Relationship Between Coal Characteristics and Its Reactivity on

Jul 23, 2009 - Mechanical Engineering Laboratory, Kobe Steel, Ltd., Iwaya, Naka-ku, Kobe 657, Japan. Coal Liquefaction Fundamentals. Chapter 4, pp 75â...
0 downloads 0 Views 1MB Size
4 Relationship Between Coal Characteristics and Its Reactivity on Hydroliquefaction K. MORI, M. TANIUCHI, A. KAWASHIMA, O. OKUMA, and T. TAKAHASHI

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

Mechanical Engineering Laboratory, Kobe Steel, Ltd., Iwaya, Naka-ku, Kobe 657, Japan

It has recently been acknowledged that in future coal will play a more important role as an energy source for petroleum. Especially in Japan, whose energy sources depend largely on imported petroleum, the development of coal technology must be accelerated to prepare against a future energy crisis. Coal liquefaction, one of the processes that promises to solve this crisis, is now in the development stage. As with petroleum, Japan depends on imported foreign coal, because of its own peculiar coal mining conditions. But in Japan, a wide variety of coal species will be used for liquefaction. Therefore, the effect of characteristics of coal on reactivity during liquefaction is an important research subject for selecting the coal species. Location, Geology and General Characteristics of Japanese Coals The geographical distribution of Japan's main coal fields and coal mines is shown in Fig.1. Though Japan is composed of four main islands, i . e . , Hokkaido, Honshu, Shikoku and Kyushu, from the north to the south, the coal resources are mainly limited to Hokkaido and Kyushu as shown in Table 1. Although the

majority of the Japanese coals were formed during the Cenozoic era in the Tertiary period, their coalifications are extraordinarily advanced owing to the crustal movements and volcanic activities they have experienced; therefore Japan produces a wide range of coals varying from brown coal to anthracite.

The properties of Japanese coal and the fields can be characterized, in comparison with those of the continental type, as follows : (1)

Coal fields are small in scale and defective in continuity.

(2)

Geological structure is complicated due to numerous faults and foldings. 0-8412-0587-6/80/47-139-075$05.50/0 © 1980 American Chemical Society Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

76

FUNDAMENTALS

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

COAL LIQUEFACTION

Takashima coal field

Figure 1.

Main coalfields in Japan

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

2,951

912

2,325

2 k06

5,502

Kyushu

Japan's

tons)

6,269

1,766

6,353

Total

6

lU,388

(ΙΟ

T h i s d a t a i s q u o t e d f r o m t h e s p e c i a l r e p o r t , 1973 Bureau, S i e n c e and Technology Agency.

o f Research Coordination

* C o a l r e s e r v e s up t o t h e p r e s e n t d e p t h l e v e l s o f m i n i n g t e c h n o l o g y .

Total

6,561

660

308

798

Honshu 9

2,950

1,105

2,298

Hokkaido

Inferred

Indicated

Coal Reserves*

Japanese c o a l r e s e r v e s

Proven

Region

1.

Theoretical Minable

Table

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

78

COAL

LIQUEFACTION

FUNDAMENTALS

(3)

Coal i s r i c h i n hydrogen or v o l a t i l e matter and higher i n h e a t i n g value.

{k)

Caking property i s not strong "but some are o f extremely h i g h f l u i d i t y .

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

L i q u e f a c t i o n Behaviour o f Coals I t i s w e l l known t h a t the c h a r a c t e r i s t i c s o f c o a l d i f f e r widely according t o the age o f the c o a l formation as w e l l as t o the l o c a t i o n o f c o a l , e t c . And the r e a c t i v i t y during hydrol i q u e f a c t i o n depends on the c h a r a c t e r i s t i c s o f c o a l s . T h i s r e l a t i o n s h i p w i l l be a guidance t o s e l e c t and develop c o a l mines. Many parameters t o i n d i c a t e the r e a c t i v i t y o f c o a l have been proposed ( l , 2, 2)· Among these parameters, carbon content, v o l a t i l e matter content, value o f H/C atomic r a t i o , r e a c t i v e macérais content, e t c . are r e p o r t e d t o be r e l a t i v e l y c l o s e l y r e l a t e d parameters t o c o a l r e a c t i v i t y . However, these r e l a t i o n s are u s u a l l y found o n l y i n l i m i t e d r e a c t i o n c o n d i t i o n s . Theref o r e , attempts t o f i n d b e t t e r parameters s t i l l continue. 1

In t h i s study, we have t r i e d t o f i n d a more comprehensive parameter r e l a t e d t o c o a l r e a c t i v i t y , as represented by conv e r s i o n , by l i q u e f y i n g s e v e r a l ranks o f c o a l s . These cover a wide range from l i g n i t e t o bituminous c o a l . A l s o we have s t u d i e d the d i f f e r e n c e of c o a l r e a c t i v i t y caused by the mining s i t e s i n A u s t r a l i a n brown c o a l mines. S e l e c t e d c o a l s from a wide range of rank are l o c a t e d i n the c o a l band shown i n F i g . 2 . The r e s u l t i n g parameters are compared with other parameters r e p o r t e d "by other researchers (2, ,2.). Experiments

and R e s u l t s

A n a l y t i c a l data on c o a l s used i n t h i s study are presented i n Tables 2 and 3. H y d r o l i q u e f a c t i o n data on c o a l s used i n t h i s study are summarized i n Tables k and 5· The l i q u e f a c t i o n o f c o a l s was s t u d i e d i n a 500 ml magneticall y - s t i r r e d s t a i n l e s s s t e e l antoclave. Two d i f f e r e n t r e a c t i o n c o n d i t i o n s were used i n t h i s study, but the experimental procedures were almost the same i n "both c o n d i t i o n s . Coal, solvent and c a t a l y s t were charged t o the autoclave. A f t e r the autoclave had been f l u s h e d and p r e s s u r i z e d with hydrogen t o the d e s i r e d i n i t i a l p r e s s u r e , the autoclave was heated with constant e l e c t r i c power and with constant s t i r r i n g up t o the r e a c t i o n temperatures. Then, the autoclave was h e l d at these temperatures f o r periods o f the d e s i r e d l e n g t h . At the c o n c l u s i o n o f the r e a c t i o n , the autoclave was quenched "by dropping the h e a t i n g j e c k e t and cooled by standing i n a i r u n t i l i t reached room temperatures. A f t e r c o o l i n g , the r e a c t i o n gases were vented,

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

MORI E T A L .

Coal

Characteristics

Coal band of Japanese coals

/ 1

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

imit of lignites

\

\

1

ν

\ ^

II

/

1 //

Lithgow coal

^

Taiheiyo coal

1

V i c tori an brown coal (Ya lourn coal)

ike coal

\ι \ 1



Coal band of European and A merican coals

0

0.1

0.2

0.3 O/C

Figure 2.

0.4 atomic ratio

Relationship between coals used and coal bands

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

0.6

Ν

8.3

11.0 1.3

1.6

1 9 . k 1.6

32.6

0

3.2

0.8

0.1+

0.2

S

0.101

1)

0.832 0.076

O.lkk

0.912 0.199

0.800 0.392

H/C

Ash,

3)

FC

4 )

1+6.1

53.6

s )

27.8

19.3

23.2

Ik.2

vc

V o l a t i l e Matter,

39.8

32.6

kO.2 39.9

1+5.5 U2.3

VM

3)

15.2 15.7 11+.5 21.2

69.36 k.12 25.1+5 0.82 0 . 2 6 Ο.713 0.275

69.82 1+.1+5 2k.k9 0.92 0 . 3 2 Ο.765 0.263

69.1+9 ^.72 2U.79 Ο.76 0.27 0.815 0.267

71.85

Β

C

D

Ε

* E q u i l i b r i u m moisture content

h.90 21.95 0.87 0.1+3 0.811 0.229

2.1+

23.3

2.7

2.9

2.7

2.3

A

FC

51.9

51.2 1+6.0

53.7 1+3.1+

1+7.3 50.0

1+5.8

k9.k 1+8.2

V M

V C

21+.52

21+.79

18.1+3

l6.2l+

17.66

Proximate a n a l y s i s (dry) M *

1

2)

0.7 13.U

1.7 1 2 . 1

^^Qoal _ ., Ultimate a n a l y s i s (d.a.f.) C o a l ^ ^ ^ C Η 0 Ν S H/C 0/C type A 67.05 3.70 28.36 0.58 0.31 0.656 0.317

3.

0.8

A

2 )

6 . 3 13.6

11.k

M

1}

Proximate a n a l y s i s *

3.7

36.2

8.9

Inerts

Light

Light

Dark Medium Dark Medium Light

Litho­ type

A n a l y t i c a l data on Morwell brown coals used i n the study o f the narrow range

E q u i l i b r i u m moisture content, Moisture, carbon, o o ^ A r , 5) V o l a t i l e carbon.

ixed ) F ττπνβΛ

Table

4

5.1

5.7

81.5

81.5

Miike c o a l

*

5.6

73.0

Lithgow c o a l

62.1+ k.2

Η

0/C

A n a l y t i c a l data on coals used i n the study o f the wide range

Ultimate a n a l y s i s (d.a.f.)

2.

Taiheiyo c o a l

type Yallourn brown c o a l

C

Table

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

w

>

H

2!

•η C

δ

Ο Η

>

M

c

ο

r

ο

ce Ο

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

1+.

f c )

F

e

2

°3

1+1.8

58.9

( g )

2

1 65.2

91.1

1.0 59.0

1+30

80 1+30 1.0 75.8

0.22

80

0.51+

0.22

80 1+30 1.0 81.6

0.22

0.5I+

1.0 87.7

80

1+30

0.22

0.51+

1

1.0 80.8

80

1+30

0.22

0.5!+

37.5 112.5

37.5 112.5

37.5 112.5

37.5 112.5

37.5 112.5

0.51+

Ε D C

Β

A

** Conversion was c a l c u l a t e d by p y r i d i n e i n s o l u b l e r e s i d u e .

* Solvent means creosote o i l .

Catalyst

60.3

Reaction c o n d i t i o n s and r e s u l t s o f h y d r o l i q u e f a c t i o n on Morwell brown c o a l used i n the study o f the narrow range

(g. as d.a.f.)

5.

Fe2 O3 S (kg/cm ) Hydrogen i n i t i a l pressure Reaction Temperature (°C) Holding Time a t Reaction Temp. ( h r . ) Conversion**

Feed c o a l Solvent*

Feed c o a l sample

Table

** Conversion was c a l c u l a t e d by benzene i n s o l u b l e r e s i d u e .

* Solvent c o n s i s t s o f creosote o i l and recovered s o l v e n t .

2

1 55.0

97.U

1+3.0 150 0 0.75 0 0.15 60 1+50

1+0.1 150 0 0.75 0 0.15 6o 1+50

1+3.1 150 0 0.75 0 0.15 60 1+50

1+3.9 150 0 0.75 0 0.15 60 1+50

uauaiyso \ & / g — Hydrogen i n i t i a l pressure (kg/cm ) Reaction Temperature (°C) Holding Time at Reaction Temp. ( h r . ) Conversion** {%) 28.5

nntn.iv«t

Mi ike coal

Taiheiyo coal

Lithgow coal

Yallourn coal

Reaction c o n d i t i o n s and r e s u l t s o f h y d r o l i q u e f a c t i o n on c o a l s used i n the study o f the wide range

Feed Coal (g. as d.a.f.) Solvent*

Feed Coal

Table

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

82

COAL LIQUEFACTION

FUNDAMENTALS

and c o l l e c t e d i n a gas s a m p l i n g f l a s k . The f i n a l p r o d u c t s l e f t i n t h e a u t o c l a v e were f i l t e r e d b y s u c t i o n . The r e s i d u e l e f t o n t h e f i l t e r was t r a n s f e r r e d t o a S o x h l e t e x t r a c t o r a n d e x t r a c t e d w i t h "benzene o r p y r i d i n e u n t i l t h e w a s h i n g s o l v e n t was a l i g h t yellow c o l o r . A f t e r e x t r a c t i n g , the weight o f the i n s o l u b l e r e s i d u e was d e t e r m i n e d a f t e r b e i n g d r i e d a t 120°C, u n d e r 5 mmHg, and o v e r 2 h r s , u s i n g a v a c u u m - d r i e r . The f i l t r a t e f r o m t h e r e a c t i o n m i x t u r e and t h e c o n c e n t r a t e d s o l u t i o n f r o m t h e w a s h i n g s o l v e n t were c o m b i n e d and t h e n vacuum d i s t i l l e d up t o 310°C a t 90 mmHg. The f r a c t i o n s w i t h b o i l i n g p o i n t : 120 - 310°C a n d 310°C above ( t h e vacuum b o t t o m ) w e r e r e c o v e r e d a s s o l v e n t a n d SRC, respectively. C o n v e r s i o n was c a l c u l a t e d a s f o l l o w s :

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

Conversion % - Coal charged (d.a.f.) - Insoluble residue Coal charged (d.a.f.)

(d.a.f.)

The a n a l y t i c a l d a t a f o r c o a l s a m p l e s u s e d b y o t h e r r e s e a r ­ c h e r s and t h e i r e x p e r i m e n t a l r e s u l t s a r e shown i n T a b l e s 6 a n d 7. A rough comparison o f the l i q u e f a c t i o n c o n d i t i o n s used i n t h i s study t o explore the parameter representing c o a l char­ a c t e r i s t i c s i s shown i n T a h l e 8. The r e l a t i o n s b e t w e e n c o a l r e a c t i v i t y a n d s e v e r a l p a r a ­ m e t e r s a r e shown i n F i g s . 3 t o 8. I n t h e s e f i g u r e s t h e r e a c t i v i ­ t y o f c o a l i s measured b y c o n v e r s i o n . I n the r e s u l t s , v o l a t i l e c a r b o n % i s s e l e c t e d a s a more c l o s e l y r e l a t e d p a r a m e t e r t h a n t h e common p a r a m e t e r s , s u c h a s C% E% 0%, H/C a t o m i c r a t i o , v o l a t i l e matter, etc. 9

Volatile Volatile

9

carbon % i s defined by the

equation as f o l l o w s .

carbon %

- Μ (ή » + \ - υ/* v a . a . i . ; -

V

o

l

a

t

i

l

e

m

F i x e d carbon % r % + Fixed

a

t

t

e

,

Q

0

carbon %

This parameter i s d e r i v e d from the f o l l o w i n g i d e a . I t i s generally considered that the f i r s t step o f coal hydro­ l i q u e f a c t i o n i s t h e t h e r m a l d e c o m p o s i t i o n o f C-C a n d C-0 b o n d s , etc. i n coal structure. Thus, i t i s presumed t h a t t h e v o l a t i l e matter i n c o a l i s c l o s e l y r e l a t e d , as a parameter t o c o a l r e ­ a c t i v i t y (conversion). B u t , t h e amounts o f o x y g e n c o n t a i n i n g compounds, s u c h a s c a r b o n d i o x i d e , w a t e r , e t c . i n v o l a t i l e m a t t e r f o r m e d "by t h e t h e r m a l d e c o m p o s i t i o n o f o x y g e n c o n t a i n i n g f u n c ­ t i o n a l g r o u p s i n c o a l , a r e l a r g e and v a r y g r e a t l y w i t h t h e r a n k o f c o a l . Moreover, the f u n c t i o n a l groups are m o s t l y a t t a c h e d t o the side chain o f the b a s i c aromatic u n i t s i n the c o a l s t r u c t u r e . Thus,the v o l a t i l e m a t t e r i n c o a l i s not g e n e r a l l y c o n s i d e r e d t o be a b e t t e r p a r a m e t e r r e p r e s e n t i n g c o a l r e a c t i v i t y .

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

0-1

Smoky R i v e r South Yakutian

0-6

Illinois Kentucky NO.11 Griffin Taiheiyo Mi i k e Gross v a l l e y Newdell Hwaipei Wallondilly Yubari Wollondilly Weathered Balmer Balmer South Yakution

Original coals

Table

U.T

dry base

91.7

U.6 U.7

5-5

89.I

89.9 90.6

k.h

6.0 6.3 1+.8 5.8 5.0 5-3 6.2 5-2

88.U

87.Ο

5-8 5-9

73.8 75.5 75-8 77-0 82.2 83.2 83.5 85.2 85.9 86.3

U.O

H

C

1.1

2.2

2.9

0.9 1.3

1.1 3.7 0.2 0.3 2.5

1.8 1.2 1.6 1.3 1.3 1.7 1.9 1.3 1.8 1.9 1.8 1.2 1.1

0.H

0.3 0.5

0.5 0.3 0.5 0.3 0.U 0.3 0.U

O.k

S

Ν

U.3

7.7 9-9 8.3 8.3 6.5 5.3 5-7 5.7 3.9

15.U

18.5

13.7

17.5

0

8.9

τ.Τ

8.0

9-5 11.1 9.8

2.Τ

1U.3 8.9 20.0 6.2

lU.7

13.2

T.l 2.5

1.70 1.75 l.lh

72.8 18. k

1.11 1.52 1.U6

0.33 0.57 0.79 0.83 0.80 0.99

72.1 72.9

61.6 68.0 67.6

51.U

58.1 51.5 52.6

Ul.7

51.5 38.7 35.5

Ro

21.9

22.0 29.1

32.2

ία.7

UU.8

35.5

28.2 33.0 32.1

11.8

Ul.6

23.8

kk.6

80.6 38.5 6^.2 91.5 3U.8 57.3 U5.9 56.9 95.2

9h.l

Conv. (%)

11.5 11.6

33.6 19.0 11.8 1U.2

26.9

19Λ 2k.2

15.U

20.1 36.0 36.1 33. h

V c

39.0 6.6 9.0 60. k 20.5

Inerts

Characteristics

19.9 19 A

U6.0 29.0 20.9 22.7

27.U

kl.k 58.8 51.3 U3.7 27.6 39.5

Proximat e analysis F C A V M

A n a l y t i c a l data f o r c o a l s used and experimental r e s u l t s

Ultimate a n a l y s i s (d.a.f.)

6.

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

00

8

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

1.1 0.1*

9.5

11.0

5-6

5-8

5-6

5-7

U.7

5.9

5.7

78.3

80.5

81.8

81.9

82.0

82. k

82.5

81*.1*

85.8

151

187

185

105

68

70

16OA

95

110

* Dry base



0.7

1.0

0.5

0.1*

0.6

** d.a.f. base

1.3

1.1

7.6 6.6

1.8

0.8

1-5

1.1

1.7

0.93

0.81+

60.1 62.1+

0.75 58.9

0.77

59-6

90

9k

87

97

83

83

93

*** RM means r e a c t i v e maurals

37.6

39.9

23.8

T.U

1+1.1

U0.1+

0.61+

0.73

0.55

58.7

62.1+

37.6 1+1.3

57.6

90

0.61+

61.0

1

88.2 21+.2

23.6 11

23.!+

87.8

97.6

content i n c o a l .

9

21+.3

92.1*

22.8

2 3

90.7

23.3

16

86.1*

19.5

80.8

88.6

72.1

78.8 19.5

23.7

39-6

25.6 9 5 . 9 - 9 7 . 1

Conv.

15

7

9

9

81

9

18

90

72

0.1+0

0.31

0.30

Characteristics *** In­ ert s V C Ro RM

51+.6

32.9

1+6.1+

1*2.1+

39.0

1*5.1*

67.1

53.6

V M** F C**

analysis

6.2

29. h

6.0

13.1*

16.1

7.5

0.8

1.0

5-7

0.1+

1.2

27.3

10.6

A*

0.6

0.5

Sorg

0.8

9-8

10.7

10.3

12.2

20.9

5.2

72.5

99

5-8

21.7

Ν

0.6

87

0

H

5.2

C

Proximate

(P.H. Given et a l )

A n a l y t i c a l data f o r coals used and experimented r e s u l t s

Ultimate a n a l y s i s (d. a.f.)

Τ·

72.0

O r i g i n a l coals PSOC NO.

Table

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980. 2

Reaction press,

2

(kg/cm )

Reaction time (hr.)

Reaction temp. (°C)

H2 i n i t i a l press (kg/cm )

2.0

60

catalyst

1U0 - 190

no

+ S

1.0

-

0.5

238

(atm.)

1.0

385

U20

(atm.)

used

h30

catalyst

lU

no

30

+ S

80

3

195 _ 2U8

2

Fe 0

3

Fe 0

Catalysts 2

anthracene o i l

creosote o i l

creosote o i l

creosote type

coals)

Solvents

lignite

(ll

from

(l6 c o a l s )

lignite

(5 samples)

from

f

Given s

(h c o a l s )

lignite

P.H.

to bituminous

lignite

1

Yamakawa s

to bituminous

from

Present study

Comparison of the experimental c o n d i t i o n s

to bituminous

Rank of coals

Table ο.

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

00

Η

w

ο

3

86

COAL LIQUEFACTION

Ο Ο Yubarî Mi ike (90) Newdell ( 20.5) Ο Ο

Yamakawa, et al

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

Ο Griffin (39.0)

P.Η.

0

Given, e t a l .

Present work

PSOC87

ο

Cross valley (60.4)

^4

°

— " *~ ο

Δ

J Lithgow

(8-9)

60

FUNDAMENTALS

70

90

80 C % in coal

Figure 3. Relationship between conversion and carbon percentage in coal. The asterisks indicate that the figures in parentheses show the inert content in the coal Symbols: (Φ), with catalyst; (Ο),ηο catalyst; (A), Morwell brown coal.

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

4.

MORI E T A L .

Coal

Characteristics

87

Ο Yamakawa, et a l .

ο ο

Ο

ο

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

ο

~ ~™

"~™

^«^^ ζ

0

ο

Ρ . Η . G i v e n , et a l .

©

>"-β-ο

ο

ο

• Present work Δ'



"

8 >

Ο ()

0.6

0.7

0.8

0.9 H/C of coal

Figure 4.

Relationship between conversion and H/C of coal: (%), with catalyst; (Ο),ηο catalyst'; (A), Morwell brown coal.

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

88

COAL LIQUEFACTION

100

FUNDAMENTALS

ο

Yamakawa, et a l .

So \

ο Ο

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004

Ίθ°

0

h e —

P.Η .Given, e

1

ο

Ο

§> 50

• Ο

Present work

Δ Δ

Δ

Δ



V.

Ο

Ο

0

20

30

40

50

60

70

Volatile matter % in coal

Figure 5. Relationship between conversion and volatile matter percent in co (%), with catalyst; (Ο),ηο catalyst; (A), Morwell brown coal.

Whitehurst; Coal Liquefaction Fundamentals ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

4.

MORI E T A L .

Coal

89

Characteristics

M Present work

Downloaded by TUFTS UNIV on June 20, 2017 | http://pubs.acs.org Publication Date: October 14, 1980 | doi: 10.1021/bk-1980-0139.ch004



Yamakawa, et a l .

Δ

A — · "

1 Kentuc ky No 11