Chapter 2
Membrane Mimetic Separations Janos H. Fendler
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
Department of Chemistry, Syracuse University, Syracuse, NY 13244-1200
Development of new separation techniques requires a fundamental understanding of the relationship between molecular structures and permeabilities. Initiation of interdisciplinary researches in biology, biophysics, polymer and colloid chemistry is proposed to provide the insight to membrane transport processes at the molecular level. Mother nature's most talented transporter - the biological membrane should inspire this endeavor. Following a survey of the properties of, and recognized transport mechanisms in, biomembranes, membrane mimetic chemistry is introduced to serve as a bridge between biological and polymeric membranes. Surfactant aggregates micelles, monolayers, organized multilayers (Langmuir-Blodgett films), bilayer lipid membranes (BLMs), vesicles and polymerized vesicles - are shown to be the media in membrane mimetic chemistry. Properties of these organized surfactant assemblies are summarized. Emphasis is placed on our current research on the potential use of BLMs to reconstitute active and transport systems and on the development of their simultaneous electrical and spectroscopic measurements. M i c e l l e s and o t h e r o r g a n i z e d s u r f a c t a n t a g g r e g a t e s a r e i n c r e a s i n g l y u t i l i z e d i n a n a l y t i c a l a p p l i c a t i o n s (I). They i n t e r a c t w i t h r e a g e n t s and a l t e r s p e c t r o s c o p i c and e l e c t r o c h e m i c a l p r o p e r t i e s which, i n t u r n , o f t e n r e s u l t s i n i n c r e a s e d s e n s i t i v i t i e s . O r g a n i z e d a s s e m b l i e s h a v e a l s o been employed i n s e p a r a t i o n p r o c e s s e s . Gas, l i q u i d and t h i n l a y e r m i c e l l a r c h r o m a t o g r a p h i c t e c h n i q u e s have been d e v e l o p e d (2) . R e a l i z i n g t h e f u l l p o t e n t i a l o f o r g a n i z e d assembly m e d i a t e d s e p a r a t i o n s n e c e s s i t a t e s , I b e l i e v e , w e l l c o n c e i v e d and w e l l executed i n t e r d i s c i p l i n a r y researches. The p u r p o s e o f t h i s p r e s e n t a t i o n i s t o s t i m u l a t e such i n t e r d i s c i p l i n a r y a p p r o a c h e s . Our
0097-6156/87/0342-0083$06.25/0 © 1987 American Chemical Society
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
84
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
s t a r t i n g p o i n t w i l l be mother n a t u r e ' s most t a l e n t e d t r a n s p o r t e r t h e b i o l o g i c a l membrane. F o l l o w i n g a b r i e f d e s c r i p t i o n o f the b i o l o g i c a l membrane ( i n t h e s e c t i o n on B i o l o g i c a l Membranes), t h e r e c o g n i z e d t r a n s p o r t mechanisms w i l l be d e l i n e a t e d t h e r e i n ( s e c t i o n on R e c o g n i z e d T r a n s p o r t Mechanisms A c r o s s B i o l o g i c a l Membranes), The s e c t i o n on Membrane M i m e t i c C h e m i s t r y w i l l d i s c u s s t h e p h i l o s o p h y o f t h e membrane mimetic approach and t h e most f r e q u e n t l y used mimetic systems. The s e c t i o n on S i m u l t a n e o u s E l e c t r i c a l and S p e c t r o s c o p i c M e a s u r e m e n t s o f BLMs w i l l h i g h l i g h t o u r c u r r e n t r e s e a r c h e s on BLM s p e c t r o s c o p y . The t r e a t m e n t s w i l l be, o f c o u r s e , i l l u s t r a t i v e r a t h e r than comprehensive. B i o l o g i c a l Membranes B i o l o g i c a l membranes d e f i n e t h e v e r y e x i s t e n c e o f c e l l s . They p r o v i d e c o m p a r t m e n t s f o r t h e d i f f e r e n t components o f t h e l i v i n g s y s t e m ; i n t e r a c t w i t h , t r a n s p o r t and a r e permeable t o s u b s t r a t e s . T h e y a r e i n v o l v e d i n l i p i d a n d p r o t e i n s y n t h e s e s , energy t r a n s d u c t i o n , i o n a n d g r o u p t r a n s p o r t , i n f o r m a t i o n t r a n s m i s s i o n and m o l e c u l a r and c e l l u l a r r e c o g n i t i o n . These m u l t i t u d e o f a c t i v i t i e s a r e a c c o m p l i s h e d by t h e u n i q u e m o r p h o l o g y o f t h e b i o l o g i c a l membrane a n d by i t s a b i l i t y t o a f f e c t t h e t r a n s p o r t o f s p e c i e s by d i f f e r e n t mechanisms. C e l l membranes a r e composed o f 25-75% l i p i d s , 25-75% p r o t e i n s and l e s s t h a n 10% c a r b o h y d r a t e s . The o r g a n i z a t i o n o f t h e s e c o m p o n e n t s i n t h e membrane i s b e s t d e s c r i b e d i n t e r m s o f t h e bilayer-lipid g l o b u l a r - p r o t e i n " f l u i d m o s a i c " model ( 3 , 4 ) . As i l l u s t r a t e d i n F i g u r e 1, t h e l i p i d s ( p h o s p h o l i p i d s and/or g l y c o l i p i d s ) are arranged i n b i l a y e r s with t h e i r p o l a r headgroups e x p o s e d t o t h e e x t e r i o r s u r f a c e o f t h e membrane. Proteins are e i t h e r a p e r i p h e r a l o r i n t e g r a l p a r t o f t h e membrane. The f o r m e r , a t t a c h e d e l e c t r o s t a t i c a l l y , i s e a s i l y d i s s o c i a t e d from t h e membrane by c h a n g i n g t h e pH o r t h e i o n i c s t r e n g t h o f t h e s o l u t i o n . Integral p r o t e i n s p a r t i a l l y i n t e r c a l a t e t h e membrane o r f u l l y s p a n t h e b i l a y e r (transmembrane p r o t e i n ) . Globular proteins are p a r t i a l l y embedded i n t o one o r t h e o t h e r s i d e o f t h e membrane and form a m o s a i c p a t t e r n w i t h t h e l i p i d headgroups. The d e p t h o f i n c o r p o r a t i o n d e p e n d s upon t h e s i z e o f t h e g l o b u l a r p r o t e i n , i t s h y d r o p h o b i c i t y and charge d i s t r i b u t i o n . An i m p o r t a n t r e q u i r e m e n t o f t h e f l u i d mosaic model i s t h e dynamic n a t u r e o f t h e l i p i d - p r o t e i n i n t e r a c t i o n s i n t h e membrane. P r o t e i n s may r o t a t e around t h e i r axes, d i f f u s e l a t e r a l l y i n t h e p l a n e o f t h e membrane o r move a c r o s s the b i l a y e r . A d d i t i o n a l l y , t h e y may u n d e r g o v i b r a t i o n a l a n d c o n f o r m a t i o n a l changes. B e i n g l e s s than c a t e g o r i c a l i n d e s c r i b i n g p r o t e i n m o b i l i t i e s has been i n t e n t i o n a l . W h i l e most p r o t e i n s move a b o u t , some c a n n o t f r e e l y d i f f u s e i n t h e membrane under p h y s i o l o g i c a l conditions. The l i p i d s t h e m s e l v e s a r e h i g h l y m o b i l e . Steady s t a t e and t i m e r e s o l v e d s p e c t r o s c o p y ( a b s o r p t i o n , e m i s s i o n , i r , raman, nmr, epr) and a n i s o t r o p y measurements have r e v e a l e d r o t a t i o n a l , v i b r a t i o n a n d s e g m e n t a l m o t i o n s o f t h e headgroups and t h e h y d r o carbon t a i l s o f the l i p i d s . T r a n s l o c a t i o n o f a l i p i d from one h a l f o f t h e b i l a y e r t o t h e o t h e r , ( " f l i p - f l o p " ) as w e l l as intermembrane
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
2.
FENDLER
Membrane Mimeûc Separations
85
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
( o r i n t e r v e s i c u l a r ) l i p i d exchanges have a l s o been recognized. F i g u r e 2 i l l u s t r a t e s some o f t h e motions o f l i p i d s . P r o t e i n s a n d l i p i d s i n t e r a c t c o o p e r a t i v e l y i n t h e membrane. The t y p e ( s ) a n d s t a t e ( s ) o f l i p i d s i n f l u e n c e t h e m o b i l i t y and c o n f o r m a t i o n o f t h e p r o t e i n s i n t h e membrane m a t r i x . This, i n t u r n , may w e l l a l t e r t h e p r o p e r t i e s o f t h e membrane p r o t e i n s . S i m i l a r l y , p r o t e i n s a f f e c t t h e phase b e h a v i o r o f t h e l i p i d s and/or p r o m o t e d o m a i n f o r m a t i o n i n membranes c o n t a i n i n g m i x t u r e s o f l i p i d s . Morphological a l t e r a t i o n of the l i p i d a r c h i t e c t u r e leads t o changes i n t h e membrane p e r m e a b i l i t y . Phase t r a n s i t i o n i s an i m p o r t a n t p r o p e r t y o f membranes. Below t h e p h a s e t r a n s i t i o n t e m p e r a t u r e , l i p i d s a r e t i l t e d and h i g h l y ordered. They a r e i n t h e i r s o l i d or " g e l " s t a t e . Increasing the t e m p e r a t u r e l e a d s t o a p r e - t r a n s i t i o n , c h a r a c t e r i z e d by p e r i o d i c undulations and s t r a i g h t e n i n g of the hydrocarbon c h a i n . Further i n c r e a s e o f t h e t e m p e r a t u r e c a u s e s t h e main phase t r a n s i t i o n . Above t h e main p h a s e t r a n s i t i o n temperature, l i p i d s are f l u i d o r " l i q u i d c r y s t a l l i n e . " F i g u r e 3 shows t h e p h a s e d i a g r a m f o r t h e i n t e r a c t i o n o f water w i t h a l i p i d as w e l l as i t s i n f e r r e d a r r a n g e m e n t s i n a model membrane (5). Phase t r a n s i t i o n s i n membranes and membrane m o d e l s h a v e b e e n e x t e n s i v e l y s t u d i e d b y s p e c t r o s c o p i c t e c h n i q u e s and by d i f f e r e n t i a l s c a n n i n g c a l o r i m e t r y . M o s t membranes a r e o s m o t i c a l l y active. They s h r i n k i f e l e c t r o l y t e s a r e added e x t e r n a l l y . They s w e l l i f p l a c e d i n a s o l u t i o n w h i c h i s more d i l u t e t h a n t h e i r i n t e r n a l e l e c t r o l y t e concentrations. Most membranes a r e asymmetric w i t h r e s p e c t t o t h e d i s t r i b u t i o n of l i p i d s , c h a r g e s and p r o t e i n s b e t w e e n t h e i r e x t e r i o r s a n d interiors. Uneven d i s t r i b u t i o n o f i o n s between t h e o u t s i d e and t h e i n s i d e o f membranes i s r e s p o n s i b l e , a t l e a s t i n p a r t , f o r membrane potentials. The i n s i d e o f l i v i n g c e l l s ( c y t o p l a s m , f o r example) i s t y p i c a l l y more n e g a t i v e t h a n t h e e x t r a c e l l u l a r medium. This d i f f e r e n c e i n c h a r g e s i s r e f e r r e d t o a s t h e r e s t i n g o r membrane potential. T r a n s i e n t changes i n t h e membrane p o t e n t i a l , caused by r e v e r s i b l e charge r e d i s t r i b u t i o n s , a r e r e s p o n s i b l e f o r i n f o r m a t i o n and i m p u l s e t r a n s m i s s i o n i n n e r v e and m u s c l e f i b e r s . There i s a n o t h e r i m p o r t a n t a s y m m e t r y i n membranes: the segregation of c e r t a i n l i p i d s (phase s e p a r a t i o n ) g i v i n g r i s e t o domains. The p r e c i s e f u n c t i o n o f domains has n o t been e l u c i d a t e d . Emphasis i s p l a c e d h e r e on f e a t u r e s of the b i o l o g i c a l membranes w h i c h a r e i m p l i c a t e d i n s u b s t r a t e t r a n s p o r t . The l i p i d b i l a y e r i n t h e " g e l " s t a t e , i n the absence o f a d d i t i v e s , forms an e f f e c t i v e b a r r i e r a g a i n s t p o l a r i o n s and water s o l u b l e s u b s t r a t e s . C h a n g i n g t h e f l u i d i t y , by phase t r a n s i t i o n ( i n d u c e d by t e m p e r a t u r e c h a n g e s and/or by the a d d i t i o n o f f o r e i g n i o n s o r m o l e c u l e s ) o r by t h e i n c o r p o r a t i o n o f a d d i t i v e s ( c h o l e s t e r o l , f o r example), p r o foundly influences the structure and, hence, the t r a n s p o r t p r o p e r t i e s o f membranes. T h i s , and t h e p r e s e n c e o f c h a n n e l o r pore forming peptides o r p r o t e i n s , o p e n s t h e d o o r t o a number o f t r a n s p o r t m e c h a n i s m s w h i c h w i l l be s u m m a r i z e d i n t h e f o l l o w i n g section.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
86
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
F i g u r e 1. A s c h e m a t i c r e p r e s e n t a t i o n o f the cross s e c t i o n o f t h e l i p i d - g l o b u l a r p r o t e i n mosaic model o f membrane s t r u c t u r e . The g l o b u l a r p r o t e i n s ( w i t h d a r k l i n e s d e n o t i n g t h e p o l y p e p t i d e c h a i n ) a r e a m p h i p a t h i c m o l e c u l e s w i t h t h e i r i o n i c and h i g h l y p o l a r g r o u p s exposed a t t h e e x t e r i o r s u r f a c e s o f t h e membranes; the degree t o which t h e s e m o l e c u l e s a r e embedded i n t h e membrane i s u n d e r t h e r m o d y n a m i c c o n t r o l . The b u l k o f t h e p h o s p h o l i p i d s ( w i t h f i l l e d c i r c l e s r e p r e s e n t i n g t h e i r p o l a r head groups and t h i n wavy l i n e s t h e i r f a t t y a c i d c h a i n s ) i s o r g a n i z e d a s a discontinuous b i l a y e r .
F i g u r e 2. An o v e r s i m p l i f i e d r e p r e s e n t a t i o n o f m o l e c u l a r m o t i o n s i n liposome b i l a y e r s . I n d i v i d u a l l i p i d s can r o t a t e ( A ) , undergo s e q u e n t i a l m o t i o n ( B ) , f l i p - f l o p ( C ) , undergo l a t e r a l d i f f u s i o n ( D ) , o r i n t e r v e s i c l e exchange ( E ) .
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987. 20 %
Water
Smectic θ
Smectic A
Multilamellar
99
rigid
fluid
{vesicles'
mmmitm
F i g u r e 3. S c h e m a t i c r e p r e s e n t a t i o n o f a p h o s p h o l i p i d - w a t e r p h a s e d i a g r a m . T h e t e m p e r a t u r e s c a l e i s a r b i t r a r y and v a r i e s f r o m l i p i d t o l i p i d . F o r t h e sake o f c l a r i t y phase s e p a r a t i o n s and o t h e r c o m p l e x i t i e s i n t h e 2 0 - 9 9 % w a t e r r e g i o n a r e n o t i n d i c a t e d . S t r u c t u r e s p r o p o s e d f o r the p h o s p h o l i p i d b i l a y e r s a t d i f f e r e n t t e m p e r a t u r e s a r e shown on the r i g h t - h a n d s i d e . A t low t e m p e r a t u r e , t h e l i p i d s are arranged i n t i l t e d one-dimensional lattices. A t t h e p r e - t r a n s i t i o n temperature, two-dimensional a r r a n g e m e n t s a r e f o r m e d w i t h p e r i o d i c u n d u l a t i o n s . Above t h e main phase, t r a n s i t i o n s l i p i d s r e v e r t t o o n e - d i m e n s i o n a l l a t t i c e a r r a n g e m e n t s , s e p a r a t e d somewhat f r o m e a c h o t h e r , and assume mobile l i q u i d - l i k e conformations.
10
Crystals
Liquid
Smectic Β
Crystals
Liquid
Smectic A
Lamellar
compartment
single
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
88
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
Recognized Transport
Mechanisms A c r o s s
Biological
Membranes
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
T r a n s p o r t a c r o s s b i o l o g i c a l membranes i s c l a s s i f i e d a c c o r d i n g t o t h e t h e r m o d y n a m i c s o f the p r o c e s s . P a s s i v e t r a n s p o r t i s a thermodynamically downhill process; the species move t o w a r d the equilibrium. The d r i v i n g f o r c e f o r the p a s s i v e t r a n s p o r t i s the p o t e n t i a l d i f f e r e n c e between the two s i d e s o f the membrane. Active t r a n s p o r t i s a thermodynamically u p h i l l process, i t i s coupled to a c h e m i c a l r e a c t i o n and i s d r i v e n by i t . The f o l l o w i n g t r a n s p o r t mechanisms have been r e c o g n i z e d : Passive Transport. T r a n s p o r t by s i m p l e d i f f u s i o n : T h i s mode o f transport i s a v a i l a b l e for apolar molecules. Permeation i s p r e d o m i n a n t l y governed by p a r t i t i o n i n g o f the s u b s t r a t e between the l i p i d and w a t e r . The membrane s i m p l y a c t s as a p e r m e a b i l i t y b a r r i e r ; s m a l l m o l e c u l e s p a s s more e a s i l y than l a r g e ones. The t r a n s p o r t i s e x p l a i n e d i n terms o f a s i m p l e d i f f u s i o n model i n v o l v ing three steps: p a s s a g e o f the s u b s t r a t e from the e x t e r i o r i n t o t h e membrane, d i f f u s i o n t h r o u g h the membrane, and passage out o f the membrane. T r a n s p o r t by f a c i l i t a t e d d i f f u s i o n : A l a r g e number o f molec u l e s and i o n s were shown t o permeate membranes c o n s i d e r a b l y f a s t e r than e x p e c t e d from t h e i r l i p i d - w a t e r p a r t i t i o n i n g behavior. This led to the r e c o g n i t i o n of a d d i t i o n a l t r a n s p o r t mechanisms. Systematic i n v e s t i g a t i o n s o f p e r m e a b i l i t y r a t e s i n membranes, r e c o n s t i t u t e d membranes, and membrane models as f u n c t i o n s o f the t e m p e r a t u r e ; o f t h e n a t u r e and c o n c e n t r a t i o n o f the permeant; i n t h e a b s e n c e and i n t h e p r e s e n c e o f a d d i t i v e s , s u g g e s t e d t h r e e d i f f e r e n t f a c i l i t a t e d p a s s i v e t r a n s p o r t mechanisms: 1) C a r r i e r m e d i a t e d t r a n s p o r t - s u b s t r a t e s are t r a n s p o r t e d a c r o s s t h e membrane by a d i f f u s a b l e c a r r i e r , t y p i c a l l y an enzyme. Once a g a i n , t h e r e a r e t h r e e s t e p s : c o m p l e x a t i o n o f the s u b s t r a t e w i t h t h e c a r r i e r on o n e - s i d e o f t h e membrane, d i f f u s i o n o f the s u b s t r a t e - c a r r i e r complex t o the o t h e r s i d e and d e c o m p l e x a t i o n : S +
I ES
Il
j
*
ES
I + S
II
(1)
The s u g a r - t r a n s p o r t system i s the most o f t e n c i t e d example f o r the c a r r i e r m e d i a t e d f a c i l i t a t e d t r a n s p o r t o f a c o v a l e n t molecule. T r a n s p o r t o f s u g a r s i n t o the r e d b l o o d c e l l s i s p a s s i v e ( i t o c c u r s o n l y i n the p r e s e n c e of a c o n c e n t r a t i o n g r a d i e n t ) , s e l e c t i v e (D-glucose i s transported, while L-glucose i s n o t ) , and the k i n e t i c s show a s a t u r a t i o n b e h a v i o r ( o b s e r v e d t y p i c a l l y f o r enzyme mediated i n t e r a c t i o n s ) . T h e s e o b s e r v a t i o n s are i n s u p p o r t o f a f a c i l i t a t e d p a s s i v e t r a n s p o r t mechanism which i n v o l v e s an enzyme as t h e c a r r i e r . V e r i f i c a t i o n must a w a i t t h e i s o l a t i o n and full c h a r a c t e r i z a t i o n o f the s p e c i f i c enzyme(s) i n v o l v e d i n the t r a n s port of a given molecule. Transport o f c a t i o n s by membrane d i f f u s a b l e m a c r o c y c l i c a n t i b i o t i c s (valinomycin, nigericin, for e x a m p l e ) a l s o b e l o n g s t o the c a t e g o r y o f c a r r i e r m e d i a t e d p a s s i v e
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
2.
FENDLER
Membrane Mimetic Separations
89
transport. S y n t h e t i c m a c r o c y c l i c compounds (crown e t h e r s , c r y p t ands, f o r example) are i n c r e a s i n g l y u t i l i z e d f o r o b t a i n i n g fundam e n t a l u n d e r s t a n d i n g o f c a r r i e r m e d i a t e d t r a n s p o r t mechanisms i n membrane models. 2) C h a n n e l m e d i a t e d t r a n s p o r t - c a t i o n s are mainly t r a n s p o r t e d by t h e i r p a s s i v e d i f f u s i o n t h r o u g h c h a n n e l s ( o r p o r e s ) i n the membranes. G r a m i c i d i n A i s t h e b e s t u n d e r s t o o d c h a n n e l f o r m i n g substance. I t i s a l i n e a r p o l y p e p t i d e c o n s t i t u t e d from 15 n e u t r a l amino a c i d s . Two m o l e c u l e s o f G r a m i c i d i n A r e v e r s i b l y a s s o c i a t e t o f o r m a h e a d t o h e a d d i m e r w h i c h s p a n s a p p r o x i m a t e l y 30 A, t h e t h i c k n e s s o f a t y p i c a l membrane, F i g u r e 4 ( 4 ) . C o n d u c t a n c e m e a s u r e m e n t s a c r o s s a G r a m i c i d i n A c o n t a i n i n g membrane ( a t a f i x e d p o t e n t i a l ) r e s u l t i n s m a l l p o s i t i v e c u r r e n t jumps o f c o n s t a n t a m p l i t u d e w h i c h c o r r e s p o n d t o the a s s o c i a t i o n and d i s s o c i a t i o n o f the d i m e r s and, h e n c e , t o t h e o p e n i n g and c l o s i n g o f t h e i o n channels. G r a m i c i d i n A ceases to f a c i l i t a t e the t r a n s p o r t of c a t i o n s i n membranes t h i c k e r than 30 Â. A p p a r e n t l y , t h e c h a n n e l f o r m i n g d i m e r s do n o t s p a n t h i c k membranes. Conversely, the a b i l i t y of valinomycin t o t r a n s p o r t c a t i o n s does n o t d i m i n i s h i n t h i c k membranes. These o b s e r v a t i o n s a r e i n a c c o r d w i t h G r a m i c i d i n A f o r m i n g c h a n n e l s o f d e f i n e d l e n g t h s and v a l i n o m y c i n a c t i n g as a d i f f u s a b l e c a r r i e r i n t h e membrane. 3) Gate m e d i a t e d t r a n s p o r t - anions are mainly transported by t h e i r f a c i l i t a t e d d i f f u s i o n t h r o u g h a s w i n g i n g gate formed by a t r a n s m e m b r a n e enzyme u n d e r g o i n g c o n f o r m a t i o n a l changes, F i g u r e 5. E x c h a n g e o f H C O 3 " f o r C l ~ t h r o u g h t h e e r y t h r o c i t e membrane d u r i n g the flow o f b l o o d i s b e l i e v e d t o o c c u r t h r o u g h t h i s mechanism. Transport by f l u x - c o u p l i n g (co-transport or symport): E n h a n c e d p e r m e a b i l i t y o f a m o l e c u l e i n t h e p r e s e n c e o f a n o t h e r has been o b s e r v e d . F o r e x a m p l e , i n some membranes t h e t r a n s p o r t o f D - g l u c o s e ( b u t n o t L - g l u c o s e ! ) i s s u b s t a n t i a l l y i n c r e a s e d by t h e p r e s e n c e o f sodium i o n s . The enhanced t r a n s p o r t i s t h e consequence o f h a v i n g more t h a n one r e c o g n i t i o n s i t e on a g i v e n t r a n s p o r t protein. Sodium i o n s b i n d complimentarily t o the glucose t r a n s p o r t i n g enzyme a n d , h e n c e , f a c i l i t a t e i t s p a s s a g e a c r o s s t h e membrane. Active Transport. By d e f i n i t i o n , a c t i v e t r a n s p o r t o c c u r s i n t h e a b s e n c e o f a n y e l e c t r o c h e m i c a l p o t e n t i a l o r i g i n a t i n g i n a concent r a t i o n g r a d i e n t (4,6) . A c t i v e t r a n s p o r t i s d r i v e n by a c o u p l e d c h e m i c a l r e a c t i o n . D i s t i n c t i o n i s made between p r i m a r y and secondary a c t i v e transport. Primary a c t i v e transport: Primary a c t i v e t r a n s p o r t i s q u i t e s i m p l y the c o u p l i n g o f a l o c a l c h e m i c a l r e a c t i o n (X >Y) t o p r o v i d e e n e r g y f o r an u p h i l l f a c i l i t a t e d (by E, which may be a c a r r i e r , a c h a n n e l o r a g a t e ) d i f f u s i o n o f a s p e c i e s S a c r o s s t h e membrane:
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
90
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
2.5- 3.0 nm
F i g u r e 4. P r o j e c t i o n of a t h r e e - d i m e n s i o n a l m o d e l o f an e l e c t r i c a l l y c o n d u c t i n g p o r e o f g r a m i c i d i n A. To span the f u l l t h i c k n e s s o f the l i p i d b i l a y e r membrane, two m o l e c u l e s , e n d - t o e n d , a r e r e q u i r e d . The s i d e c h a i n s o f t h e amino a c i d s a r e not shown. The m o d e l was o r i g i n a l l y p r o p o s e d by U r r y P r o c . Nat. A c a d . S c i . USA 6 8 , 672 ( 1 9 7 1 ) . Reproduced w i t h p e r m i s s i o n from Ref. 4. C o p y r i g h t 1983, Springer-Verlag.
F i g u r e 5. Diagram o f a s i m p l i f i e d model o f the mechanism o f C I " e x c h a n g e d i f f u s i o n t h r o u g h a n o n c o n d u c t i n g pore o f the e r y t h r o c y t e membrane. The g a t e m e c h a n i s m i s shown f u n c t i o n i n g i n c o m b i n a t i o n w i t h a c o n f o r m a t i o n a l change i n the pore w a l l . The b a s i c c o n c e p t i s t h a t the gate can o n l y f l i p o v e r from the c i s t o t h e t r a n s p o s i t i o n and b a c k i f a c h l o r i d e i o n i s bound. A c o n f o r m a t i o n a l c h a n g e t h e n t a k e s p l a c e nearby i n the p r o t e i n , which l e a d s t o a s c r e e n i n g o f the b i n d i n g s i t e from the c i s s i d e and an o p e n i n g t o w a r d s t h e t r a n s s i d e . F o r s i m p l i c i t y , the c o n f o r m a t i o n a l c h a n g e shown i n t h e d i a g r a m a f f e c t s the whole protein. R e p r o d u c e d w i t h p e r m i s s i o n f r o m Ref. 4. Copyright 1983, Springer-Verlag.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
2.
91
Membrane Mimetic Separations
FENDLER
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
Energy i s p r o v i d e d , f o r example, by ATP f o r pumping sodium i o n s out o f and potassium ions i n t o the c e l l . Another i m p o r t a n t example o f primary a c t i v e t r a n s p o r t i s the proton c o n c e n t r a t i o n gradient d r i v e n ATP s y n t h e s i s ( M i t c h e l l - h y p o t h e s i s ) . Secondary a c t i v e t r a n s p o r t : Secondary active transport i s more c o m p l e x . I t i n v o l v e s t h e p e r m e a t i o n o f two d i f f e r e n t sub s t a n c e s (A a n d B) a c r o s s t h e membrane. The t r a n s p o r t o f A i s a c t i v e - i t i s an u p h i l l p r o c e s s d r i v e n by t h e c h e m i c a l r e a c t i o n X—>Y. The t r a n s p o r t o f Β i s p a s s i v e , b u t f a c i l i t a t e d by a c a r r i e r C, w h i c h c o - t r a n s p o r t s A ( E q u a t i o n 3 ) . C o - t r a n s p o r t i s d e f i n e d above i n t h e s e c t i o n on p a s s i v e t r a n s p o r t .
0 A + A ·
, A + A
β
t
I ABC
(3)
ABC 4. Β + Β
Β + Β *
C
(
=4
C
I s o t o n i c w a t e r r e s o r p t i o n i n the e p h i t e l i u m i s an example f o r the secondary a c t i v e t r a n s p o r t . Water and sodium i o n s a r e symported from the b l o o d i s o t o n i c a l l y ( i . e . , a g a i n s t t h e i r concentration g r a d i e n t s ) a n d t h e r e i s no t r a n s p o r t o f e i t h e r i n t h e absence o f the o t h e r . E q u a t i o n s have been r e c e n t l y d e r i v e d f o r a g e n e r a l i z e d scheme encompassing p r i m a r y and secondary a c t i v e t r a n s p o r t systems ( ! ) . Membrane M i m e t i c
Chemistry
Membrane m i m e t i c c h e m i s t r y i s a r a p i d l y emerging d i s c i p l i n e con c e r n e d w i t h the development o f p r o c e s s e s which a r e i n s p i r e d by t h e b i o l o g i c a l membrane ( 8 ) . S u r f a c t a n t a g g r e g a t e s - m i c e l l e s , mono l a y e r s , o r g a n i z e d m u l t i l a y e r s (Langmuir-Blodgett f i l m s ) , b i l a y e r l i p i d membranes (BLMs), v e s i c l e s and p o l y m e r i z e d v e s i c l e s have been u s e d a s media i n membrane mimetic c h e m i s t r y . D i f f e r e n t aggregates formed from s u r f a c t a n t s a r e i l l u s t r a t e d i n F i g u r e 6. A q u e o u s m i c e l l e s a r e 40-80 A d i a m e t e r s p h e r i c a l a g g r e g a t e s which are d y n a m i c a l l y f o r m e d f r o m s u r f a c t a n t s i n water above a characteristic concentration, t h e CMC ( 9 ) · D e p e n d i n g on t h e c h e m i c a l s t r u c t u r e o f t h e i r h y d r o p h i l i c headgroups, s u r f a c t a n t s can be n e u t r a l o r charged ( p o s i t i v e l y o r n e g a t i v e l y ) . The a l k y l c h a i n o f t h e s u r f a c t a n t s t y p i c a l l y c o n t a i n s between 5-20 c a r b o n atoms. M i c e l l e s r a p i d l y b r e a k up and r e f o r m by two known p r o c e s s e s . The f i r s t p r o c e s s o c c u r s on t h e m i c r o s e c o n d time s c a l e and i s due t o the r e l e a s e and subsequent r e i n c o r p o r a t i o n o f a s i n g l e s u r f a c t a n t from and b a c k t o t h e m i c e l l e . The s e c o n d p r o c e s s o c c u r s on t h e m i l l i s e c o n d time s c a l e and i s a s c r i b e d t o the d i s s o l u t i o n o f the
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
92
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
Figure 6. An o v e r s i m p l i f i e d r e p r e s e n t a t i o n a g g r e g a t e s formed from s u r f a c t a n t s .
of
organized
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
2.
FENDLER
Membrane Mimetic Separations
93
m i c e l l e a n d t o t h e s u b s e q u e n t r e a s s o c i a t i o n o f t h e monomers. S u b s t r a t e i n t e r a c t i o n w i t h t h e m i c e l l e i s a l s o dynamic. M o n o l a y e r s ( m o n o m o l e c u l a r l a y e r s ) a r e f o r m e d by s p r e a d i n g n a t u r a l l y occurring l i p i d s or synthetic surfactants, dissolved i n a v o l a t i l e s o l v e n t , o v e r water i n a Langmuir t r o u g h (10). The p o l a r headgroups of the s u r f a c t a n t s a r e i n contact with water, the s u b p h a s e , w h i l e t h e i r h y d r o c a r b o n t a i l s p r o t r u d e above i t . Monol a y e r s a r e c h a r a c t e r i z e d by s u r f a c e a r e a - s u r f a c e p r e s s u r e c u r v e s , s u r f a c e p o t e n t i a l s , and s u r f a c e v i s c o s i t i e s . In t h e gaseous s t a t e , s u r f a c t a n t s f l o a t f r e e l y , m o s t l y l y i n g f l a t , on t h e s u r f a c e w i t h o u t e x e r t i n g much f o r c e on e a c h o t h e r . M o n o l a y e r s i n t h e i r gaseous s t a t e may be i n f i n i t e l y e x p a n d e d w i t h o u t any phase change. Comp r e s s i n g t h e gaseous monolayers r e s u l t s i n a t r a n s i t i o n t o a f l u i d state. A t l e a s t two f l u i d s u b p h a s e s have been r e c o g n i z e d . The i n i t i a l t r a n s i t i o n on d e c r e a s i n g the s u r f a c e area o f gaseous m o n o l a y e r s r e s u l t s from a g r a d u a l r e o r g a n i z a t i o n o f m o l e c u l e s t o a p o s i t i o n more o r l e s s p e r p e n d i c u l a r t o t h e subphase s u r f a c e . I n t h i s s t a t e , t h e a v e r a g e i n t e r m o l e c u l a r d i s t a n c e s a r e much g r e a t e r than that i n bulk l i q u i d s . On f u r t h e r c o m p r e s s i o n , t h e d i s t a n c e b e t w e e n t h e s u r f a c t a n t headgroups d e c r e a s e s and t h e system assumes t h e l i q u i d c o n d e n s e d f l u i d phase. I n t h e s o l i d phase, s u r f a c t a n t s i n t h e m o n o l a y e r a r e p a c k e d as c l o s e l y as p o s s i b l e ; t h e y a l l a r e perpendicular t o t h e s u b p h a s e o r a r e t i l t e d a t an a n g l e . Monol a y e r s i n t h e i r s o l i d phase show low c o m p r e s s i b i l i t y as i n d i c a t e d by t h e v e r t i c a l s u r f a c e p r e s s u r e - s u r f a c e a r e a i s o t h e r m ( F i g u r e 7 ) . U l t i m a t e l y , compression leads t o a break or i n f l e c t i o n i n the i s o t h e r m w h i c h c o r r e s p o n d s t o t h e c o l l a p s e o f t h e monolayer i n t o b i l a y e r s and m u l t i l a y e r s . T e c h n i q u e s have been d e v e l o p e d f o r t r a n s f e r r i n g t h e monolayer o n t o a s o l i d s u p p o r t a n d f o r b u i l d i n g up o r g a n i z e d multilayer a s s e m b l i e s i n c o n t r o l l e d t o p o l o g i c a l arrangements ( F i g u r e 8) ( 1 1 ) . D e p e n d i n g on t h e m o n o l a y e r f o r m i n g m a t e r i a l a n d on t h e mode o f d e p o s i t i o n , t h r e e s t r u c t u r a l l y d i f f e r e n t m u l t i l a y e r s are recogn i z e d . The X - t y p e m u l t i l a y e r s ( p l a t e - s u r f a c t a n t t a i l - s u r f a c t a n t head-tail-head, e t c . ) a r e formed by t h e s e q u e n t i a l hydrophobic a t t a c h m e n t s o f monolayers onto t h e p l a t e upon immersion o n l y . The Y - t y p e m u l t i l a y e r s ( p l a t e - s u r f a c t a n t t a i l - s u r f a c t a n t head-headt a i l - t a i l , e t c . ) a r e b u i l t up b o t h by d i p p i n g and by w i t h d r a w i n g t h e p l a t e t h r o u g h t h e f l o a t i n g monolayer. The Z-type m u l t i l a y e r s ( p l a t e - s u r f a c t a n t head-surfactant t a i l , head-tail-head, etc.) are t h e r e s u l t o f s e q u e n t i a l h y d r o p h i l i c a t t a c h m e n t s o f t h e monolayers o n t o t h e p l a t e upon w i t h d r a w a l o n l y . A b s o l u t e and s c r u p u l o u s c l e a n l i n e s s i s a must i n a l l m o n o l a y e r a n d m u l t i l a y e r s t u d i e s . M o n o l a y e r s a n d m u l t i l a y e r s have been s t a b i l i z e d by p o l y m e r i z a t i o n (12-14). B i l a y e r ( b l a c k ) l i p i d membranes, BLMs, a r e formed by b r u s h i n g an o r g a n i c s o l u t i o n o f a s u r f a c t a n t ( o r l i p i d ) a c r o s s a p i n h o l e ( 2 - 4 mm d i a m e t e r ) s e p a r a t i n g two aqueous phases (15,16) . A l t e r n a t i v e l y , BLMs can be formed from monolayers by t h e M o n t a l - M u e l l e r method ( 1 7 , 1 8 ) . I n t h i s method, t h e s u r f a c t a n t , d i s s o l v e d i n an a p o l a r s o l v e n t , i s s p r e a d on t h e water s u r f a c e t o form a monolayer b e l o w t h e t e f l o n p a r t i t i o n i n g which c o n t a i n s t h e p i n h o l e (0.1-0.5 mm d i a m e t e r ) . C a r e f u l i n j e c t i o n o f an a p p r o p r i a t e e l e c t r o l y t e s o l u t i o n below t h e s u r f a c e r a i s e s t h e water l e v e l above t h e p i n h o l e
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
94
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
F i g u r e 7. Schematic r e p r e s e n t a t i o n s u r f a c e area isotherm f o r monolayers.
of
a
surface
pressure
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
2.
FENDLER
95
Membrane Mimetic Separations
Z-type
F i g u r e 8. Types o f monolayer no rearrangement o c c u r s .
d e p o s i t i o n and r e s u l t i n g
system i f
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
96
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
and b r i n g s t h e m o n o l a y e r i n t o a p p o s i t i o n t o f o r m t h e BLM. An a d v a n t a g e o f t h e M o n t a l - M u e l 1 e r method i s t h a t i t p e r m i t s t h e formation of disymmetrical BLMs. The i n i t i a l l y formed f i l m i s r a t h e r t h i c k and r e f l e c t s w h i t e l i g h t w i t h a grey c o l o r . W i t h i n a few m i n u t e s t h e f i l m t h i n s a n d t h e r e f l e c t e d l i g h t e x h i b i t s i n t e r f e r e n c e c o l o r s that u l t i m a t e l y turn black. At that point the f i l m i s considered t o be b i m o l e c u l a r (40-60 A, t h i c k n e s s ) . BLMs have been e x t e n s i v e l y u t i l i z e d i n t h e e l u c i d a t i o n of t r a n s p o r t mechanisms by e l e c t r i c a l measurements. V e s i c l e s a r e s m e c t i c mesophases o f s u r f a c t a n t s c o n t a i n i n g w a t e r b e t w e e n t h e i r b i l a y e r s ( 1_9) . P r e p a r e d by s o n i c a t i o n from s u c h s i m p l e s u r f a c t a n t s a s d i o c t a d e c y l d i m e t h y l a m m o n i u m bromide (DODAB) o r d i h e x a d e c y l p h o s p h a t e ( D H P ) , t h e y a r e s i n g l e b i l a y e r s p h e r i c a l a g g r e g a t e s w i t h d i a m e t e r s o f 500-1000 Â and b i l a y e r t h i c k n e s s o f c a . 50 Â. Once formed, v e s i c l e s , u n l i k e m i c e l l e s , do n o t b r e a k down on d i l u t i o n . N e v e r t h e l e s s , t h e y a r e dynamic s t r u c tures. T h e y u n d e r g o p h a s e t r a n s i t i o n , f u s e , and a r e o s m o t i c a l l y active. M o l e c u l a r m o t i o n s o f t h e i n d i v i d u a l s u r f a c t a n t s i n the v e s i c l e s i n v o l v e r o t a t i o n s , k i n k f o r m a t i o n , l a t e r a l d i f f u s i o n on t h e v e s i c l e p l a n e , and t r a n s f e r from one i n t e r f a c e o f t h e b i l a y e r to the other ( f l i p - f l o p ) . V e s i c l e s a r e capable o f o r g a n i z i n g a l a r g e number o f m o l e c u l e s i n t h e i r c o m p a r t m e n t s . H y d r o p h o b i c m o l e c u l e s c a n be d i s t r i b u t e d among t h e h y d r o c a r b o n b i l a y e r s o f vesicles. P o l a r m o l e c u l e s may move a b o u t r e l a t i v e l y f r e e l y i n v e s i c l e - e n t r a p p e d w a t e r p o o l s , p a r t i c u l a r l y i f they are e l e c t r o s t a t i c a l l y r e p e l l e d from t h e i n n e r s u r f a c e . S m a l l charged i o n s can be e l e c t r o s t a t i c a l l y a t t a c h e d t o t h e o p p o s i t e l y c h a r g e d v e s i c l e s u r f a c e s . Species having charges i d e n t i c a l with those of the v e s i c l e s c a n be a n c h o r e d o n t o t h e v e s i c l e s u r f a c e by a l o n g hydrocarbon t a i l . The n e e d f o r i n c r e a s e d s t a b i l i t i e s , c o n t r o l l a b l e s i z e s , and p e r m e a b i l i t i e s l e d t o t h e development o f polymerized surfactant vesicles (12-14,20). Vesicle-forming s u r f a c t a n t s have been f u n c t i o n a l i z e d by v i n y l , m e t h a c r y l a t e , d i a c e t y l e n e , i s o c y a n o , and s t y r e n e groups i n t h e i r h y d r o c a r b o n c h a i n s o r a t t h e i r headgroups. Accordingly, s u r f a c t a n t v e s i c l e s c o u l d be p o l y m e r i z e d i n t h e i r b i l a y e r s o r a c r o s s t h e i r headgroups. In the l a t t e r c a s e , e i t h e r t h e o u t e r o r t h e i n n e r v e s i c l e s u r f a c e s c o u l d be l i n k e d s e p a r a t e l y ( F i g u r e 9 ) . A l l p o l y m e r i z e d v e s i c l e s show a p p r e c i a b l e s t a b i l i t i e s compared w i t h their unpolymerized counterparts. They have e x t e n s i v e s h e l f l i v e s and remain u n a f f e c t e d by t h e a d d i t i o n o f up to 30% methanol. S u b s t r a t e o r g a n i z a t i o n i n membrane m i m e t i c systems l e a d s t o a l t e r e d s o l v a t i o n , i o n i z a t i o n and r e d u c t i o n p o t e n t i a l s and, hence, to a l t e r e d r e a c t i o n r a t e s , p a t h s and s t e r e o c h e m i s t r i e s . These p r o p e r t i e s have been a d v a n t a g e o u s l y e x p l o i t e d , i n turn, f o r r e a c t i v i t y c o n t r o l , c a t a l y s i s , drug d e l i v e r y and a r t i f i c i a l p h o t o s y n t h e s i s (8). There a r e o n l y l i m i t e d examples o f t h e u t i l i z a t i o n o f membrane m i m e t i c systems i n p e r m e a b i l i t y c o n t r o l . In order to g a i n i n s i g h t i n t o t h i s i m p o r t a n t a r e a , we have i n i t i a t e d a r e s e a r c h p r o g r a m i n BLMs. A s t a t u s r e p o r t o f our a c t i v i t i e s i n t h i s area w i l l be summarized i n t h e next s e c t i o n .
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
g
δ*
3
•a
s'
2
ϊ
m
D r
m ζ
ΤΙ
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
98
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
Simultaneous E l e c t r i c a l
and S p e c t r o s c o p i c Measurements o f BLMs
BLMs p r e p a r e d f r o m p h o s p h o l i p i d s have been f r u i t f u l l y u t i l i z e d i n the p a s t s e v e r a l y e a r s i n e l e c t r i c a l measurements both i n the absence and i n t h e p r e s e n c e o f i o n o p h o r e s (2_1 ) . Holding the b i l a y e r membrane a t a p r e d e t e r m i n e d p o t e n t i a l and m e a s u r i n g t h e c o r r e s p o n d i n g c u r r e n t f l o w , i . e . , v o l t a g e c l a m p i n g , has c o n t r i b u t e d much t o t h e p r e s e n t d a y u n d e r s t a n d i n g o f i o n c h a n n e l s and impulse t r a n s m i s s i o n (22). I n v e s t i g a t i o n s o f BLMs s u f f e r f r o m two m a j o r d r a w b a c k s . F i r s t , BLMs a r e n o t o r i o u s l y u n s t a b l e . V e r y r a r e l y do they s u r v i v e l o n g e r t h a n a c o u p l e o f h o u r s . Second, v o l t a g e c l a m p i n g p r o v i d e s i n f o r m a t i o n o n l y on t h e t r a n s i t i o n from an open s t a t e t o a c l o s e d state i n i o n channels. C u r r e n t r e s e a r c h i n our l a b o r a t o r i e s i s d i r e c t e d t o o v e r c o m i n g t h e s e d i s a d v a n t a g e s by s t a b i l i z i n g BLMs by p o l y m e r i z a t i o n o r by p o l y m e r c o a t i n g , a n d by d e v e l o p i n g s i m u l t a n e o u s i_n s i t u s p e c t r o s c o p i c a n d e l e c t r i c a l t e c h n i q u e s f o r m o n i t o r i n g f u n c t i o n i n g BLMs. D i r e c t s p e c t r o s c o p i c measurements o f a b s o r p t i o n s c o u l d p r o v i d e s u b s t a n t i a l a n d m u c h - n e e d e d c o m p l i m e n t a r y i n f o r m a t i o n on t h e p r o p e r t i e s o f BLMs. D i f f i c u l t i e s of spectroscopic techniques l i e i n t h e e x t r e m e t h i n n e s s o f t h e BLM; a b s o r b a n c e s o f r e l a t i v e l y few m o l e c u l e s need t o be d e t e r m i n e d . We have overcome t h i s d i f f i c u l t y by I n t r a c a v i t y L a s e r A b s o r p t i o n S p e c t r o s c o p i c (ICLAS) measurements. A b s o r b a n c e s i n I C L A S a r e d e t e r m i n e d as i n t r a c a v i t y o p t i c a l l o s s e s ( 2J3) . S e n s i t i v i t y enhancements o r i g i n a t e i n the m u l t i p a s s , t h r e s h o l d and mode c o m p e t i t i o n e f f e c t s . Enhancement f a c t o r as h i g h as 10^ h a s b e e n r e p o r t e d f o r s p e c i e s whose a b s o r b a n c e s a r e narrow c o m p a r e d t o s p e c t r a l p r o f i l e o f t h e l a s e r (J_0) The enhancement f a c t o r f o r broad-band a b s o r b e r s , used i n o u r work, i s much s m a l l e r . Thus, f o r BLM-incorporated c h l o r o p h y l l - a , we o b s e r v e d an enhance ment f a c t o r o f 10^ a n d r e p o r t e d s e n s i t i v i t i e s f o r a b s o r b a n c e s i n the o r d e r o f 1 0 " ( 2 4 ) . F i g u r e 10 shows t h e s c h e m a t i c s o f t h e e x p e r i m e n t a l setup u s e d f o r i n t r a c a v i t y l a s e r a b s o r p t i o n s p e c t r o s c o p y (ICLAS) o f b i l a y e r l i p i d membranes (BLMs). S i m u l t a n e o u s e l e c t r i c a l and ICLAS measure m e n t s w e r e c a r r i e d out i n a two-compartment c o n t a i n e r c o n s t r u c t e d from two 1 cm p a t h l e n g t h s q u a r t z c e l l s ( F i g u r e 1 1 ) . I C L A S o f f e r e d a c o n v e n i e n t m o n i t o r i n g o f BLM f o r m a t i o n . The u p p e r p a r t o f F i g u r e 12 shows t h e t i m e d e p e n d e n t change o f t h e r e l a t i v e l a s e r i n t e n s i t y p a r a l l e l i n g BLM f o r m a t i o n i n t h e c a v i t y . B L M - f o r m i n g s o l u t i o n was b r u s h e d a c r o s s t h e t e f l o n a p e r t u r e a t t 0. Due t o t h e s c a t t e r i n g o f t h e v e r y t h i c k f i l m , initially p r e s e n t , as w e l l as t o n o n - u n i f o r m , l a r g e l o s s e s i n t h e c a v i t y , no l a s i n g was o b s e r v e d . A f t e r some time, i n d i c a t e d by A i n t h e upper p a r t o f F i g u r e 12 ( t y p i c a l l y 3-4 m i n u t e s ) , t h e f i l m s u f f i c i e n t l y t h i n n e d , a n d l a s i n g was o b s e r v e d . F u r t h e r t h i n n i n g r e s u l t e d i n a gradual i n c r e a s e of the t r a n s m i t t e d l i g h t i n t e n s i t y u n t i l i t reached a p l a t e a u v a l u e ( i n d i c a t e d by Β i n t h e upper p a r t o f F i g u r e 1 2 ) . A t t h i s p l a t e a u , t r u e b i m o l e c u l a r t h i c k membranes (BLMs) were p r e s e n t . The p l a t e a u v a l u e remained c o n s t a n t u n t i l t h e membrane was broken ( i n d i c a t e d by C i n t h e upper p a r t o f F i g u r e 1 2 ) . BLM f o r m a t i o n was s i m u l t a n e o u s l y o b s e r v e d b y e l e c t r i c a l measurements ( s e e lower p a r t o f o f F i g u r e 1 2 ) . A t r i a n g u l a r 6
s
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
FENDLER
Membrane Mimetic Separations
Figure 10. Schematics o f t h e e x p e r i m e n t a l s e t u p f o r i n t r a c a v i t y l a s e r a b s o r p t i o n spectroscopy (ICLAS). CD » chopper d r i v e r ; PM power m e t e r ; H\, M 2 , M 3 , M4 * s p h e r i c a l h i g h r e f l e c t i o n m i r r o r s ; Mp = pump m i r r o r ; MN » m o n o c h r o m a t o r ; PMT * p h o t o m u l t i p l i e r ; SP « s i l i c o n p h o t o c e l l ; PC « P o c k e l s c e l l ; WF » wedged f i l t e r ; L I A * l o c k - i n a m p l i f i e r ; R - r e c o r d e r ; MS • m i c r o s c o p e ; OF * o p t i c a l f i b e r ; S * sample ( s o l u t i o n on BLM) ; IEM • i n s t r u m e n t s f o r e l e c t r i c a l measurements ( s e e F i g u r e 2 ) . a
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
99
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
100
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Figure 12. (Left): P l o t of l a s e r i n t e n s i t y as a f u n c t i o n of time ( i n a r b i t r a r y u n i t s ) d u r i n g f i l m f o r m a t i o n ( 0 — * A ) , t h i n n i n g ( A — > Β) , p r e s e n c e ( B — > C ) and b r e a k i n g o f BLM (C) . d l i s the d i f f e r e n c e i n the i n t e n s i t y o f the l a s e r p r i o r and subsequent t o the b r e a k i n g o f the BLM.
TIME t
V
Id]
(b)
(a|
(Right): P l o t of v o l t a g e clamped (a) and c u r r e n t (b, c, d) waveforms i n the absence ο f i l m ( b ) , i n the p r e s e n c e o f BLM (c) and sub sequent t o the breakage o f the BLM ( d ) .
2.5
mv
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
102
ORDERED MEDIA IN C H E M I C A L SEPARATIONS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
v o l t a g e c l a m p e d w a v e f o r m ( a i n t h e l o w e r p a r t o f F i g u r e 12.) was applied across the f i l m . The o b s e r v e d c u r r e n t waveform changed w i t h t h e f o r m a t i o n o f a t h i c k f i l m subsequent t o t h e b r u s h i n g o f t h e membrane-forming s o l u t i o n a c r o s s t h e t e f l o n a p e r t u r e , w i t h t h e t h i n n i n g o f t h e f i l m t o BLM, a n d w i t h t h e b r e a k i n g o f t h e BLM. These e l e c t r i c a l changes c o r r e s p o n d e d t o changes o b s e r v e d by ICLAS. T h u s , no c u r r e n t p a s s e d a c r o s s t h e e l e c t r o d e s p r i o r t o a p p r e c i a b l e t h i n n i n g o f t h e membrane. The o b s e r v e d t r a c e b i n t h e lower p a r t o f F i g u r e 12 c o r r e s p o n d e d t o t h e 0 »A time domain ( s e e upper p a r t o f F i g u r e 12) o b s e r v e d b y I C L A S . I n c r e a s e i n t h e transmembrane c u r r e n t c o r r e s p o n d e d t o t h e t h i n n i n g o f t h e f i l m t o BLM ( s e e c i n t h e l o w e r p a r t a n d A - B i n t h e u p p e r p a r t o f F i g u r e 1 2 ) . The c u r r e n t waveform remained s t a b l e and u n a l t e r e d d u r i n g t h e p r e s e n c e o f t h e BLM ( s e e Β »C i n t h e upper p a r t o f F i g u r e 1 2 ) . B r e a k i n g o f t h e BLM was s i g n a l l e d b y t h e a p p e a r a n c e o f p e r f e c t square waves c o r r e s p o n d i n g t o t h e s a t u r a t i o n o f t h e a m p l i f i e r by l a r g e e l e c t r o d e c u r r e n t s ( s e e d i n t h e lower p a r t and C i n t h e upper p a r t o f F i g u r e 12). T h i n n i n g o f t h e f i l m was a l s o o b s e r v e d by m i c r o s c o p y . The i n i t i a l l y w h i t e f i l m g r a d u a l l y changed c o l o r and showed a v a r i e t y o f i n t e r f e r e n c e f r i n g e s (between p o i n t s A and Β i n Figure 12), which u l t i m a t e l y turned black ( a t p o i n t B ) . G e n e r a l l y , BLM f o r m a t i o n was c o m p l e t e w i t h i n 20 m i n u t e s . T y p i c a l l y , BLMs l a s t e d f o r 1-3 h o u r s . Microscopic observations afforded the c a l c u l a t i o n ofthe p h y s i c a l a r e a o f BLM, w h i c h , i n c o m b i n a t i o n w i t h electrical m e a s u r e m e n t s , l e d t o v a l u e s o f BLM c a p a c i t a n c e s p e r u n i t a r e a . T y p i c a l BLMs p r e p a r e d from DODAC ( b o t h i n t h e p r e s e n c e and i n t h e a b s e n c e o f c h l o r o p h y 1 1 - a ) h a d a r e a s o f 5.7 χ 1 0 " ^ cm^ a n d 0.7 c a p a c i t a n c e s . These v a l u e s a g r e e d w e l l w i t h t h o s e d e t e r m i n e d f o r BLMs p r e p a r e d from p h o s p h o l i p i d s ( c a p a c i t a n c e * 0.7-1.3 \i¥/cm^) and from s i n g l e - c h a i n s u r f a c t a n t s ( c a p a c i t a n c e = 0.3-0.6 ]i¥/cm^). Thickness a s s e s s e d from:
of the i n s u l a t i n g
. d
l a y e r , d , i n DODAC BLMs can be
ε εΑ ο m =
/ , \
(4)
where ε^ i s t h e d i e l e c t r i c c o n s t a n t i n vacuum, and t a k e n t o be 8.85 χ 10""1* CV~1 m~l , ε i s t h e d i e l e c t r i c c o n s t a n t o f t h e h y d r o c a r b o n and i s assumed t o be 2.1 ( 1 5 ) . A i s t h e a r e a o f membrane, d e t e r m i n e d h e r e t o be 5.7 χ 10"^ cm^ a n d C i s t h e c a p a c i t a n c e o f t h e BLM, d e t e r m i n e d h e r e t o be 4.0 nF. S u b s t i t u t i n g t h e s e v a l u e s i n t o E q u a t i o n 11 g a v e d « 26.5 Â f o r t h e t h i c k n e s s o f t h e i n s u l a t i n g l a y e r i n DODAC BLMs. T h i s v a l u e i s i n v e r y g o o d agreement w i t h t h o s e c a l c u l a t e d f o r p h o s p h o l i p i d b i l a y e r membranes (23-26 A) (25) making t h e same assumptions as used h e r e . tn
We h a v e a l s o p r e p a r e d BLMs from p o l y m e r i z a b l e s u r f a c t a n t s and p o l y m e r i z e d them i n s i t u (_26). E x t e n t s o f p o l y m e r i z a t i o n have been f o l l o w e d by nanosecond, t i m e - r e s o l v e d f l u o r e s c e n c e s p e c t r o s c o p y and a n i s o t r o p i c measurements (26) . E x p e r i m e n t s have been i n i t i a t e d f o r r e a l i z i n g t h e d i f f e r e n t b i o l o g i c a l t r a n s p o r t mechanisms i n p o l y m e r i z e d a n d p a r t i a l l y - p o l y m e r i z e d BLMs and f o r s t u d y i n g t h e i r mechanisms by s i m u l t a n e o u s e l e c t r i c a l and s p e c t r o s c o p i c measurements.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
2.
FENDLER
Membrane Mimetic Separations
103
Acknowledgments I thank my co-workers, whose names appear i n t h e r e f e r e n c e s l i s t e d , f o r t h e i r e n t h u s i a s t i c , d e d i c a t e d , and s k i l l f u l work. The N a t i o n a l S c i e n c e F o u n d a t i o n , Department o f Energy, and Army R e s e a r c h O f f i c e p r o v i d e d f i n a n c i a l s u p p o r t f o r d i f f e r e n t a s p e c t s o f our r e s e a r c h e s .
Literature Cited
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.
15. 16. 17. 18.
Hinze, W. L. in Solution Chemistry of Surfactants, Mittal, K. L., Ed.; Plenum Press: New York, 1979; pp. 79-127. Armstrong, D. W. "Separation and Purification Methods"; 1985, 14, 213-304. Singer, S. J.; Nicolson, G. L. "The Fluid Mosaic Model of the Structure of Cell Membranes"; Science 1972, 173, 720-731. Hoppe, W.; Lohmann, W.; Markl, H.; Ziegler, H. in Biophysics, Springer Verlag: Berlin, 1983. Luzatti, W. "X-ray Diffraction Studies of Lipid-water Systems" (Biological Membranes, Physical Fact and Function), Chapman, C., Ed.; Academic Press: New York, 1968; pp. 71-123. Ovchinnikov, Y. A. in Biochemistry of Membrane Transport, Semenza and Carafoli, Eds., Springer-Verlag: Berlin, 1977. Goddard, J. D. "A Fundamental Model for Carrier Mediated Energy Transduction in Membranes"; J. Phys. Chem. 1985, 89, 1825-1832. Fendler, J. H. "Membrane Mimetic Chemistry"; John Wiley: New York, 1982. Wennerstrom, H.; Lindman, B. "Micelles, Physical Chemistry of Surfactant Association"; Phys. Rep. 1979, 52, 1-86. Gaines, G. L., Jr. "Insoluble Monolayers at Liquid-Gas Interfaces"; Interscience: New York, 1966. Kuhn, H.; Möbius, D. "Systems of Monomolecular Layers Assembling and Physico-Chemical Behavior"; Angew. Chem. Int. Ed. Engl. 1971, 10, 620-637. Fendler, J. H. "Polymerized Surfactant Aggregates" (Surfactants in Solution), Mittal, K. L. and Lindman, Β., Eds.; Plenum Press: New York, 1984, pp. 1947-89. Paleos, C. M. "Polymerization in Organized Systems"; Chem. Soc. Revs. 1985, 14, 45-67. Bader, H.; Dorn, K.; Hashimoto, K.; Hupfer, B.; Petropoulos, J. H; Ringsdorf, H.; Sumimoto, H. "Polymeric Monolayers and Liposomes as Models for Biomembranes" (Polymer Membranes), Gordon, M., Ed.; Springer Verlag: Berlin, 1985, pp. 1-62. Tien, H. T. "Bilayer Lipid Membranes (BLM), Theory and Practice"; Marcel Dekker: New York, 1974. Tien, H. T. in Membranes and Transport, Martonozi, Α. Ν., Ed.; Plenum Press: New York, 1982, p. 165. Montal, M.; Mueller, P. "Formation of Bimolecular Membranes from Lipid Monolyers and a Study of their Electrical Properties"; Proc. Natl. Acad. Sci. USA 1976, 69, 3561. White, S. H.; Petersen, D. C.; Simon, S.; Yafuso, M. "Formation of Planar Bilayer Membranes from Lipid Monolayers. A Critique"; Biophysical J. 1976, 16, 481-489.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 12, 2017 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch002
104
ORDERED MEDIA IN CHEMICAL SEPARATIONS
19. Fendler, J. H. "Surfactant Vesicles as Membrane Mimetic Agents: Characterization and Utilization"; Acc. Chem. Res. 1980, 13, 7-13. 20. Fendler, J. H.; Tundo, P. "Polymerized Surfactant Aggregates: Characteriation and Utilization"; Acc. Chem. Res. 1984, 17, 3-8. 21. Tien, H. T. "Bilayer Lipid Membranes (BLM). Theory and Practice"; Marcel Dekker: New York, 1974. 22. Hille, B. "Ionic Channels of Excitable Membranes"; Sinaver Associates, Inc.: Sunderland, Massachusetts, 1984. 23. Harris, T. D. in Ultrasensitive Laser Spectroscopy, Kliger, David S., Ed.; Academic Press: New York, London, 1983, p. 343. 24. Zhao, X.-K.; Fendler, J. H. Submitted for publication, 1986. 25. Alvarez, O.; Latorre, R. Biophys. J., 1978, 21, 1. 26. Rolandi, R.; Flom, S.; Dillon, I.; Zhao, X.-K.; Fendler, J. H. Unpublished work, 1986. RECEIVED October 24, 1986
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.