n F i g u r e H a r e s o m e a d d i t i o n a l u n s a t u r a t e d g r o u p s for w h i c h s o m e evidence exists t h a t t h e y undergo insertion reactions also: the c a r b o n — n i t r o g e n double bond, the nitrile group, the azo group, the carbon—sulfur double bond, the sulfur oxide group, a n d the oxygen molecule. t h a t t h i s is a g e n e r a l r e a c t i o n .
I t h i n k i t i s c l e a r f r o m these e x a m p l e s
Perhaps the mechanisms don't a l l involve insertion
r e a c t i o n s , b u t t h e y a r e s i m i l a r e n o u g h t o l o o k as i f t h e y b e l o n g i n t h e s a m e g r o u p . T h i s r e a c t i o n h o l d s p r o m i s e for m a k i n g m a n y n e w , u n u s u a l , a n d u s e f u l c o m p o u n d s , a n d I t h i n k i t w i l l be u s e d c o n s i d e r a b l y i n t h e f u t u r e . R a y m o n d Dessy:
I w o u l d l i k e t o focus o n three p r o b l e m s .
D r . H e c k has a l
r e a d y m e n t i o n e d one, t h e i m p o r t a n c e of c o m p l e x i n g these c a r b o n y l m e t a l h y d r i d e c o m p o u n d s w i t h olefins, o r f o r t h a t m a t t e r , t h e i m p o r t a n c e of c o m p l e x i n g a n y olefin w i t h these t r a n s i t i o n m e t a l c a t a l y s t s i n l e a d i n g t o final p r o d u c t .
Does a four-center
t r a n s i t i o n s t a t e of s o m e t y p e o c c u r d i r e c t l y , o r i s a n o t h e r m e c h a n i s m i n v o l v e d ?
I
also hope t h a t s o m e b o d y w o u l d c o m m e n t on w h a t D r . H e c k has called coordinative unsaturation.
H i s v i e w , I t h i n k , is t h a t t h e first s t e p i n m a n y of t h e c a r b o n y l r e a c
t i o n s w i t h c o b a l t i n v o l v e s loss of e n o u g h C O t o give a c o o r d i n a t i v e l y u n s a t u r a t e d cobalt.
F i n a l l y , I w o u l d like to consider some d a t a from a paper t h a t D r . H e c k
p u b l i s h e d i n 1961 (6) c o n c e r n i n g t h e r e a c t i o n s of i s o b u t y l e n e w i t h t h e c o b a l t h y d r o c a r b o n y l u n d e r t w o t y p e s of c o n d i t i o n s .
O n e c o n d i t i o n , t h e so c a l l e d o x o c o n d i t i o n
w h i c h is a b o u t 120°C. u n d e r a f a i r l y h i g h pressure of h y d r o g e n , gave p r o d u c t s w h i c h he q u o t e d d i r e c t l y f r o m t h e l i t e r a t u r e .
T h i s leads t o a l d e h y d e m a t e r i a l .
T h e a l d e h y d e g r o u p i n t r o d u c e d o c c u p i e s w h a t m i g h t be c a l l e d a p r i m a r y c a r b o n . I n h i s o w n w o r k a t 0 ° C , w h e r e t h e i s o l a t i o n t o o k place b y r e a c t i o n w i t h t r i p h e n y l p h o s p h i n e , t h e n m e t h y l a l c o h o l a n d i o d i n e , t h e p r o d u c t i s , of course, n o t a n a l d e h y d e b u t a n a c i d ester.
T h e skeletal arrangement would indicate that the tertiary
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Discussion
213
c a r b o n a t o m i s u s e d for t h e a t t a c h m e n t site of t h e c o b a l t . about 2 0 % .
O v e r a l l y i e l d s were
T h i s i s t o be c o m p a r e d w i t h t h e r e a c t i o n of t h e c o r r e s p o n d i n g e p o x i d e
w i t h h y d r o c a r b o n y l o r c a r b o n y l a n i o n t h a t he r e c e n t l y r e p o r t e d (7).
T h i s gives a
p r o d u c t d e r i v e d f r o m o p e n i n g t h e e p o x i d e ring i n a w a y w h i c h uses t h e p r i m a r y c a r b o n a g a i n as t h e p o i n t of a t t a c h m e n t for t h e c o b a l t .
T h e r e i s one o t h e r r e a c
t i o n i n t h i s v e i n , w h i c h leads t o t h e q u e s t i o n t h a t I w o u l d l i k e t o a s k .
T h e reac
t i o n s of a c r y l i c esters u n d e r o x o c o n d i t i o n s gives a s k e l e t a l a r r a n g e m e n t i n t h e p r o d u c t , w h i c h p u t s t h e a l d e h y d e g r o u p o n t h e t e r m i n a l c a r b o n a t o m of t h e a c r y l i c
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
e s t e r ; w h i l e u n d e r c o n d i t i o n s of 0 ° C , f o l l o w e d b y i s o l a t i o n of a p r o d u c t b y t r i p h e n y l p h o s p h i n e / m e t h y l alcohol/iodine reaction, the skeletal arrangement i n the product indicates t h a t the cobalt attaches itself to carbon atom-2.
Although 2 0 %
of t h e o t h e r p r o d u c t i s t h e r e , t h i s i s t h e m a i n p r o d u c t . I w o u l d l i k e t o r e a d f r o m t w o of D r . H e c k ' s p a p e r s : " T h e h i g h e l e c t r o n d e n s i t y of t h e d o u b l e b o n d i n i s o b u t y l e n e r e s u l t s i n a n acid type a d d i t i o n , while the low electron density i n m e t h y l acrylate leads pre d o m i n a n t l y to a h y d r i d i c addition.
T h e c h a n g e i n t h e d i r e c t i o n of a d d i t i o n of
c o b a l t h y d r o t e t r a c a r b o n y l w i t h t e m p e r a t u r e is p r o b a b l y a r e f l e c t i o n of t h e r e l a t i v e s t a b i l i t y of t h e a d d u c t s .
T h u s , if t h e a d d i t i o n is r e v e r s i b l e , t h e p r o d u c t s a t e l e
v a t e d t e m p e r a t u r e s c o u l d reflect t h e r e l a t i v e s t a b i l i t i e s of t h e a d d u c t s r a t h e r t h a n their initial concentrations"
(6).
A p p a r e n t l y t h e e x p l a n a t i o n for these t w o d i f f e r e n t r e s u l t s , i n t e r m s of t h e c a r b o n s k e l e t o n of a p r o d u c t , w a s a s c r i b e d t o t h e s t a b i l i t i e s of t h e i n t e r m e d i a t e s a t these t w o t e m p e r a t u r e s ; t h e difference
i n d i r e c t i o n of
a d d i t i o n between
the
methyl
acrylates a n d the isobutylene was caused b y the electron density a t the double b o n d . F i n a l l y , f r o m a p a p e r i n 1963 o n t h e e p o x i d e w o r k w e h a v e a q u o t a t i o n : " T h e m e c h a n i s m m o s t c o n s i s t e n t w i t h a l l t h e d a t a is a n i o n i c a c i d o p e n i n g of t h e e p o x i d e " — a p p a r e n t l y w h e r e t h e h y d r o c a r b o n y l is u s e d a s a n a c i d t o a t t a c k t h e e p o x i d e — " w h i c h i s m o r e s e n s i t i v e t o s t e r i c effects t h a n t o e l e c t r o n i c f a c t o r s . T h i s c o n c l u s i o n m a y a t first a p p e a r t o be i n c o n s i s t e n t w i t h o u r p r e v i o u s
finding
t h a t i s o b u t y l e n e r e a c t e d w i t h c o b a l t h y d r o c a r b o n y l t o g i v e e x c l u s i v e l y a d d i t i o n of the cobalt to the t e r t i a r y position.
T h e i n h i b i t o r y effect of c a r b o n m o n o x i d e o n
that reaction, however, indicated t h a t i t was probably
cobalt hydrotricarbonyl
t h a t w a s a c t u a l l y a d d i n g t o t h e o l e f i n a n d s t e r i c effects w o u l d be e x p e c t e d t o be m u c h less i m p o r t a n t w i t h t h e t r i c a r b o n y l t h a n w i t h t h e t e t r a c a r b o n y l " (7)* A p p a r e n t l y he feels n o w t h a t t h e f o r m e r r e a c t i o n s r e a l l y i n v o l v e t h e t r i c a r b o n y l , loss of C O b e i n g i m p o r t a n t t o get t h e r e a c t i o n r u n n i n g ; w h e r e a s e p o x i d e a t t a c k p e r h a p s i n v o l v e s a t e t r a c a r b o n y l , s t e r i c f a c t o r s are m o r e i m p o r t a n t here. T h e p r o b l e m I w o u l d l i k e t o focus o n p e r h a p s c a n best be e x p r e s s e d
by
a n a n a l o g y w i t h s o m e of P r o f . P e a r s o n ' s c o m m e n t s . T h e a n a l o g y c o m e s f r o m s o m e o n e w h o w a s i m p r e s s e d b y t h e soft a c i d — s o f t base w o r k .
A s a m a t t e r of f a c t , he felt t h a t a c i d s a n d bases r e a c t t o g i v e s a l t s , a n d
s o a p i s a s a l t , a n d so w e h a v e soft s o a p . S i n c e w o r d s s o m e t i m e s h i d e m e a n i n g , w e h a v e t o be c a r e f u l t h a t w e d o n ' t s u b stitute words w h i c h d o n ' t mean m u c h for ideas.
I a m very troubled at the moment
o v e r w h a t D r . H e c k m e a n t b y a c i d base, h o w e l e c t r o n d e n s i t y i n t h e olefin c o u l d l e a d t o t h e o r i e n t a t i o n he m e n t i o n s . this.
I w o u l d l i k e t o a s k w h e t h e r o r n o t he c a n e x p l a i n
F i n a l l y , i f t h i s p r o v e s d i f f i c u l t , h a s he t h o u g h t a b o u t r a d i c a l processes i n t h i s
t y p e of t h i n g ?
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
214
MECHANISMS OF INORGANIC Jack Halpern:
REACTIONS
P e r h a p s I h a v e m o r e r e a s o n t h a n a n y o n e else t o be
disposed
t o t h e v i e w t h a t π - c o m p l e x i n g i s a n i m p o r t a n t s t e p of t h e i n s e r t i o n r e a c t i o n , b e cause I t h i n k t h a t p o s s i b l y w e h a v e t h e o n l y r e a s o n a b l y c l e a r c u t case of a n olefin insertion reaction where a complex is clearly i m p l i c a t e d .
T h i s is the r u t h e n i u m
c h l o r i d e - c a t a l y z e d hydrogénation of c e r t a i n olefins, w h i c h a l m o s t c e r t a i n l y i n v o l v e s t h e i n s e r t i o n of t h e o l e f i n i n t o a r u t h e n i u m h y d r o g e n b o n d a n d w h e r e c e r t a i n l y a r u t h e n i u m olefin c o m p l e x is i n v o l v e d as a n o b s e r v a b l e r e a c t a n t . N e v e r t h e l e s s , I a m n o t a t a l l sure t o w h a t e x t e n t t h i s is a g e n e r a l o r n e c e s s a r y feature of s u c h i n s e r t i o n reactions.
T h e i m p o r t a n t q u e s t i o n i s w h e t h e r one o r t w o c o o r d i n a t i o n p o s i t i o n s
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
o n t h e m e t a l i o n are i n v o l v e d i n t h e t r a n s i t i o n s t a t e of t h e i n s e r t i o n r e a c t i o n .
For
e x a m p l e , i f one c o n s i d e r s t h e i n s e r t i o n of a n o l e f i n , s a y i n t o a n M — X b o n d , t h e n the transition state m a y look something like :
ι
]
M - - X T h e r e i s p a r t i a l b o n d i n g b e t w e e n t h e m e t a l a n d t h e olefin (or p e r h a p s one c a r b o n of t h e olefin) a n d b e t w e e n t h e m e t a l a n d X , a n d t h i s uses t w o c o o r d i n a t i o n p o s i t i o n s of t h e m e t a l .
O t h e r w i s e o n l y one c o o r d i n a t i o n p o s i t i o n is i n v o l v e d , a n d
t h e t r a n s i t i o n s t a t e is n o t a p p r e c i a b l y s t a b i l i z e d b y b o n d i n g b e t w e e n t h e m e t a l a n d X.
I f t h i s i s t h e case, t h e n t h e r e i s less r e a s o n t o p o s t u l a t e t h e olefin as i n i t i a l l y
i n v o l v e d , s a y as a τ - b o n d e d l i g a n d .
Perhaps i t just comes i n from the outside.
I n m a n y of these s y s t e m s , t h e p o s t u l a t e d olefin c o m p l e x i n t e r m e d i a t e w o u l d be labile.
T h e r e f o r e , i t s role as a p r e - e q u i l i b r i u m i n t e r m e d i a t e i s n o t t e r r i b l y r e l e v a n t
to the kinetic problem.
I t h i n k t h e r e l e v a n t feature is w h e t h e r t h e f a v o r a b l e p a t h s
i n these i n s e r t i o n r e a c t i o n s i n v o l v e t h e first o r s e c o n d t y p e of t r a n s i t i o n s t a t e . perhaps de-emphasizes
This
t h e q u e s t i o n of w h e t h e r o r n o t a 7r-bonded i n t e r m e d i a t e
i s i n v o l v e d b u t c e r t a i n l y does focus a t t e n t i o n o n t h e q u e s t i o n of w h e t h e r a c o o r d i n a t e d u n s a t u r a t e d species i s i n v o l v e d as a r e a c t a n t .
T h i s i s because t h e
first
t y p e of t r a n s i t i o n s t a t e w i l l r e q u i r e t w o c o o r d i n a t i o n p o s i t i o n s a n d hence i n v o l v e t h e e l i m i n a t i o n of s o m e o t h e r l i g a n d before i t c a n f o r m , w h e r e a s t h e s e c o n d w i l l n o t . I d o n ' t k n o w t h e a n s w e r t o t h i s q u e s t i o n b u t t h i s is h o w I w o u l d f o r m u l a t e t h e problem. W e are c u r r e n t l y t r y i n g t o a n s w e r s p e c i f i c a l l y t h e q u e s t i o n of w h e t h e r ττ-bonded c o m p l e x e s d o o c c u r i n c e r t a i n cases w h e r e i n s e r t i o n r e a c t i o n s are o b s e r v e d .
I
t h i n k t h e y d o because I believe t h a t t h e s a m e f a c t o r s w h i c h f a v o r s t a b i l i z a t i o n of t h i s t y p e of t r a n s i t i o n s t a t e w i l l a l s o t e n d t o f a v o r f o r m a t i o n of 7r-bonded olefin c o m plexes, w h i c h a r e o n l y s l i g h t l y r e m o v e d f r o m t h i s .
A t the m o m e n t B e r n T i n k e r is
e x a m i n i n g t h e i n s e r t i o n of olefins i n m e r c u r i c c o m p l e x e s t o see w h e t h e r t h e r e is a n y i n d i c a t i o n of 7r-bonded i n t e r m e d i a t e s .
I n h i s p a p e r , D r . H e c k referred t o s o m e
unpublished work relevant to this theme.
I w o u l d c e r t a i n l y be i n t e r e s t e d i n a n y
t h i n g m o r e he c a n t e l l us a b o u t t h a t . Dr. Dessy:
M a n y workers have
felt t h a t s u c h 7 r - c o m p l e x i n g , because
of
d i r - p i r - b a c k - b o n d i n g i n t o t h e w* of t h e o l e f i n , c a n a c t i v a t e t h e olefin f o r t h e s u b sequent attack.
W h a t r e a l i t y does t h a t have?
Dr. Halpern:
I t h i n k t h e d e s c r i p t i o n c a n be f o r m u l a t e d i n a s o m e w h a t d i f
ferent w a y e m p h a s i z i n g t h e p o i n t t h a t y o u r a i s e ; n a m e l y , t h a t f o r m a t i o n of a m e t a l olefin c o m p l e x , b y v i r t u e of t h e b a c k - b o n d i n g process, p u t s m e t a l e l e c t r o n s i n t o
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Discussion
215
a n t i - b o n d i n g o r b i t a l s of t h e o l e f i n .
T h i s r e d u c e s t h e b o n d o r d e r of t h e o l e f i n , a n d
i n t h i s sense c o u l d l e a d t o a v i e w t h a t t h e olefin i s a c t i v a t e d .
If y o u prefer, a
v a l e n c e b o n d r e p r e s e n t a t i o n , a p e r f e c t l y s a t i s f a c t o r y d e s c r i p t i o n of a i r - o l e f i n c o m p l e x w o u l d be one i n w h i c h t h e r e i s s u b s t a n t i a l o p e n i n g of t h e d o u b l e b o n d a n d f o r m a t i o n of p a r t i a l b o n d s b e t w e e n t h e c a r b o n s a n d t h e m e t a l .
I t h i n k most people
w o u l d t e n d t o v i e w t h i s t y p e of species as p r o b a b l y h a v i n g h i g h e r r e a c t i v i t y t o w a r d s a d d i t i o n t h a n the uncômplexed olefin. Dr. Heck:
I believe t h i s c a n b e s t be d e s c r i b e d as a c o m p r o m i s e b e t w e e n t h e
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
e l e c t r o n i c effects a n d s t e r i c effects. R. J . Mawby:
D i s c u s s i n g t h e i n s e r t i o n r e a c t i o n s of m e t h y l m a n g a n e s e p e n t a -
c a r b o n y l , D r . H e c k w r i t e s , " A n i m p o r t a n t q u e s t i o n , therefore, is u n a n s w e r e d . D o e s t h e c o o r d i n a t e d c a r b o n y l g r o u p i n s e r t before t h e n e w C O is a d d e d o r does t h e i n c o m i n g C O push the coordinated c a r b o n y l i n t o the a c y l p o s i t i o n ? " I h a v e been i n v e s t i g a t i n g t h i s p r o b l e m a t N o r t h w e s t e r n U n i v e r s i t y , u n d e r P r o f s . B a s o l o a n d P e a r s o n (8).
F . C a l d e r a z z o a n d F . A . C o t t o n (/) h a d p r e v i o u s l y
showed t h a t Reaction 1 : CH Mn(CO) 3
was
first-order
+
B
CO
-
CH COMn(CO) 3
(1)
5
i n b o t h C H M n ( C O ) e a n d C O o v e r t h e r a n g e of c a r b o n
monoxide
3
concentrations used.
H o w e v e r , t h i s range was severely l i m i t e d b y the low s o l u
b i l i t y of C O i n t h e s o l v e n t s w h i c h t h e y e m p l o y e d . B y s t u d y i n g r e a c t i o n s of t y p e (2) : CH Mn(CO) 3
+
5
L
->
CH COMn(CO) L 3
(2)
4
where L is some l i g a n d other t h a n C O , we c o u l d w o r k w i t h considerably greater ligand concentrations.
T h e first r e a c t i o n w e s t u d i e d w a s C H M n ( C O ) 3
hexylamine i n tetrahydrofuran.
6
with cyclo-
W e found that the reaction rate was independent
of a m i n e c o n c e n t r a t i o n o v e r t h e concentration*" r a n g e s t u d i e d — f r o m 2.5 χ 10~ M
to
2
5 χ 10 lf.
T h i s r u l e d o u t t h e m e c h a n i s m suggested b y D r s . C a l d e r a z z o a n d C o t
- 1
t o n for R e a c t i o n s 1 a n d 2, w h i c h i n v o l v e d a n a t t a c k b y t h e l i g a n d C O o r L , s i m u l taneous w i t h a n intromolecular rearrangement to form the a c e t y l group. W e t h e n s t u d i e d t h e r e a c t i o n s of C H M n ( C O ) 5 w i t h t r i p h e n y l p h o s p h i n e a n d 3
triphenylphosphite, using the same solvent, t e t r a h y d r o f u r a n .
I n these cases t h e
o b s e r v e d r a t e c o n s t a n t rose w i t h l i g a n d c o n c e n t r a t i o n t o w a r d s a l i m i t i n g v a l u e , w h i c h w a s close t o t h e r a t e c o n s t a n t o b t a i n e d u s i n g c y c l o h e x y l a m i n e ( F i g u r e I ) . T o e x p l a i n these o b s e r v a t i o n s , w e p o s t u l a t e d a t w o - s t e p m e c h a n i s m : CH Mn(CO) 3
5
^
CH COMn(CO) 3
+L ^ - L
4
CH COMn(CO) L 3
4
(3)
T h e first s t e p i n v o l v e s a n i n t r a m o l e c u l a r r e a r r a n g e m e n t t o f o r m t h e a c e t y l g r o u p ; t h e s e c o n d is t h e r e a c t i o n of t h e i n t e r m e d i a t e w i t h t h e l i g a n d t o give t h e product.
final
I t is possible t h a t a m o l e c u l e of s o l v e n t is c o o r d i n a t e d t o t h e i n t e r m e d i
ate s h o w n i n E q u a t i o n 3.
S i n c e i t w o u l d h a v e n o effect o n t h e f o r m of t h e r a t e
e x p r e s s i o n for t h e r e a c t i o n , we c a n n o t s a y c o n c l u s i v e l y w h e t h e r o r n o t t h i s i s so. E q u a t i o n 3 c a n be c o n v e n i e n t l y a b b r e v i a t e d a s f o l l o w s : M
— k—l
MS
^±
M L
k—i
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
(4)
MECHANISMS OF INORGANIC
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
216
.3 .4 moles/liter Figure
I.
Reaction
of
CHzMn(CO)s
with
plot of observed rate constant against
.5
REACTIONS
.6
triphenylphosphite triphenylphosphite
in
tetrahydrofuran;
concentration.
w h e r e M represents t h e s t a r t i n g m a t e r i a l , M S t h e i n t e r m e d i a t e , a n d M L t h e product.
final
I n d i s c u s s i n g t h e k i n e t i c s of these r e a c t i o n s I s h a l l i g n o r e £-2 because
a l l t h e r e a c t i o n s m e n t i o n e d here w e n t t o c o m p l e t i o n . If t h e first s t e p of t h i s r e a c t i o n were r a t e c o n t r o l l i n g , t h e r e a c t i o n r a t e w o u l d be c o m p l e t e l y i n d e p e n d e n t of l i g a n d c o n c e n t r a t i o n , a n d e v i d e n t l y t h i s i s t h e case for c y c l o h e x y l a m i n e i n t e t r a h y d r o f u r a n .
T h e r a t e e x p r e s s i o n for t h i s r e a c t i o n
then becomes: 4ML] dt
-
MM]
(5)
H o w e v e r , i f t h e first s t e p i s n o t c o m p l e t e l y r a t e c o n t r o l l i n g , t h e r e w i l l be c o m p e t i t i o n for t h e i n t e r m e d i a t e , M S , b e t w e e n t h e s e c o n d f o r w a r d s t e p t o give t h e
final
p r o d u c t , a n d t h e reverse of t h e first s t e p , w h i c h l e a d s b a c k t o t h e s t a r t i n g m a t e r i a l .
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Discussion
217
W e b e l i e v e t h i s i s t h e ease for t h e r e a c t i o n s of C H 3 M n ( C O ) 5 w i t h t r i p h e n y l p h o s p h i n e and triphenylphosphite in tetrahydrofuran. U n d e r these c o n d i t i o n s , a s s u m i n g t h e s t e a d y s t a t e a p p r o x i m a t i o n for t h e c o n c e n t r a t i o n of t h e i n t e r m e d i a t e , t h e r a t e e x p r e s s i o n b e c o m e s :
4ML]
WM][L]
dt
+
kJL]
(
}
F r o m t h i s one c a n o b t a i n a n e x p r e s s i o n r e l a t i n g t h e o b s e r v e d r a t e c o n s t a n t t o
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
the ligand concentration: — &obs
=
+ [L]
k\
(7)
I f t h e m e c h a n i s m i s c o r r e c t , E q u a t i o n 7 s h o w s t h a t a p l o t of t h e r e c i p r o c a l of t h e o b s e r v e d r a t e c o n s t a n t a g a i n s t t h e r e c i p r o c a l of t h e l i g a n d c o n c e n t r a t i o n s h o u l d be l i n e a r f o r t h e r e a c t i o n s of C H M n ( C O ) 5 w i t h t r i p h e n y l p h o s p h i n e a n d t r i p h e n y l 3
phosphite.
T h i s w a s f o u n d t o be t h e case for b o t h r e a c t i o n s ( F i g u r e J ) , a n d p r o
vides good evidence t h a t the postulated m e c h a n i s m is indeed correct.
8
liters/mole Figure
J.
Reaction
of CHzMn(CO)§
in tetrahydrofuran.
with
Plot of
triphenylphosphite
reciprocals.
In addition, E q u a t i o n 7 predicts that b y extrapolating to a reciprocal concen t r a t i o n of z e r o , one s h o u l d o b t a i n a v a l u e f o r k\ t h e r a t e of f o r m a t i o n of t h e i n t e r y
mediate from C H 3 M n ( C O ) 6 .
T h i s s h o u l d be i n d e p e n d e n t of t h e l i g a n d u s e d , d e
pending only on the solvent.
F i g u r e Κ s h o w s t h e v a l u e s for k\ o b t a i n e d for t h e
r e a c t i o n s of C H M n ( C O ) 5 w i t h t h r e e d i f f e r e n t l i g a n d s i n t e t r a h y d r o f u r a n , w h i c h a r e 3
i n r e a s o n a b l e a g r e e m e n t w i t h one a n o t h e r . T h e o b s e r v a t i o n s of D r s . C a l d e r a z z o a n d C o t t o n (1) c a n a l s o be e x p l a i n e d o n t h e b a s i s of t h i s m e c h a n i s m .
I n t h e v e r y l o w l i g a n d c o n c e n t r a t i o n s t o w h i c h these
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
218
MECHANISMS OF INORGANIC Ligand
ki(sec.—l)
cyclohexylamine triphenylphosphine triphenylphosphite Figure
K.
REACTIONS
9.6 Χ Ι Ο " 9.0 Χ Ι Ο " 9.9 Χ Ι Ο "
Values of k\ for the reaction of CHzMn(CO)s
4 4 4
with various
ligands
in
tetrahydrofuran
a u t h o r s were r e s t r i c t e d b y t h e p o o r s o l u b i l i t y of C O i n t h e s o l v e n t s u s e d , t h e s e c o n d
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
s t e p of t h e r e a c t i o n (the r e a c t i o n of t h e i n t e r m e d i a t e w i t h C O ) w o u l d b e c o m e r a t e controlling, leading to the rate expression : d\ML]
[M][L]
dt w h i c h agrees w i t h t h e o b s e r v e d
first-order
(8)
dependence on b o t h C H 3 M n ( C O ) g a n d
CO. I w o u l d l i k e t o a s k D r . H e c k i f he believes t h a t t h e i n s e r t i o n r e a c t i o n s of CHgCo(CO)4
proceed
by
a
similar
two-step
mechanism,
or
by
a
concerted
mechanism? Dr. Heck:
W e h a v e p r o p o s e d m a n y t i m e s t h a t t h e a c y l g r o u p i s f o r m e d before
t h e l i g a n d c o m e s i n , b u t t h e r a t e s i n t h e c o b a l t series are t o o f a s t t o m e a s u r e .
I
t h i n k cobalt and manganese react similarly. H a v e y o u measured this rate i n a hydrocarbon solvent b y a n y chance—one that wouldn't coordinate? Dr. Mawby: was
first-order
I n w-hexane, t h e r e a c t i o n of C H 3 M n ( C O ) e w i t h c y c l o h e x y l a m i n e
i n both reactants, suggesting t h a t a concerted mechanism, i n v o l v i n g
s i m u l t a n e o u s a t t a c k b y t h e a m i n e a n d r e a r r a n g e m e n t t o f o r m t h e a c e t y l g r o u p , is operating.
I n mesitylene, w h i c h has a s l i g h t l y higher dielectric constant,
o b s e r v e d a m o r e c o m p l i c a t e d s t a t e of affairs.
we
B o t h mechanisms appeared to oper
a t e side b y s i d e , a n d we o b t a i n e d r a t e c o n s t a n t s for b o t h t h e t w o - s t e p a n d t h e c o n certed mechanisms.
C e r t a i n l y a nonpolar solvent appears to favor the concerted
mechanism. Alan J . Chalk:
I should like t o c o m m e n t on the p o i n t raised b y D r . D e s s y
on coordinately unsaturated catalysts a n d on some points i n the paper. J o h n H a r r o d a n d I h a v e been l o o k i n g a t t h e s i l i c o n h y d r i d e a d d i t i o n t o olefins catalyzed by Pt(II)
W e d i s c u s s e d t h i s c a t a l y s i s r e c e n t l y (141st N a t i o n a l M e e t i n g of t h e A m e r i c a n C h e m i c a l S o c i e t y , M a r c h 1962) i n t e r m s of a n olefin i n s e r t i o n r e a c t i o n i n v o l v i n g a P t ( I I ) olefin c o m p l e x ( J ) .
W e found that catalysis was only accomplished b y p l a t i n u m
c o m p o u n d s c a p a b l e of c o o r d i n a t i n g olefins.
F o r example, substitution b y tertiary
p h o s p h i n e s b l o c k s c o o r d i n a t i o n b y olefins a n d g r e a t l y reduces t h e c a t a l y t i c a c t i v i t y of P t ( I I ) .
T h e s u b s t i t u t i o n b y p h o s p h i n e s does n o t affect t h e a b i l i t y of t h e c o m
plexes t o c l e a v e t h e S i — H b o n d , h o w e v e r .
T h e h i n d e r i n g of a c a t a l y t i c r e a c t i o n
b y b l o c k i n g c o o r d i n a t i o n sites is a c o m m o n o c c u r r e n c e a n d i s , I t h i n k , a p e r s u a s i v e
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
8.
HECK
Discussion
219
a r g u m e n t f a v o r i n g t h e n e c e s s i t y for a c o o r d i n a t e l y u n s a t u r a t e d o r
coordinately
labile catalyst. C o n c e r n i n g D r . H e c k ' s e x p e c t a t i o n of a cis a d d i t i o n for t h e i n s e r t i o n r e a c t i o n , we h a v e f o u n d t h a t t h e reverse r e a c t i o n , a n e l i m i n a t i o n , a l s o r e s u l t s i n a cis p r o d u c t . T h u s , t h e i s o m e r i z a t i o n of t e r m i n a l olefins, c a t a l y z e d b y m e t a l i o n s w h i c h f o r m trcomplexes,
p r o d u c e s t h e cis-2 olefin first (4).
S u b s e q u e n t l y , t h e t r a n s - 2 olefin i s
formed, however, w h i c h requires explanation.
P o s s i b l y t h e h y d r i d e i s , i n t h i s case,
p u l l e d off t h e a l k y l g r o u p b y a n o t h e r c o o r d i n a t e d olefin r a t h e r t h a n b y t h e m e t a l itself.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0049.ch008
M y l a s t c o m m e n t c o n c e r n s t h e r e a c t i o n of p a l l a d i u m olefin c o m p l e x e s w i t h carbon monoxide discovered b y T s u j i .
I agree t h a t t h i s is m o s t l i k e l y t o p r o c e e d b y
an insertion rather than an ionic mechanism. is r a r e h o w e v e r .
C h l o r i d e a t t a c k o n c o o r d i n a t e d olefin
C h l o r i d e i o n i s a n i n h i b i t o r , for e x a m p l e i n t h e p a l l a d o u s c h l o r i d e
c a t a l y z e d h y d r a t i o n of e t h y l e n e (Ρ).
I , therefore, w o n d e r e d w h e t h e r c a r b o n m o n
oxide w a s a f f e c t i n g t h e ease w i t h w h i c h c h l o r i d e a t t a c k s o l e f i n .
One can postulate
t h a t c a r b o n m o n o x i d e p a r t i c i p a t e s i n t h i s i n s e r t i o n e i t h e r as a gas phase r e a c t a n t o r b y first f o r m i n g a c a r b o n y l olefin c o m p l e x .
S u c h c o m p l e x e s of t h e n o b l e
metals
were u n k n o w n , b u t e x a m i n i n g t h e r e a c t i o n b e t w e e n c a r b o n m o n o x i d e a n d t h e h a l o gen b r i d g e d olefin c o m p l e x e s of p l a t i n u m r e v e a l e d t h a t t h e y are f o r m e d v e r y r e a d i l y (2).
A n a t t e m p t w a s a l s o m a d e t o p r o d u c e β - i o d o a c y l i o d i d e s b y t h e r e a c t i o n of
iodine, carbon monoxide chloride.
a n d olefins i n t h e presence of p a l l a d i u m o r p l a t i n u m
T h i s i s , i n effect, a n a t t e m p t t o m a k e D r . T s u j i ' s r e a c t i o n c a t a l y t i c
rather than stoichiometric. monoxide.
N o c a r b o n y l i n s e r t i o n o c c u r r e d a t 1 a t m . of
carbon
H o w e v e r , i t w a s f o u n d t h a t i o d i n a t i o n of t h e olefin w a s c a t a l y z e d b y
p l a t i n u m olefin c o m p l e x e s a n d t h a t a n a d d i t i o n a l increase i n c a t a l y t i c a c t i v i t y a c c o m p a n i e d t h e presence of c a r b o n m o n o x i d e .
T h e r e has been m u c h s p e c u l a t i o n
a t t h i s conference c o n c e r n i n g t h e p o s s i b i l i t y of a f f e c t i n g c a t a l y t i c a c t i v i t y b y c h a n g i n g t h e l i g a n d s i n t h e c o o r d i n a t i o n sphere of t h e c a t a l y s t .
T h i s would appear to
be s u c h a case.
Literature
Cited
(1) C a l d e r a z z o , F., C o t t o n , F. Α., Inorg. Chem. 1, 30 (1962). (2) C h a l k , A. J., Tetrahedron Letters 37, 2627 (1964). (3) C h a l k , A. J., H a r r o d , J. F., J. Am. Chem. Soc. i n press. (4) C h a l k , A. J., H a r r o d , J. F., J. Am. Chem. Soc. 86, 1776 (1964). (5) Coffield, T. H., K o z i k o w s k i , J., Closson, R. D., " I n t e r n a t i o n a l Conference o n C o o r d i n a t i o n C h e m i s t r y , London, April 1959. (6) H e c k , R. F., Breslow, D. S., J. Am. Chem. Soc. 8 3 . , 4023 (1961). (7) H e c k , R i c h a r d F., J. Am. Chem. Soc. 85, 1460 (1963). (8) M a w b y , R. J., Basolo, F r e d , Pearson, R a l p h , J. Am. Chem. Soc. 86, 3994 (1964). (9) S c h m i d t , J., Chem. and Ind. 54, 1962.
In Mechanisms of Inorganic Reactions; Kleinberg, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.