X-Ray Diffraction Identification of Alcohols by Their Xanthate

G. G. Warren, and F. W. Matthews. Anal. Chem. , 1954, 26 (12), pp 1985–1987. DOI: 10.1021/ac60096a041. Publication Date: December 1954. ACS Legacy ...
0 downloads 0 Views 382KB Size
V O L U M E 26, NO. 12, D E C E M B E R 1 9 5 4 Table 111. Sample Dibenayl sulfidea Sulfosalicylic acida Additive 1 Additive 2 Additive 3 hlotor oil 1 hlotor oil 2

1985

Comparison of Methods Grarinietric Sulfur,

Volumetric Sulfur,

Difference,

15.04,15.09 12.37,12.33 6.60, 6 . 5 8 4 . 7 8 . 4.85 2 . 5 6 , 2.62 0.59. 0.62 0.54, 0 . 5 7

14.73, 14 81 12.15,12.21 6.44, 6 . 4 4 4.71. 4 . 7 3 2.52, 2.54 0.62. 0.62 0 . 2 2 , 0.55

-2.0 -1.4 -2.3 -2.1 -2.4 i-1.6 13.6

%

70

%

hypophosphorous acid is poisonous and spontaneously combustible. The fraction betyeen 117” and 128” C. is collected as hydriodic acid (SO%), specific gravity 1.55. Crystals of phosphonium iodide may appear in the condenser. Recovery of 90% can be achieved by adding 50 ml. of phosphoric acid per liter of collected distillation bottoms. The stream of carbon dioxide should not he cut off until the residue has cooled considerably. ACKNOWLEDGMEIYT

Eastman white label.

The method has been applied to compounded motor oils and lubricating oil additives containing calcium and phosphorous and to organic compounds as shown in Table 111. The bombgravimetric procedure gives results slightly higher in general than the proposed bomb-volumetric procedure. The primary reason for this is believed to be the contamination of barium sulfate precipitates. A precipitate from an additive was analyzed spectroscopically and showed significant amounts of sodium, magnesium, aluminum, copper, iron, and silicon. RECOVERY OF HYDRIODIC ACID

Hydriodic acid may be recovered if desired by collecting the distillation bottoms and distilling them in an all-glass apparatus blanketed with a rapid stream of carbon dioxide ( 2 ) . The apparatus should be properly shielded and the distillation conducted in a hood since phosphine produced by the decomposition of

Thanks are due to R. E. Ramsay of the California Research Corp. for spectroscopic analyses and to F. H. Dempster and H. E. St. George of the Standard Oil Co. of California for review of the manuscript. LITERATURE CITED

-Am. Soc. Testing Materials, Philadelphia, Pa., “1952 Book of ASTlf Standards,” Part 5, D 129-52, p. 77, 1953. Clark, E. P., “Semimicro Quantitative Organic Analysis,” p. 71, New York, Academic Press, Inc., 1943. Luke, C. L., ISD.ENG.CHEM.,ANAL.ED.,15, 602 (1943). Ibid., 17, 298 (1945). RIilner, 0. I., A N ~ LCHEM., . 24, 1247 (1952). Rodden, C. J.. “Analytical Chemistry of the Manhattan Project,” p. 307, New York, NcGraw-Hill Book Co., 1950. Roth, H., Mzkrochemie w r . Mikrochim. Acta, 36/37, 379 (1951). St. Lorant, I., and Kopets, L., Biochem. Z . , 238, 67 (1931). Siegfriedt, R. K., Wiberley, J. S.,and Moore, R. W,, -ANAL.

CHEM., 23, 1008 (1961). Wagner, E. C., and Miles, S. H., Ibid., 19, 274 (1947). RECEIVED for review November 2 , 1953.

.4ccepted August 23, 1954.

X-Ray Diffraction Identification of Alcohols By Their Xanthate Derivatives G. G. WARREN and F. W. MATTHEWS Central Research laboratory, Canadian Industries (1954), ltd., McMasterville, Quebec, Canada

Potassium xanthate derivatives of some of the common alcohols have been prepared. Tables of their x-ray diffraction powder data are given as a means of identification.

so.

CZ C8 c 4

C6

Ca

c7 C8

ClO ClZ C,, CIS ClS

CS CS Ca

C‘

A

LCOHOLS are among the most commonly used organic compounds in the laboratory and in industry. While pure alcohols in their solid form can be identified by their powder diffraction data ( 5 ) , when encountered in solvent mixtures their identification is often difficult and time-consuming. In previous papers from this laboTable I. Index Lines of the Potassium Xanthate Derivatives of .4lcohols ratory, the authors have described the identification of Strongest Lines, A . Innermost Alcohol 1st 2nd 3rd 4th Line, 4. fatty acids hy means of the xEthql alcohol 7 . 5 (1.00) ray diffraction data of various 3.55(0.60) 3.19 (0.30) 3.24 (0.25) 1 8 . 3 (0.02) 1-Propanol 1 0 . 1 (1.00) 2 . 2 1 (0.50) 3 . O O (0.70) 2 . 6 5 (0.45) 16.4 (0.10) derivatives (2, S). This paper 2-Propanol 9 . 6 (1.00) 3 . 0 6 (0.50) 3 . 1 9 (0.30) 7 . 6 (0.25) 9.6(1.00) 1-Butanol 3.32(0.80) 10.0 (1.00) 2 . 2 5 (0.40) 3 . 8 1 (0.40) 1 0 . 0 (1.00) discusses the use of x-ray dif2-Rletliyl-1-propanol 1 1 . 6 (1.00) 3 . 0 6 (0.60) 2 . 7 8 (0.40) 7 . 5 2 (0.30) 1 1 , 6 (1.00) 2-Butanol 1 0 . 9 (1.00) fraction patterns for the identi3.18(0.50) 6 . 2 3 (0.45) 3 . 1 3 (0.45) 1 0 . 9 (1.00) 1-Pentanol 1 2 . 2 (1.00) 4.57(0.40) 4.04(0.40) 3.15 (0.20) 1 2 . 2 (1.00) fications of crystalline deriva3-Methyl-1-butanol 1 2 . 8 (1.00) 4 . 8 6 (0.50) 3 . 2 1 (0.30) 3 . 1 7 (0.30) 1 2 . 8 (1.OO) 2-Methyl-1-butanol 1 2 . 5 (1.00) 3.09 (0.60) 4 . 1 4 (0.40) 3 . 1 9 (0.30) 12.5(1.00) tives of alcohols. In choosing 3-Methyl-2-butanol 11.9 (1.00) 4 . 9 2 (0.25) 3 . 1 8 (0.30) 6.37 (0.20) 11.9 (1.00) 3-Pentanol 12.1 3.17 (0.40) a derivative for identification 4.62 0 30) 4 . 0 7 (0.30) 1 2 . 1 (1.00) 1-Hexanol 14.0 4 . 0 7 [0:15) 4.59 (0.20) 3 . 1 8 (0.10) 1 8 . 0 (0.05) by means of x-ray diffraction 1-Heptanol 15.6 (1.00) 4 . 6 2 (0.50) 4 . 0 6 (0.40) 3.14(0.30) 1 5 . 6 (1.00) 1-Octanol 4.27 1 6 . 8 (0.90) 6 . 5 (0.60) 3.38(0.50) 1 6 , s (0.90) powder patterns, the emphasis 1-Decanol 4.29 7 . 3 (0.50) 3 . 6 7 (0.40) 5 . 1 4 (0.30) 14.6 (0.20) 1-Dodecanol 4.32 (1.00) may he on ease of preparation, 3.68(0.40) 3.82 (0.70) 1 6 . 5 (0.30) 16.5(0.30) 1-Tetradecanol 4 . 3 3 (1.00) 3 . 8 1 (0.80) 18.2 (0.60) 3 . 6 8 (0.50) 18.2 (0.60) as the ease of purification and 1-Hexadecanol 4 . 3 5 (1.00) 3.70(0.70) 3 . 8 3 (0.50) 2 0 . 5 (0.40) 2 0 . 5 (0.40) I-Octadecanol2 2 . 1 (1.00) 4.35(0.90) 1 4 . 7 (0.80) 3 . 8 1 (0.70) 2 2 . 1 (1.00) sharpness and dispersion of 2-Propen-1-01 3 . 0 1 (0.80) 9 . 6 (1.00) 2.27(0.40) 4 . 0 1 (0.30) 9.6(1.00) C yclohexanol melting points are no longer of 3 . 0 5 (0.15) 4 . 9 0 (0.10) 1 2 . 8 (1.00) 3.16(0.10) 1 2 . 8 (1.00) 2-hfethoxyethanol 3 . 0 4 (0.80) 9 . 4 (1.00) 4 . 3 2 (0.40) 2 . 8 8 (0.35) 9 . 4 (1.00) importance. 2-Ethoxyethanol l o . , (1.00) 3.12 (0.60) 3 . 6 6 (0.30) 3.28(0.25) 1 0 . 7 (1.00)

1:. :E{

1E3

2-Methoxymethoxyethanol

11.4(1.00)

3.16(0.50)

4.44(0.40)

3.26(0.35)

11.4(1.00)

The potassium xanthate derivatives of alcohols are easily

1986

ANALYTICAL CHEMISTRY Table 11. Diffraction Data of C2,

Ethyl Alcohol a, A. 1/11 18.3 12.3 9.4 8.1 7.5 5.20 4.70 4.35 3.55 3.42 3.33 3.24 3.19 3.09 3.03 2.72 2.67 2.62 2.51 2.49 2.47 2.41 2.36 2.33 2.27 2.24 2.19 1.63

Ca 1-Prop;tnol d , A. 1/11 16.4 10.1 9.4 8.9 8.3 5.54 4.56 4.08 3.99 3.93 3.77 3.70 3.44 3.34 3.29 3.15 3.10 3.00 2.75 2.65 2.62 2.57 2.50 2.39 2.28 2.21 2.03 1.99

CC,

1-Butanol

a, A.

1/11

10.0 0.67 6.93 5.44 4.44 3.81 3.32 3.19 3.15 3.11 3.05 3.00 2.88 2.78 2.73 2.69 2.58 2.56 2.50 2.45 2.42 2.40 2.32 2.30 2.25 2.18 2.16 2.12 2.05 1.95

C63 1-Hexanol d , A. 1/11 18.0 0.05 14.0 1.oo 7.02 0.05 6.43 0.02 5.66 0.05 4.86 0.03 4.68 0.02 4.59 0.20 4.35 0.02 4.07 0.15 3.68 0.03 3.51 0.02 3.18 0.10 3.14 0.10 3.06 0.05 3.01 0.02 2.95 0.10 2.89 0.02 2.83 0.02 2.69 0.02 2.57 0.02 2.46 0.02 2.42 0.02 2.32 0.02 2.29 0.02 2.15 0.02 2.03 0.02 2.01 0.02

~~

Cl4,

1-Tetradeoanol

C;,

1-Heptanol d , A. 1/11 15.6 12.0 8.58 7.77 6.90 6.23 5.58 5.17 4.62 4.57 4.06 3.88 3.75 3.46 3.28 3.14 3.10 3.03 2.85 2.72 2.fi7 2.58 2.49 2.47 2.43 2.37 2.32 2.25 2.14 2.09 2.01 1.57 1,54 1.53

CS, 1-Octanol

16.8 12.9 9.6 8.6 7.9 6.5 5.54 5.24 5.18 4.72 4.49 4.27 4.05 3.90

1/11

CIO.

1-Decanol d , A.

14.6 9.6 7.3 6.0 5.7 5.47 5.14 4.96 4.76 4.52 4.29 4.05 3.81 3.67

1/11

1/11

18.2 12.2 9.1 7.3 6.1 5.22 5.00 4.67 4.33 4.20 4.13 4.01 3.81 3.68 3.61 3.54 3.44 3.32 3.25 3.19 3.12 3.02 2.97 2.78

C12.

1-Dodecanol d , A. 1/11 16.5 0.30 11.0 0.05 0.20 8.23 0.10 6.00 0.10 5.51 0 20 5.06 4.71 0 15 4.32 1.00 4.20 0.02 4.07 0.10 3.95 0.02 0.70 3.82 0.40 3.68 3.61 0.20

ClO, 1-Decanol d , A. 1/11 3,tiO 3.47 3.36 3.30 3 26 3.10 2.99 2.93 2.86 2.79 1.73 2.64 2.56 2.51 2.45 2.36 2.24 1,84 1.77

C16.

1-Hexadecanol

a, -4.

I/Il

20.5 13.7 10.2 8.2 6.8 5.80 5.27

0.40 0.20 0.05 0.05 0.15 0.05 0.02 0.20 0.20 1.00 0.10 0.10 '0.50 0.70 0.15 0.05 0.15 0.05 0.05 0.10 0.02 0.02 0.10

4.96

4.67 4.35 4.11 4.02 3.83 3 70 3.64 3.58 3.50 3.39 3.36 3.27 3.18 3.11 3.03

Ct, 2-Propanol

1.81 1.57

a, -4.

1-Ootanol d , A. 1/17 3.85 3.80 3.72 3.66 3.57 3.50 3.38 3.22 3.14 3.04 2.98 2.92 2.86 2.78

d , A.

1.8

Cb, 1-Pentanol d , A. 1/11 12.2 6.30 6.08 5.86 j.44 5.10 4.98 4.57 4.20 4.04 3.54 3.36 3.28 3.15 3.12 3.03 2.99 2.92 2.90 2.85 2.82 2.71 2.65 2.59 2.54 2.51 2.46 2.43 2.29 2.23 2.20 2.15 2.14 2.09 2.06 2.01 2.00 1.98 1.85

cs,

C& 2-l\Ietii~l-l-propanol

d , -4.

1/11

d , A.

1/11

9.6 7.6 6.26 5.98 5.47 4.49 4.33 3.99 3.86 3.51 3.38 3.33 3.29 3.19 3.17 3.06 3.02 2.94 2.89 2.83 2.79 2.72 2.60 2.49 2.44 2 41 2 34 2.31 2.29 2.25 2.23 2.20 2.15 2.06 2.05 1.99 1.97 1.95 1.90 1.70

1.00 0.25 0.10 0.05 0.10 0.10 0.02 0.02 0.02 0.20 0.10 0.10 0.05 0.30 0.10 0.50 0.10 0.02 0.10 0.02 0.20 0.05 0.02 0.02 0.02 0.30 0.02 0.02 0.02 0.02 0.10 0.02 0.02 0.15 0.20 0.02 0.02 0.02 0.05 0.02

11.6 7.52 5.00 4.92 4.15 3.87 3.77 3.63 3.36 3.18 3 OR 2.91 1.78 2.51 2.48 2.4R 2.40 2.35 2.33 2.31 2.26 2.15 2.08 2.04 1.94 1.87 1.57 1.53 1.52

1 .oo 0.30 0.15 0.15 0.20 0.05 0.05 0.10 0.20 0.20 0.60 0.20 0.40 0.05 0.05 0.10 0.05 0.02 0.05 0.05 0.30 0.10 0.10 0.05 0.05 0.10 0.02 0.05 0.02

Cl?,

I-Dodecanol d,

A.

1/11 0.05 0.15 0.05 0.05 0.10 0.02 0.05 0.02 0.10

ClB,

1-Octadecanol d , A. 1/11 22.1 1.00 14.7 0.80 0.10 11.0 0.10 8.8 0.50 7.33 0.15 6.27 0.15 5.51 0.30 4.95 0.15 4.67 0.90 4.35 0.20 4.16 0.20 3.98 0.70 3.81 0.50 3.70 0.10 3.53 0.02 3.44 0.02 3.34 0.02 3.20 0.05 3.02 2.92 0.02 0.05 2.82 0.05 2.75

C4, 2-Butanol d , A. 1/11 10.9 1.00 10.0 0.30 8.19 0.05 6.84 0.05 6.60 0.05 6.23 0.45 5.72 0.15 5.00 0.15 4.58 0.15 3.96 0.05 3.80 0.05 3.59 0.10 3.50 0.10 3.45 0.05 3.40 0.05 3.32 0.05 3.24 0.35 3.18 0.50 3.13 0.45 3.01 0.30 2.87 0.10 2.76 0.05 2.70 0.05 2.55 0.02 2.47 0.10 2.39 0.05 2.35 0.05 2.24 0.05 2.21 0.05 2.17 0.05 2.11 0.20 1.94 0.05

V O L U M E 26, NO. 1 2 , D E C E M B E R 1 9 5 4 __...

-

1987

~~

Potassiuni Xanthates ck,

3-Methyl-1-butanol d, A. 1/11 12.8 1.oo 9.4 0.02 7.6 0.02 0.05 6.4 5 32 0.05 0.50 4.86 4.29 0.10 4.23 0.10 4.13 0.15 3.79 0.05 3 . ,52 0.05 0.05 3.47 0.02 3.34 0.30 3.21 3.17 0.30 3.02 0.10 3.00 0.10 0.10 2.98 2.81 0.02 2.72 0.10 2.69 0.05 2.56 0.20 2.49 0.05 2.46 0.05 2.42 0.05 0.05 2.37 0.05 2.33 2.27 2.19 2 14

Cs, 3-Pentanol d , A. 1/11 12.1 1.00 6.3 0.10 5.90 0.10 5.43 0.02 4.93 0.02 4.62 0.30 4.22 0.05 4.07 0.30 3.60 0.08 3.41 0.08 3.17 0.40 3.00 0.20 2.92 0.20 2.87 0.02 2.72 0.10 2.66 0.10 2.56 0.01 2.48 0.02 2.45 0.02 2.41 0.05 2.33 0.10 2.21 0.08 2.04 0.08 2.01 0.05

cs,

cs,

2-AIethyl-1-hutanol d, A. 1/11 12.5 1.00 7.8 0.10 6.20 0.05 5.32 0.05 5.09 0.15 4.63 0.02 4.14 0.40 3.92 0.02 3.67 0.10 3.44 0.05 3.19 0.30 3.09 0.60 2.93 0.05 2.84 0.20 2.54 O,l5 2.46 0.05 2.33 0.20 2.23 0.02 2.15 0.10 2.07 0.05 2.04 0.0.5 1.98 0.02 L59 0.02 1.53 0.05

C:, 2-Propen- 1 - o i d. A.

1/11

9.6 9.1 5.44 4.83 4.56 4.24 4.01 3.82 3.67 3.60 3.37 3.21 3.16 3.07 3.01 2 85 2.64 2.57 2.48 2.40 2.27 2.21 2.16 2.01 1.96 1.91 1.57 L5.5 1,50

1.00 0.10 0.26 0.0:

0.05 0.0:

0.30 0.05 0.10 0.10

0.02 0.08 0 20 0.08 0.80 0.05 0.25 0.05 0.2: 0.05

0.40 0.02 0.05 0.20 0.10 0.10 0.10 0.20 0.15

3-Alethyl.2-butanol d, A. I/II 11.9 1.00 10.8 0.02 6.90 0 02 6.37 0.20 6.20 0.10 5.82 0.02 5.40 0.02 5.15 0 .. 02 25 4.92 0 4.83 0.02 4.20 0.10 3.97 0.15 3.78 0.10 3.60 9.02 3.38 0.02 3.27 0.15 3.18 0.30 3.10 0.02 3.05 0.02 2.98 0.02 2.95 0.15 2.92 0.02 2.80 0.10 2.52 0.05 2.46 0.05 2.33 0.05 2.26 0.05 2,15 0.05 2.11 0.05 2.09 0.05 1.99 0.05 1.60 0.05

Ce, Cyclohexanol d , A. I/Il 12.8 1.00 9.2 0.05 7.3 0.02 6.8 0.02 6.1 0.05 5.71 0.05 5.25 0.02 4.90 0.10 4.27 0.05 4.30 0.05 3.91 0.05 3.76 0.02 3.43 0.02 3.16 0.10 3.05 0.15 2.98 0.05 2.94 0.05 2.78 0.02 2.69 0.05 2.60 0.02 2.51 0.02 2.42 0.02 2.17 0.02

prepared ( 4 ) and give well-defined x-ray diffraction patterns. The x-ray aDparatus and techniques used were those described previously ( 3 ) . In most cases satisfactory patterns were obtained using copper radiation (A = 1.542 A.) (cut off 17 A.), but chromium radiation (A = 2.291 A.) was generally used to record lines up to 25 A. General Electric XRD equipment was used with powder cameras 143.2 mm. in diameter, to record the patterns. Line intensities were estimated visually. Wedge mount,ing of the specimen was employed. The xanthates were prepared by the addition of stoichiometric amounts of potassium hydroxide and carbon disulfide to the alcohol, precipitated by the addition of ethyl ether, and used without further purification.

+ KOH + CS,

ROH

+

RO.CS.SK

+ H20

Sometimes side reactions produce minor amounts of material other than xanthates. As previously shown (S), however, these do not interfere with the use of x-ray diffraction for identification. Impurities do, however, make a determination of purity by an assay of the xanthate using the iodine titration difficult (1). The index lines are given in Table I and the diffraction data are listed in Table 11. DISCUSSION O F POWDER DIFFRACTION DATA

Homologously related structures are noted when patterns such as those of normal primary Cd, Cj, and CSalcohol derivatives are compared, or of the (3x0to C18 compounds. A similarity is also noted among the C I , C,, and Cb primary iso- compounds. In these cases, a plot of the strong inner line shows an increase with chain length (Figure I). As many as seven orders of the innermost strong line can be measured on the patterns CIOto CIS. From this, the spacing of the innermost line can be calculated and checked with the data in the graph shown in Figure 1.

'*

t

4 cs,

c4.

2-Methoxyethanol d, A I/Ii 9.4 7.5 5.51 4.51 4.43 3.86 3.50 3.31 3.27 3.26 3.21 3.17 3.12 3.04 2.98 2.92 2.88 2.82 2.68 2.65 2.60 2.55 2.53

--

1.00 0.05 0.15 0.30 0.40 0.10 0.10 0.10 0.08 0.08 0.20 0.10 0.05 0 80 0.30 0.05 0.35 0.05 0.12 0.10 0.15 0.10 0.10

2-E t houget hanol d . .I I I. 10.7 1 00 7.5 0.10 5.59 0.20 4.76 0.10 4.42 0.10 4.16 0.15 3.91 0 0.5 3.66 0.30 3.58 0.0.5 3.37 0.05 3.28 0.25 3.12 0.60 2.79 0.25 2.61 0 . 13 2.54 0.10 2.48 0.10 2.41 0.10 2.35 0.20 2.30 0.05 2.21 0.08 2.11 0.15 2.06 O,l5

C4, 2-If ethoxymethouq ethanol d, A 116-

-

11.4 7.73 6.49 5.70 5.58 5.05 4.89 4.44 4.13 3.86 3.70 3.61 3.42 3.26 3.16 3.11 2.87 2.83 2.80 2.77 2.56 2.46 2.39 2.24 2.22 2.19 2.16 2.07

1.00 0.05 0.15 0 20 0.05

0.30 0.05 0.40 0.10 0.10 0.15 0.10 0.05 0.35 0.50 0.30 0.20 0.0.5 0.05 0.05

0.05 0.05 0.20 0.10 0.05 0.15 0.15 0.15

0'

1 1

4

1

a

CDP.SG.43 ,N 9, COX?