Chapter 1
Organized Surfactant Assemblies in Separation Science Willie L. Hinze
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
Department of Chemistry, Wake Forest University, P.O. Box 7486, Winston-Salem, NC 27109
A brief description of the structural features and relevant properties of different organized assemblies formed from surfactant molecules is presented. Next, the use and application of these organized surfactant systems in separation science is surveyed. Several possible new areas for future developments employing these ordered media are mentioned. Many separation processes mediated by the presence of surfactant organized assemblies (also referred to as organized or ordered media) have been developed during the past ten years. The growing importance and popularity of such separation techniques i s demonstrated by the fact that numerous recent review a r t i c l e s have been devoted to t h i s subject (1-10). The purpose of t h i s overview i s two-fold. F i r s t , i t i s intended to provide the novice entering the f i e l d with b a s i c , s i m p l i f i e d background information on organized surfactant systems which should f a c i l i t a t e a better understanding of the more s p e c i f i c technical a r t i c l e s that appear i n subsequent chapters of t h i s monograph (or the chemical l i t e r a t u r e ) . Secondly, t h i s overview w i l l attempt to update and summarize the previous reported work i n t h i s area of separation science. Topics not extensively covered i n the previous reviews (or succeeding chapters of t h i s monograph) w i l l be discussed i n greater d e t a i l . Throughout, emphasis w i l l be placed on the p r a c t i c a l applications and p o t e n t i a l future developments. I t i s hoped that t h i s overview w i l l paint a general picture of the s t r u c t u r e , properties, and r o l e of different surfactant organized assemblies i n separation science. Structure and Properties of Different Organized Surfactant Assemblies Structure Formation i n Surfactant S o l u t i o n s . Surfactants, also referred to as soaps, detergents, tensides, or surface a c t i v e agents, are amphiphilic molecules possessing both h y d r o p h i l i c and hydrophobic regions. They can be c l a s s i f i e d as a n i o n i c , c a t i o n i c , z w i t t e r i o n i c , or nonionic (neutral) depending upon the nature of the polar 0097-6156/87/0342-0002$ 18.30/0 © 1987 American Chemical Society
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
1.
HINZE
Surfactant Assemblies in Separation Science
3
head-group t h a t i s bound t o t h e n o n p o l a r hydrocarbon t a i l . Various c o l l o i d a l - s i z e d o r g a n i z e d s t r u c t u r e s can form when s u r f a c t a n t m o l e c u l e s a r e d i s s o l v e d i n a p a r t i c u l a r s o l v e n t depending upon t h e n a t u r e and c o n c e n t r a t i o n o f t h e s u r f a c t a n t m o l e c u l e , n a t u r e o f t h e s o l v e n t system, and e x a c t e x p e r i m e n t a l c o n d i t i o n s U.e. t e m p e r a t u r e , p r e s s u r e , and/or presence o r absence o f a d d i t i v e s ) (11-16). F i g u r e 1 shows an o v e r s i m p l i f i e d r e p r e s e n t a t i o n o f some o f t h e d i f f e r e n t s u r f a c t a n t s p e c i e s p o s s i b l e as t h e s u r f a c t a n t c o n c e n t r a t i o n i s i n c r e a s e d i n a s u r f a c t a n t - water two-component system. At low c o n c e n t r a t i o n s above t h e K r a f f t t e m p e r a t u r e , t h e s u r f a c t a n t i s p r e s e n t i n i s o l a t e d monomeric m o l e c u l a r form. W i t h f u r t h e r i n c r e a s e s i n c o n c e n t r a t i o n , t h e s u r f a c t a n t m o l e c u l e s can d y n a m i c a l l y a s s o c i a t e t o form m i c e l l a r a s s e m b l i e s (termed aqueous o r normal m i c e l l e s ) . The s u r f a c t a n t c o n c e n t r a t i o n a t which such a g g r e g a t i o n o c c u r s i s r e f e r r e d to a s t h e c r i t i c a l m i c e l l e c o n c e n t r a t i o n (CMC) and t h e number o f s u r f a c t a n t molecules comprising the m i c e l l a r e n t i t y i s c a l l e d i t s a g g r e g a t i o n number ( N ) . A l t h o u g h aqueous normal m i c e l l e s a r e g e n e r a l l y viewed as b e i n g r o u g h l y s p h e r i c a l ( F i g u r e 1 ) , c o n s i d e r a b l e c o n t r o v e r s y s t i l l e x i s t s c o n c e r n i n g t h e e x a c t shape and s t r u c t u r e o f such e n t i t i e s ( 1 5 , 1 7 ) . T y p i c a l l y , such m i c e l l a r aggregates a r e composed o f 40 - 140 monomeric s u r f a c t a n t m o l e c u l e s such t h a t t h e i r h y d r o p h o b i c t a i l s a r e o r i e n t e d inward f o r m i n g a n o n p o l a r c o r e r e g i o n and t h e i r h y d r o p h i l i c headgroups a r e d i r e c t e d toward and i n c o n t a c t w i t h t h e b u l k aqueous s o l v e n t . F u r t h e r i n c r e a s e s i n s u r f a c t a n t c o n c e n t r a t i o n can r e s u l t i n t h e f o r m a t i o n o f o t h e r d i f f e r e n t t y p e s o f o r g a n i z e d a s s e m b l i e s . I n i t i a l l y , t h e r e can be a t r a n s i t i o n from s p h e r i c a l t o r o d l i k e or c y l i n d r i c a l m i c e l l e s (Figure 1). S t i l l higher concentrations lead to formation of various l i q u i d c r y s t a l l i n e aggregates ( F i g u r e 1: m i d d l e , v i s c o u s , and neat l i q u i d c r y s t a l l i n e phases) (jj_, 1_5,J_8). The presence o f a t h i r d component ( o r g a n i c s o l v e n t ) can g i v e r i s e t o an even l a r g e r v a r i e t y o f aggregated s u r f a c t a n t s p e c i e s (j_5). Table I summarizes t h e s t r u c t u r e , name, and m i c e l l a r parameters (CMC and N) o f some t y p i c a l l o n g - c h a i n a l k y l s u r f a c t a n t s employed t o form aqueous normal m i c e l l a r systems (11,19). In a d d i t i o n t o t h e s e t y p e s o f m i c e l l a r - f o r m i n g s u r f a c t a n t s , t h e r e i s another c l a s s o f m o l e c u l e s t h a t can a s s o c i a t e i n water t o form m i c e l l a r a g g r e g a t e s ; namely, t h e b i l e s a l t s ( 2 0 ) . B i l e s a l t s a r e v e r y i m p o r t a n t b i o l o g i c a l d e t e r g e n t - l i k e m o l e c u l e s . However, t h e y d i f f e r from t h e l o n g - c h a i n a l k y l s u r f a c t a n t s p r e v i o u s l y mentioned i n t h a t t h e y possess a hydrophobic and a h y d r o p h i l i c f a c e ( F i g u r e 2 ) . Consequently, b i l e s a l t s e x h i b i t a d i f f e r e n t type o f aggregation b e h a v i o r . That i s , t h e a g g r e g a t i o n p r o c e s s i s viewed as c o n s i s t i n g o f t h e s t e p w i s e f o r m a t i o n o f i n i t i a l p r i m a r y m i c e l l e s which a r e composed of 2 - 8 monomers h e l d t o g e t h e r by h y d r o p h o b i c i n t e r a c t i o n s between the b i l e s a l t n o n p o l a r f a c e s . A t h i g h e r b i l e s a l t c o n c e n t r a t i o n ( o r h i g h i o n i c s t r e n g t h ) , t h e p r i m a r y m i c e l l e s can f u r t h e r aggregate t o form l a r g e r , r o d - l i k e c y l i n d r i c a l l y shaped secondary b i l e s a l t m i c e l l e s due t o i n t e r m o l e c u l a r hydrogen bonding between t h e i r h y d r o x y l groups ( 2 , 2 1 ) . T a b l e I I p r e s e n t s t h e name, s t r u c t u r e , and m i c e l l a r parameters o f some common b i l e s a l t s . A l l s u r f a c t a n t s and b i l e s a l t s mentioned i n T a b l e s I and I I a r e c o m m e r c i a l l y a v a i l a b l e ( 2 2 ) . A r e c e n t m u l t i - v o l u m e s e r i e s l i s t s t h e t r a d e name, c h e m i c a l name, m a n u f a c t u r e r , f o r m , p r o p e r t i e s , t o x i c i t y , c o m p o s i t i o n , p r i n c i p a l and secondary u s e s , e t c . f o r many o f t h e s e s u r f a c t a n t s ( 2 6 ) .
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
4
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
TABLE I .
S t r u c t u r e , Name, A b b r e v i a t i o n , and M i c e l l a r Parameters o f Some Aqueous M i c e l l a r - F o r m i n g S u r f a c t a n t s Employed i n Separation Science
Surfactant
a
S t r u c t u r e ; Name; and [ A b b r e v i a t i o n ]
Anionic Micelle-Forming
CMC, '^ N ^ ' ° mM +
Surfactants of General
Formula R-X M :
R = C , X=0S0 , M=Na; Sodium h e x a d e c y l s u l f a t e 16
[NaHDS]
3
R = C , X=0S0 , M=Na; Sodium d o d e c y l s u l f a t e 12
0.52
[NaLS]
3
R = C , X=0S0 , M=Na; Sodium d e c y l s u l f a t e [NaDS] 1Q
3
8.1
62
33.0
50
136.0
20
[NaL]
24.0
56
R = C , X=C0 , M=K; P o t a s s i u m l a u r a t e [KL]
12.5
48
R=C , X=0S0 , M=Na; Sodium o c t y l s u l f a t e g
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
100
3
R = C , X=C0 , M=Na; Sodium l a u r a t e 1Q
2
1Q
[NaOS]
2
R = C , X=C0 , M=K; P o t a s s i u m p a l m i t a t e 15
2
[KP]
R = C , X=S0 , M=Na; Sodium d o d e c y l s u l f o n a t e 12
3
Cationic Micelle-Forming
4.0 [NaDDS]
Surfactants of General
54
9.8 +
Formula R - N ( C H ) X ~ : 3
3
R = C , X=C1; Hexadecyltrimethylammonium c h l o r i d e [CTAC]
1.3
78
R = C , X=Br; Hexadecyltrimethylammonium bromide
0.9
61
15.0
50
65.0
47
16
16
R = C , X=Br; Dodecyltrimethylammonium bromide 12
R = C , X=Br; Decyltrimethylammonium bromide g
o f R = C , C.,, and C. ,
Mixture
predominately CH (CH ) 3
2
CH (CH ) 3
c
10
2
X=Br; C e t r i m i d e
N C H 5
[C]
C l " ; C e t y l p y r i d i n i u m c h l o r i d e [CP]
5
+
1 5
180
[OTAB]
R=C^
+
1 5
[LTAB]
[DTAB]
1Q
R=C , X=Br; O c t y l t r i m e t h y l a m m o n i u m bromide
[CTAB]
N (CH ) (CH C H )Cl"; 3
2
2
6
Micelle-Forming
R = C , n=23; P o l y o x y e t h y l e n e ( 2 3 ) d o d e c a n o l 12
3
3
2
3
octylphenol
2
6
4
3
2
Polysorbate oleate
Formula R ( 0 C H C H ) O H : 2
[Brij-35]
[ T r i t o n X-100 o r TX-100]
7
2
of C
9 >
C
1 Q
g
[Brij-96]
, and C ^ ; n=6; N e o d o l 91-6
80 ( o r P o l y o x y e t h y l e n e
40
0.2
143
0.04 0.37(wt%)-
0.012 Surfactants of General
Formula
R-(CH ) N CH X : 2
n
0.1
+
3
2
s o r b i t a n mono-
[Tween-80]
Zwitterionic Micelle-Forming
62 95
Polyoxyethylene-t-
R = C H ( C H ) C H = C H ( C H ) , n=10; 10 O l e y l e t h e r R=mixture
8.5 0.9
0.27
Surfactants of General
R = ( C H ) C C H C ( C H ) C H , n=9.5;
50-
Hexadecyldimethyl-
5
benzylammonium c h l o r i d e [CBzAC] Nonionic
2.0-
2
3.9
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
60
1.
Surfactant Assemblies in Separation Science
HINZE
Surfactant
S t r u c t u r e ; Name; and [ A b b r e v i a t i o n ]
R = C , X=CH CH S0 ; N - D o d e c y l s u l t a i n e 19
2
2
3
[SB-12]
R = C , X=CH CH S0 ; N - H e x a d e c y l s u l t a i n e 16
2
2
3
R = C , X=C0 ; N - D e c y l b e t a i n e 1Q
2
[DDAA]
R = C , X=C0 ; N - D o d e c y l b e t a i n e 12
2
[DoDAA]
R = C , X= C 0 ; N - H e x a d e c y l b e t a i n e 16
2
[HDAA]
[SB-16]
CMC, mM
a , b
1.2
N
55
0.1 10 21
34
1.5
73
0.02
a
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
b , C
C r i t i c a l micelle concentration. ^ M i c e l l a r parameters g i v e n a r e f o r aqueous s o l u t i o n s a t 25°C, 1 atm, i n the absence o f any a d d i t i v e s . V a l u e s t a k e n from r e f e r e n c e s (1,5,12,13,15,16). A g g r e g a t i o n number (N).
F i g u r e 1. S i m p l i f i e d r e p r e s e n t a t i o n o f i d e a l i z e d s u r f a c t a n t s p e c i e s t h a t may f o r m i n w a t e r as t h e s u r f a c t a n t c o n c e n t r a t i o n i s progressively increased. "Reproduced w i t h p e r m i s s i o n from R e f . 18. C o p y r i g h t 1979, The C h e m i c a l S o c i e t y
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
6
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
). The m i c e l l a r CMC and Ν can a l s o depend upon p r e s s u r e (J_6). However, a t the p r e s s u r e s under w h i c h most s e p a r a t i o n t e c h n i q u e s are conducted (£ 3.5 MPa), the changes i n m i c e l l a r parameters a r e such t h a t t h i s e f f e c t can be n e g l e c t e d i n a l l but the most e x a c t i n g work (64). More d r a s t i c changes i n the CMC and Ν are o b s e r v e d when a d d i t i v e s are p r e s e n t i n the m i c e l l e - f o r m i n g s u r f a c t a n t - water systems. The a d d i t i o n o f i o n i c s p e c i e s Q . e . e l e c t r o l y t e s ) u s u a l l y r e s u l t s i n an i n c r e a s e i n t h e a g g r e g a t i o n number and a r e d u c t i o n i n t h e CMC. T a b l e I I I (and T a b l e I I ) p r e s e n t some d a t a which i l l u s t r a t e t h i s e f f e c t . Depending upon the c o n c e n t r a t i o n , the presence o f water m i s c i b l e o r g a n i c m o l e c u l e s can e i t h e r enhance o r i n h i b i t m i c e l l e f o r m a t i o n . For example, s h o r t - c h a i n a l c o h o l s c a n enhance m i c e l l e f o r m a t i o n U.e. lower t h e CMC) i f p r e s e n t a t v e r y low mole f r a c t i o n and prevent m i c e l l i z a t i o n a t h i g h e r c o n c e n t r a t i o n ( i f X £ 0.05 o r 10—15% by volume) (27,28). Other o r g a n i c s o l v e n t s , l i k e a c e t o n e , d i o x a n e , a c e t o n i t r i l e , t e t r a h y d r o f u r a n , e t c . t h a t form r e l a t i v e l y s t r o n g hydrogen bonds w i t h w a t e r , w i l l g e n e r a l l y have a s l i g h t i n h i b i t o r y e f f e c t on the m i c e l l i z a t i o n p r o c e s s U.e. g r e a t e r CMC v a l u e ) when p r e s e n t a t v e r y low c o n c e n t r a t i o n (28,29)« A t g r e a t e r c o n c e n t r a t i o n s (X £ 0.10 o r 15-20Î by v o l u m e ) , t h e i r presence p r e v e n t s m i c e l l e f o r m a t i o n . L a s t l y , some o r g a n i c s o l v e n t s ( h y d r a z i n e , 1 , 3 ~ p r o p a n e d i o l , formamide, g l y c e r o l ) which can have t h r e e - d i m e n s i o n a l s t r u c t u r e i n t h e i r neat l i q u i d s t a t e , can promote m i c e l l e f o r m a t i o n i f p r e s e n t a t r e l a t i v e l y low c o n c e n t r a t i o n as w e l l a s a l l o w f o r m i c e l l e f o r m a t i o n i n m i x t u r e s o f t h e s e s o l v e n t s w i t h water i n a l l p r o p o r t i o n s (28,29). I f the o r g a n i c a d d i t i v e i s a n o r m a l l y water i m m i s c i b l e s u b s t a n c e , t h e n i t s e f f e c t on the m i c e l l i z a t i o n p r o c e s s can be more c o m p l i c a t e d (65). For i n s t a n c e , t h e a d d i t i o n o f l o n g c h a i n a l c o h o l s ( c o n t a i n i n g 5 o r more c a r b o n atoms) o r a l k a n e s can e i t h e r enhance o r i n h i b i t m i c e l l e f o r m a t i o n depending upon the c o n c e n t r a t i o n o f t h e s u r f a c t a n t p r e s e n t
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
1.
Surfactant Assemblies in Separation Science
HINZE
TABLE I I .
S t r u c t u r e and M i c e l l a r
Structure,
Name
R =R =R =H; C h o l a n o i c a c i d
if
R =R =R =0H; C h o l i c
if
x
2
2
3
acid
(CA)/sodium
3
2
if
R =R =0H, R =H; C h e n o d e o x y c h o l i c
if
the a c i d
2
3
c h o l a t e (NaC)
acid
(position
2
taurine; Taurodeoxycholic acid c h o l a t e (NaTDC)
Derivatives
of cholanoic acid
(20, 24, 2 5 ) . At
b
2.8
(CDCA)/sodium
5.7
(NaDCA)
then c a n have t h e c o r r e s p o n d i n g t a u r o d e r i v a t i e s : 3
6.4
24 a c i d c o n j u g a t e d
( 2 0 ) . Data
C
10
C
e
i.e.
d
8.5
References
I n water a l o n e .
pH 7.4.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
e
3.5 * c 10
with
t a k e n from
°In 0.15 M N a C l .
14 C
b
4.0 *, c 1.6 ,
(TDC)/sodium t a u r o d e o x y -
I n 0.001 M NaOH.
3°
2.7^
24) i s c o n j u g a t e d w i t h t a u r i n e ,
R^=R =0H, R =H, w i t h p o s i t i o n
b
b
(NaDC)
chenodeoxycholate
e
Ν
12.5
(DCA)/sodium
deoxycholate 1
Salts'
3
R =R =0H; R =H; D e o x y c h o l i c a c i d x
o f Some B i l e
CMC, mM
if
1
Parameters
8
ORDERED MEDIA IN CHEMICAL SEPARATIONS
TABLE I I I .
Comparison o f M i c e l l a r Parameters Under D i f f e r e n t E x p e r i m e n t a l C o n d i t i o n s i n Aqueous Media
Surfactant
Hexadecylpyridinium Bromide ( C P B )
Experimental Factor Varied
CMC, mM
25°C 35 45 55
0.58 0.77 0.89 1.0
Temperature:
a
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
Added a l c o h o l , Methanol:
Bulk
c) Sodium D o d e c y l Sulfate (NaLS)
0.58 0.75 1.18 1.69 2.81 0.58
0 (w/w) % 6.4 14.7 19.9 26.0 S o l v e n t : Water (25°C) Ethylammonium n i t r a t e (fused s a l t system, 30°
20.0
Added
(25°C, 1 atm) M NaOH M NaOH M NaCl M NaCl M NaCl -5 2+ 1.0 χ: 10 M Mg -5 2+ 1.0 χ: 10 M Fe S o l v e n t : Water (35°C) H y d r a z i n e (35°C) Formamide (60°C) J
8.1 2.7 1.5 1.3
0.7 0.8 8.57 22.0 220.0
Data t a k e n from R e f . (19) u n l e s s o t h e r w i s e i n d i c a t e d . Ref.
C
— — — — — 26
60 42 35 38 50 78
0.1 MPa 40.0 80.0 95.0 120.0 140.0 Electrolytes: none 0.05 0.10 0.15 0.30 0.55
Bulk
— — —
B
Pressure : C
Ν
( 3 0 ) . D a t a t a k e n from R e f . (5,11,13,16,19).
d
Taken
Taken
62
— — 95 117 580
— — — — — from
from R e f .
(63).
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
HINZE
Surfactant Assemblies in Separation Science
9
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
and t h e amount o f o r g a n i c added. I n many i n s t a n c e s , t h e f o r m a t i o n o f microemulsions can r e s u l t , p a r t i c u l a r l y a t higher a l c o h o l o r alkane c o n c e n t r a t i o n s (209)* C o n s e q u e n t l y , t h e v a r i a t i o n i n m i c e l l a r parameters (CMC and N) o r s t r u c t u r e w i t h changes i n t h e e x p e r i m e n t a l c o n d i t i o n s s h o u l d be kept i n mind when one uses s u r f a c t a n t o r g a n i z e d assemblies i n separation science a p p l i c a t i o n s . A p a r t from m i c e l l e f o r m a t i o n when s u r f a c t a n t s a r e added t o w a t e r , v e s i c l e f o r m a t i o n can a l s o o c c u r Π 5 ) . Namely, i f c e r t a i n t y p e s o f s u r f a c t a n t s , i . e . t y p i c a l l y long chain d i a l k y l - c o n t a i n i n g s u r f a c t a n t s , are added t o water and s o n i c a t e d above t h e i r phase t r a n s i t i o n temperature, closed b i - or m u l t i - l a y e r e d s t r u c t u r e s c a l l e d v e s i c l e s can form (15,31-36,211). T a b l e IV l i s t s t h e s t r u c t u r e and some common p r o p e r t i e s o f t h e most s t u d i e d v e s i c l e - f o r m i n g s u r f a c t a n t systems. Compared t o t h e normal m i c e l l a r systems j u s t d e s c r i b e d , such s u r f a c t a n t v e s i c l e s a r e much l a r g e r , more s t a t i c ( i . e . l e s s f l u i d "more r i g i d " ) a g g r e g a t e s . V e s i c l e a g g r e g a t e s , once formed, cannot be d e s t r o y e d by d i l u t i o n whereas m i c e l l e s c a n . Most s y n t h e t i c s u r f a c t a n t v e s i c l e systems a l s o e x h i b i t temperature dependent phase t r a n s i t i o n b e h a v i o r i n c o n t r a s t t o t h e m i c e l l e systems Oj5). A l t h o u g h t h e s u b j e c t o f much r e c e n t s t u d y , s u r f a c t a n t v e s i c l e s have n o t y e t been u t i l i z e d t o any a p p r e c i a b l e e x t e n t i n s e p a r a t i o n s c i e n c e . To d a t e , they have been employed as models f o r t h e s t u d y o f b i o l o g i c a l t r a n s p o r t and membrane - s o l u t e i n t e r a c t i o n s (9). Of c o u r s e , such i n f o r m a t i o n i s u s e f u l and c o u l d l e a d t o development o f s e p a r a t i o n schemes i n v o l v i n g s u r f a c t a n t v e s i c l e s - e s p e c i a l l y i n t h e a r e a o f membrane - based s e p a r a t i o n s . More i n f o r m a t i o n and d e t a i l s o f such v e s i c u l a r and r e l a t e d o r g a n i z e d a s s e m b l i e s i n t h i s c o n t e x t i s p r o v i d e d by t h e f o l l o w i n g Chapter by F e n d l e r i n t h i s Volume (36). In a d d i t i o n t o s t r u c t u r e formation i n water, ordered surfactant a s s e m b l i e s can form i n n o n p o l a r s o l v e n t s as w e l l . F o r i n s t a n c e , when s u r f a c t a n t molecules a r e d i s s o l v e d i n o r g a n i c hydrocarbons i n the presence o f s m a l l amounts o f w a t e r , t h e f o r m a t i o n o f i o n p a i r s as w e l l as s m a l l and l a r g e a g g r e g a t e s i s p o s s i b l e (5,8,11-16,36-41). The term r e v e r s e d o r i n v e r t e d m i c e l l e s i s g i v e n t o such a g g r e g a t e s s i n c e t h e i r p o l a r groups a r e c o n c e n t r a t e d i n t h e i n t e r i o r ( c o r e ) r e g i o n o f t h e s u r f a c t a n t assembly w h i l e t h e i r h y d r o p h o b i c p o r t i o n s e x t e n d i n t o , and are surrounded b y , t h e b u l k n o n p o l a r s o l v e n t m o l e c u l e s . The r e v e r s e d m i c e l l a r i n t e r n a l c o r e r e g i o n c o n t a i n s t h e h y d r o p h i l i c headgroup o f the s u r f a c t a n t i n a d d i t i o n t o an i n n e r p o o l o f c o - s o l u b i l i z e d water (or o t h e r p o l a r s o l v e n t s ) . I t must be s t r e s s e d t h a t t h e u s u a l c o n c e p t s and s t r u c t u r a l models t y p i c a l l y employed t o d e s c r i b e normal aqueous m i c e l l a r f o r m a t i o n i n water a r e n o t always a p p l i c a b l e t o r e v e r s e d m i c e l l a r systems i n o r g a n i c s o l v e n t s (37-41). I n f a c t , s e v e r a l modes o f a g g r e g a t i o n a r e p o s s i b l e depending upon t h e c h a r g e - t y p e s u r f a c t a n t employed. A c c o r d i n g t o M u l l e r ' s c l a s s i f i c a t i o n scheme (£7,_39), t h e m a j o r i t y of s u r f a c t a n t s ( i . e . c a t i o n i c , z w i t t e r i o n i c , and most n o n i o n i c ) undergo s o - c a l l e d Type I a g g r e g a t i o n b e h a v i o r . This i s , aggregation of t h e s e s u r f a c t a n t s proceeds v i a a smooth t r a n s i t i o n o f monomer dimer trimer^ "^n-mer i n d e f i n i t e t y p e o f a s s o c i a t i o n a s opposed t o t h e monomer^η-mer m i c e l l a r e q u i l i b r i u m u s u a l l y observed f o r normal aqueous m i c e l l e s y s t e m s . As a r e s u l t , such r e v e r s e d
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
10
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
TABLE
IV.
Structure Systems
Surfactant
and
in
Characteristics
Aqueous
of
Some
6
b
10 M
Structure
R^ ,
w
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
Surfactant
Vesicle
Solution
A
N
d
e
Τ
H
c
CATIONIC TYPE: (CH)RRNV 3
2
1
2
^ ^ ^ Ι β '
if
X
=
C
1
, D
0
D
A
13
4
' 7.0
C
4 0 0
48,500 36°C
i f = 2 » ' DDDAB ANIONIC TYPE: [CH(CH) C0CH][CH(CH) C0]CHS0"Na (CH )(CH )C(H)(CHS0"Na) 23.0 260 NONIONIC TYPE: [CH(CH)0]P(0)0H, DHP 30.0 600 [CH(CH)0CH]CH0(CHCH0)H 12.0 ZWITTERIONIC TYPE: [(CH)(CH)]N(CH)(CH)S0" 25.0 [CH(CH) ]N(CH)(CH)0P(0)" 17.0 R
R
=C
1
X=BR
12
+
3
2
11
2
2
3
2
11
3
2
+
8
19
7
3
15
2 15
3
6
5,760
3
4
2
2 11
2 2
2
2
none
15
+
3
3
2
U
2
3
2
3
3
+
3
Data
2
17
taken
molecular surfactant
2
3
2
2
from References
weight. molecules
Refers per
38°C
3
(15,31-35). to
the
vesicle
Refers
hydrodynamic aggregate.
to
weight-average
radius. Phase
Number
transition
erature.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
of temp
1.
HINZE
Surfactant Assemblies in Separation Science
11
m i c e l l a r systems do not e x h i b i t a c l e a r - c u t CMC v a l u e as do normal m i c e l l e s . I n s t e a d , a t each s u r f a c t a n t c o n c e n t r a t i o n l e v e l , t h e r e i s a d i s t r i b u t i o n o f aggregates and i n c r e a s e s i n the c o n c e n t r a t i o n l e a d t o f o r m a t i o n o f l a r g e r aggregates i n g r e a t e r p r o p o r t i o n s (J_5,27). These Type I r e v e r s e d aggregates are thus p o l y d i s p e r s e , t h e i r average a g g r e g a t i o n number i s t y p i c a l l y s m a l l (3^N£10), and t h e y a r e p o s t u l a t e d t o have l a m e l l a r type s t r u c t u r e s i n some i n s t a n c e s . The a g g r e g a t i o n number and s i z e o f such r e v e r s e d m i c e l l e s can be s i g n i f i c a n t l y a l t e r e d by the amount o f c o - s o l u b i l i z e d water p r e s e n t
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
(in). The Type I I r e v e r s e d m i c e l l a r systems ( i . e . those formed from a n i o n i c s u r f a c t a n t s such as a r y l s u l f o n a t e s o r a r y l p h e n o l a t e s ) e x h i b i t a g g r e g a t i o n b e h a v i o r q u i t e s i m i l a r t o t h a t o f normal aqueous s u r f a c t a n t s . That i s , t h e y have f a i r l y w e l l - d e f i n e d CMC v a l u e s and much l a r g e r a g g r e g a t i o n numbers compared t o the Type I systems j u s t d e s c r i b e d . T h e i r a g g r e g a t i o n number and s i z e a r e , however, a l s o dependent upon the water c o n t e n t and r e a c h c o n s t a n t l i m i t i n g v a l u e s under s p e c i f i e d e x p e r i m e n t a l c o n d i t i o n s (37-41)· Due t o the f a c t t h a t t h e s e Type I I a g g r e g a t e systems a r e l e s s complex ( i n terms of the number o f a c t u a l s p e c i e s p r e s e n t ) compared t o the Type I systems, they have been t o u t e d as b e i n g the p r e f e r r e d system of c h o i c e i n any s e p a r a t i o n s c i e n c e a p p l i c a t i o n (42). However, as w i l l be shown from the a p p l i c a t i o n s i n t h e l i t e r a t u r e , both Type I and I I r e v e r s e d m i c e l l e s may be e q u a l l y s u c c e s s f u l l y employed (5). The s t r u c t u r e o f some r e v e r s e d m i c e l l e - f o r m i n g s u r f a c t a n t s as w e l l as d a t a on t h e i r a g g r e g a t i o n b e h a v i o r i n d i f f e r e n t n o n p o l a r s o l v e n t s i s p r e s e n t e d i n T a b l e V. As can be s e e n , a g g r e g a t e s can form at v e r y low s u r f a c t a n t c o n c e n t r a t i o n s i n some cases and the s i z e o f t h e o r g a n i z e d a s s e m b l i e s depends s t r o n g l y o n the amount of water p r e s e n t i n most i n s t a n c e s . C o n s e q u e n t l y , i t i s v e r y i m p o r t a n t t o s t i p u l a t e both the s u r f a c t a n t and water c o n c e n t r a t i o n s when employing r e v e r s e d m i c e l l a r systems i n s e p a r a t i o n s c i e n c e s o t h a t r e p r o d u c i b l e r e s u l t s are o b t a i n a b l e . L a s t l y , mention s h o u l d be made o f s u r f a c t a n t m i c r o e m u l s i o n s . Depending upon the r e l a t i v e c o n c e n t r a t i o n s , t h r e e component systems c o n t a i n i n g a s u r f a c t a n t , w a t e r , and a n o n p o l a r s o l v e n t can form m i c r o e m u l s i o n s (J_5,36,43). The a d d i t i o n o f i n c r e a s i n g amounts o f an o r g a n i c s o l v e n t ( o i l ) t o aqueous normal m i c e l l a r s o l u t i o n s o r i n c r e a s i n g amounts o f s u r f a c t a n t - e n t r a p p e d water t o r e v e r s e d m i c e l l a r s o l u t i o n s can l e a d t o t h e f o r m a t i o n of o i l - i n - w a t e r (o/w) o r w a t e r - i n - o i l (w/o) m i c r o e m u l s i o n s , r e s p e c t i v e l y . A l t h o u g h p o t e n t i a l l y u s e f u l , t h e r e have been very few r e p o r t s o f t h e i r u t i l i z a t i o n i n s e p a r a t i o n s c i e n c e (J_»8). Such systems have, however, been s u c c e s s f u l l y employed i n a v a r i e t y o f i n d u s t r i a l and r e l a t e d p r o c e s s e s i n c l u d i n g enhanced o i l r e c o v e r y which i s a k i n t o a s e p a r a t i o n p r o c e s s (J_5,37,44,45). Due t o space r e s t r i c t i o n s , the u t i l i z a t i o n o f s u r f a c t a n t m i c r o e m u l s i o n s i n c h e m i c a l s e p a r a t i o n s w i l l not be e x t e n s i v e l y d i s c u s s e d i n t h i s r e v i e w a r t i c l e . The i n t e r e s t e d r e a d e r i s r e f e r r r e d t o many f i n e r e f e r e n c e s o n the p r o p e r t i e s and u t i l i z a t i o n o f t h i s type o f o r g a n i z e d s u r f a c t a n t system (15,36,43>46,66,67,215,
216).
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
12
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
TABLE V. Solvents
Summary o f Some S u r f a c t a n t s which Aggregate i n A p o l a r
Surfactant
Structure
Bulk Solvent
(Abbreviation)
Cationics of General Structure
2
3
4
U
3
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
tetradecylammonium
2
0
0
Benzene,
2
butyrate,
w i t h water added: g/5 mL: none 0.5 1.3
TDAB
2
3
4
4
4
tetrabutylammonium
perchlorate, :
R^—R ~R ~C^ , R^—H, X 2
3
2
N0„
-—
4
3-6
J
-2 10 m
t-BAP
2-6
Benzene
o r HSO,
3
4.3 23.2 34.5 10
Benzene
R -R -R -R -C , X = C10 ; 1
Ν
R.R R R,N X 12 3 4
R = R = R = R = C , X= C H ( C H ) C 0 0 " ; 1
Concentration Range
,
tridodecylammonium s a l t s , TLAB o r TLAN R^—R ~R "-Cg, R^—Η, X HSO, \j c SO. , Benzene 4 4
0.4 - 8.0
1-
trioctylammonium s a l t s ,
wt%
3.8
2
3
TOAB o r TOAS
R 1 =R =C , R =R =CH , X=Cf; 2
12
3
4
Benzene
3
didodecyldimethylammonium
1.1 mmole/ 6.5 kg
chloride,
(at 50°)
DDAC R^=C^£, R =R =R =CH , X=C1 ; 2
3
4
CHC1.
3
hexadecyltrimethylammonium
X
=
3
7
CTAC · " 0.003-0.04 7.0
chloride,
CTAC 3
2.0 χ 10" M
Benzene
R = R =R,=?H, X=CH„CH COO 1* 12> 2 3 4 ' 3 2 dodecylammonium p r o p i o n a t e , DAP R
4-5
C
Dichloromethane 0.02-0.04 M
o
0.023 M
4.0
0.05
M
4.0
Dichloromethane 0.11 M
5.0
CCI, 4 Benzene
R=C., R =R =R =CH CH C00 ; 1 4 2 3 4 3 2 ' butylammonium p r o p i o n a t e , BAP o
6.0
3.0
0.025 M
CCI, Anionics: o f G e n e r a l Formula R-C-C=0(CH )CH(S0 ")C=0-0-R M 2
R= 2 - e t h y l h e x y l ,
+
3
M = Na; sodium b i s - Benzene
2.0 χ 10
3
M
G
1323
2-ethylhexylsulfosuccinate CCI,
6.0 χ 10
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
M 17
1. HINZE
13
Surfactant Assemblies in Separation Science
Surfactant Structure (Abbreviation)
Bulk Solvent
Concentration Range
Cyclohexane
1 - 3 wt %
Decane
6.5 wt %
Ν
4565 2531
0.4 - 2.8 wt%
Benzene
R= d e c y l , M = Na; sodium d i d e c y l -
916
sulfosuccinate
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
o f G e n e r a l Formula :
R=C[CH ][CH(CH ) ][CH CH(CH ) ], 3
3
2
2
3
2
M = Na, sodium d i n o n y l n a p h t h a l e n e s u l f o n a t e , NaDNNS
Benzene
0.05
- 0.2 wt%
10
R=C[CH ][CH(CH ) ][CH CH(CH ) ], 3
3
M = Na,
2
2
3
5
sodium d i d o d e c y l n a p h t h a l e n e - Benzene
s u l f o n a t e , NaDDNNS
1,5-Dinonylnaphthalene-4-sulfonic acid
0.5
2.8 wt %
Decane
0.5
2.8 wt%
Benzene
2.0 χ 10 ""M
9.7 15.2
3-12 7.0
5
Hexane
2.0 χ
Toluene
2.0 χ 10
Magnesium d i l a u r a t e , MgDL
Benzene
3.5
7.5 wt%
L i t h i u m decanoate, LiD
Benzene
0.1
0.6 wt% 52 -
DNNSA
10" M M
6.0
16.6
63 Nonionics; S o r b i t a n monooleate, Span-80, SP-80
Benzene
Polyoxyethylene(9.5)-t-octylphenol,
26
CCl^
0.32
M
Cyclo-
0.04
M
1-4
T r i t o n X-100, TX-100 Polyoxyethylene(6)nonylphenol, I g e p a l CO-530, I-C0530 Polyoxylene(20)
hexane
s o r b i t a n monolaurate,
Tween 20,T-20 10 O l e y l E t h e r , B r i j - 9 6 , B-96
Benzene
3-15
Chloroform
1-7
Octane Continued
on next
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
page
14
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
T a b l e V.
Continued
Surfactant
Structure
(Abbreviation)
Bulk Solvent
Concentration Range
Ν
Zwitterionics: of General f
R~R
Formula RNH^
+
c o n t a i n i n g more than
"u^CR
1
(where
8 c a r b o n atoms):
!
R=C^2> R = C j ^ ; dodecylammonium
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
d e c a n o a t e , DAD of General
Benzene
3.5
χ
10 ^m
Benzene
0.001 - 0.01 wt % 0.7 - 1.0 wt%
Formula:
CH 0-CO-R 2
R'-COO-CH
Ο
CH,
C H 0 - Ρ - Ο · CH · CH · N - C H Ο" CH 2
2
2
3
3
Lecithins
(phosphatidylcholines)
Benzene Chloroform a
Refers
to the o p e r a t i o n a l CMC
i n most c a s e s ;
range where r e v e r s e m i c e l l e s a r e p r e s e n t ^Refers
surfactant 5, c
c o n c e n t r a t i o n range.
12-16, 27,
Values
73 68
i . e . concentration
i n the i n d i c a t e d
to the number average a g g r e g a t i o n
80
solvent.
number i n s p e c i f i e d
were taken
from
references
37-40.
T y p i c a l l y e x h i b i t Type I a g g r e g a t i o n
behavior.
Type I I a g g r e g a t i o n b e h a v i o r . e f Taken from r e f e r e n c e 41_. Aggregation
d
Typically
exhibit
d a t a i s f o r the sodium
under b a s i c c o n d i t i o n s .
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
salt
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
1.
HINZE
Surfactant Assemblies in Separation Science
15
R e l e v a n t P r o p e r t i e s o f O r g a n i z e d S u r f a c t a n t Media. The a d d i t i o n o f s u r f a c t a n t t o a s o l v e n t a t s u r f a c t a n t c o n c e n t r a t i o n s / c o n d i t i o n s under which no aggregated s p e c i e s a r e p r e s e n t w i l l u s u a l l y n o t l e a d t o any appreciable a l t e r a t i o n i n the p r o p e r t i e s or processes o c c u r r i n g i n the s o l v e n t a s i d e f o r p o s s i b l e s a l t e f f e c t s upon t h e p r o c e s s and/or i o n p a i r f o r m a t i o n between t h e s u r f a c t a n t and s o l u t e m o l e c u l e s . However, the presence o f o r g a n i z e d s u r f a c t a n t a s s e m b l i e s can a l t e r t h e s o l u b i l i t y o f s o l u t e s , a l t e r c h e m i c a l and p h o t o p h y s i c a l pathways and r a t e s , a l t e r t h e e f f e c t i v e microenvironment about s o l u b i l i z e d s o l u t e s , a l t e r encounter p r o b a b i l i t i e s i n f a s t r e a c t i o n s , m o d i f y t h e p o s i t i o n o f e q u i l i b r i u m p r o c e s s e s , and a l t e r t h e s o l u t i o n p r o p e r t i e s ( v i s c o s i t y , s u r f a c e t e n s i o n , e t c . ) among o t h e r e f f e c t s compared t o t h a t o f t h e b u l k s o l v e n t i n t h e absence o f aggregates (1-1 6). Since such o r g a n i z e d s u r f a c t a n t systems mimic c e r t a i n a s p e c t s o f biomembranes, t h e y have a l s o been r e f e r r e d t o as membrane m i m e t i c agents (.36,47). A l t h o u g h a l l o f t h e mentioned p r o p e r t i e s o f o r g a n i z e d s u r f a c t a n t media can p o t e n t i a l l y a i d t h e s e p a r a t i o n s c i e n t i s t , i n most c a s e s , t h e c r u c i a l factor i n t h e i r successful a p p l i c a t i o n i n separations i s t h e i r a b i l i t y t o s e l e c t i v e l y s o l u b i l i z e and i n t e r a c t w i t h s o l u t e m o l e c u l e s . The presence o f s u r f a c t a n t m i c e l l e s o r v e s i c l e s can d r a m a t i c a l l y enhance t h e s o l u b i l i t y o f a g i v e n s o l u t e compared t o t h a t i n t h e b u l k solvent alone Ο V6,4O,4l_). F o r example, t h e presence o f s u r f a c t a n t i n v e r t e d m i c e l l e s a l l o w s one t o s o l u b i l i z e p o l a r s p e c i e s ( s a l t s , b a s e s , a c i d s , w a t e r ) i n an o r g a n i c s o l v e n t . Whereas t h e s o l u b i l i t y o f water i n a l k a n e s o l v e n t s l i k e h e p t a n e , o c t a n e , o r nonane i s i n t h e range o f 0.01 wt %, homogeneous m i x t u r e s o f a p p r o x i m a t e l y 10% water i n t h e s e s o l v e n t s can be p r e p a r e d i n t h e presence o f r e v e r s e d m i c e l l e s (such as i n 0.015 Μ Α0Τ) ( 4 8 ) . L i k e w i s e , normal aqueous m i c e l l a r media can be employed t o enhance t h e water s o l u b i l i t y o f o r g a n i c m a t e r i a l s . For i n s t a n c e , 1,2-benzphenanthrene and 2,3-benzphenanthrene a r e v i r t u a l l y i n s o l u b l e i n water (water s o l u b i l i t y ύ 9.0 χ 10 M). However, i n t h e presence of.0.50 M p o t a s s i u m dodecanoate, t h e i r s o l u b i l i t y i s r o u g h l y 6.4 χ 10 M (V6). This represents a s o l u b i l i t y enhancement o f 66,000! Many o t h e r examples o f such enhancements i n s o l u b i l i t y a r e r e p o r t e d i n t h e l i t e r a t u r e (1,4,16,40,41). Depending upon t h e n a t u r e o f t h e s o l u t e and o r g a n i z e d s u r f a c t a n t system, a s o l u t e c a n " b i n d " d i f f e r e n t r e g i o n s o f t h e aggregate system. F i g u r e 3 shows some o f t h e s o l u b i l i z a t i o n s i t e s a v a i l a b l e f o r a s o l u t e i n an aqueous normal m i c e l l a r system (4_9). I n i n v e r t e d m i c e l l a r media, p o l a r s o l u t e s can be s o l u b i l i z e d i n t h e i n t e r i o r water p o o l , o r a s s o c i a t e w i t h t h e headgroup o f t h e s u r f a c t a n t m o l e c u l e ( i f o f opposite charge). A d d i t i o n a l l y , l e s s p o l a r s p e c i e s can a l i g n themselves w i t h t h e s u r f a c t a n t m o l e c u l e s v i a b o t h h y d r o p h o b i c and e l e c t r o s t a t i c i n t e r a c t i o n s . The p a r t i t i o n i n g o f a s o l u b i l i z a t e (S) between t h e b u l k s o l v e n t ( s o l ) and o r g a n i z e d s u r f a c t a n t ( s u r ) phase i s a dynamic e q u i l i b r i u m p r o c e s s w i t h t h e degree o f p a r t i t i o n i n g d e f i n e d by a p a r t i t i o n ( o r d i s t r i b u t i o n ) c o e f f i c i e n t P. The p a r t i t i o n c o e f f i c i e n t i s d e f i n e d as t h e r a t i o o f t h e s o l u t e c o n c e n t r a t i o n i n
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
16
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
F i g u r e 3. S i m p l i f i e d c r o s s s e c t i o n o f an aqueous normal m i c e l l e showing p o s s i b l e s o l u b i l i z a t i o n s i t e s . A charged s o l u t e (A) would be e l e c t r o s t a t i c a l l y r e p e l l e d from the m i c e l l e s u r f a c e i f i t were o f t h e same c h a r g e - t y p e as the i o n i c m i c e l l e w h i l e an o p p o s i t e l y charged s o l u t e (B) would be e l e c t r o s t a t i c a l l y a t t r a c t e d t o the m i c e l l a r s u r f a c e . Nonpolar s o l u t e s (C) would p a r t i t i o n t o t h e o u t e r p a r t o f the more h y d r o p h o b i c c o r e r e g i o n . A m p h i p h i l i c s o l u t e s (D) would attempt t o a l i g n t h e m s e l v e s so as t o maximize the e l e c t r o s t a t i c and h y d r o p h o b i c i n t e r a c t i o n s poss i b l e between i t s e l f and t h e s u r f a c t a n t m o l e c u l e s . "Reproduced w i t h p e r m i s s i o n f r o m R e f . 49. C o p y r i g h t 1984, E l s e v i e r
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
HINZE
17
Surfactant Assemblies in Separation Science [S] i n a g g r e g a t e d s u r f a c t a n t [ S l i n bulk solvent
phase
phase
the o r g a n i z e d s u r f a c t a n t assembly phase t o t h a t i n the b u l k s o l v e n t phase ( e q u a t i o n 1) ( 1_). I n d i l u t e s o l u t i o n s , the p a r t i t i o n c o e f f i c i e n t , P, can be r e l a t e d t o a s o l u t e - s u r f a c t a n t a g g r e g a t e b i n d i n g c o n s t a n t , K^, by use o f t h e B e r e z i n e q u a t i o n (50) ( e q u a t i o n 2) i n which ν i s the molar volume of t h e s u r f a c t a n t i n the o r g a n i z e d s u r f a c t a n t medium. The b i n d i n g c o n s t a n t , K , f o r the i n t e r a c t i o n fe
K -(P-1)v b
of s o l u b i l i z a t e w i t h aggregate ( e q u a t i o n
( 2 )
3)
i s merely t h e r a t i o o f
Κ
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
S + sur
_
N
S«sur
(3)
the c o n c e n t r a t i o n o f the s o l u t e a s s o c i a t e d w i t h the o r g a n i z e d assembly [S«sur] d i v i d e d by the f r e e e q u i l i b r i u m c o n c e n t r a t i o n s of the uncomplexed s o l u t e [ S ] and s u r f a c t a n t a g g r e g a t e [ s u r ] , r e s p e c t i v e l y ( e q u a t i o n 4 ) . The [ s u r ] , sometimes d e s i g n a t e d C , i s g i v e n by m
Κ _ *>
[S-surJ [S] [sur]
(4)
the d i f f e r e n c e between the t o t a l s u r f a c t a n t c o n c e n t r a t i o n (CL) and the c r i t i c a l c o n c e n t r a t i o n d i v i d e d by t h e a g g r e g a t i o n number of the s u r f a c t a n t assembly (1_ 5). S i n c e the a s s o c i a t i o n r a t e o f most s o l u t e s w i t h s u r f a c t a n t a g g r e g a t e s i s c o n s t a n t (* 10 - 10 M~ s ) ( 2 1 6 ) , the l a r g e r the s o l u t e - aggregate b i n d i n g c o n s t a n t , K., the more s t a b l e i s the a s s o c i a t e d s o l u t e - s u r f a c t a n t aggregate complex and t h e l o n g e r i s the s o l u t e ' s r e s i d e n c e t i m e i n the o r g a n i z e d s u r f a c t a n t assembly environment (termed pseudophase). f
T a b l e s VI and V I I p r e s e n t some r e p r e s e n t a t i v e d a t a on the b i n d i n g c o n s t a n t s and p a r t i t i o n c o e f f i c i e n t s r e p o r t e d f o r t h e i n t e r a c t i o n o f s e l e c t e d s o l u t e s w i t h d i f f e r e n t s u r f a c t a n t m i c e l l a r systems. The s t r e n g t h of the a s s o c i a t i o n o f s o l u t e s w i t h s u r f a c t a n t m i c e l l e a s s e m b l i e s i s d i c t a t e d by the net e l e c t r o s t a t i c , hydrogen-bonding, and/or h y d r o p h o b i c i n t e r a c t i o n s p o s s i b l e f o r a g i v e n s o l u t e - m i c e l l e c o m b i n a t i o n under the p r e v a i l i n g e x p e r i m e n t a l c o n d i t i o n s . C o n s e q u e n t l y , as can be seen from the d a t a i n t h e T a b l e s , the c h a r g e - t y p e and c h a i n l e n g t h o f b o t h the s o l u t e and the m i c e l l e f o r m i n g s u r f a c t a n t as w e l l as presence o r absence o f a d d i t i v e s a r e i m p o r t a n t f a c t o r s which can i n f l u e n c e the magnitude o f the b i n d i n g c o n s t a n t s (or p a r t i t i o n c o e f f i c i e n t s ) . For i n s t a n c e , w i t h i n a g i v e n f a m i l y o f s o l u t e s (such as the p o l y c y c l i c a r o m a t i c h y d r o c a r b o n s or quinones i n T a b l e VI o r a l c o h o l s i n T a b l e V I I ) , the degree of p a r t i t i o n i n g / b i n d i n g t o the m i c e l l a r e n t i t y i n c r e a s e s w i t h i n c r e a s e s i n the s o l u t e h y d r o p h o b i c i t y . M e t a l i o n s can e l e c t r o s t a t i c a l l y i n t e r a c t w i t h and b i n d t o a n i o n i c c h a r g e - t y p e s u r f a c t a n t a s s e m b l i e s but not c a t i o n i c s ( r e f e r t o e n t r y f o r c o p p e r ( I I ) i n T a b l e V I ) . For i o n i z a b l e s o l u t e s , b o t h h y d r o p h o b i c and e l e c t r o s t a t i c i n t e r a c t i o n s a r e
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
18
ORDERED MEDIA IN CHEMICAL SEPARATIONS
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
TABLE V I .
Comparison o f some B i n d i n g C o n s t a n t s f o r t h e I n t e r a c t i o n of S o l u t e s w i t h S e l e c t e d O r g a n i z e d S u r f a c t a n t Systems
Solute
Organized Surfactant Assembly
2-Methyl-l,4-naphthoquinone (menadione) 2,3-Dimethy1-1,4-naphthoquinone Duroquinone
aq. aq.
Κ (M~ )
Ref.
1.2 X 1 0
NaLS m i c e l l e s
2.6 X
NaLS m i c e l l e s
ίο
51
4
A
51
4
A
1.3 X 10^ aq. NaLS m i c e l l e s BHAC r e v e r s e d m i c e l l e *3 u 3.5 - 4.4 i n benzene b
Naphthalene Anthracene Pyrene
aq.
1 0
It
52 1,53
2.0 X 5 4.0 X 6 1.7 X 1 0
NaLS m i c e l l e s
51
1 0
II
1-Me thy1qu i n o 1 i n i u m ion 10-Methylacridinium ion S i l v e r (I) i o n Nickel (II) ion Copper ( I I ) i o n Hydrogen i o n (H ) Copper-benzoyla c e t o n e complex
f
p,p -DDT
6
A
aq.
53
4.8 X 5 1.4 X 1 0
NaLS m i c e l l e s
1 0
II
5
Ο
aq. aq. aq.
NaLS m i c e l l e s DTAC m i c e l l e s NaLS m i c e l l e s
1.3 X 3 2.4 X 1 0 245' 0.002 13.1 8
aq. aq.
NaLS m i c e l l e s DTAC m i c e l l e s
4.9 X 11. i8°
io
aq. + + + +
CTAOH added added added added HexOH
1.5 1.8 3.0 2.7 5.0
10 10^ 10^ 10 10
aq.
NaLS m i c e l l e s
53
1 0
II
3
micelles BuOH HexOH KBr KBr & g
g
£
6
χ χ χ χ χ
54 55
3c J C
54
56
BHAC = hexadecylbenzyld^methylammonium c h l o r i d e . R e f e r s t o the e q u i l i b r i u m c o n s t a n t (dm /mol) f o r d i s t r i b u t i o n o f s o l u t e between the r e v e r s e d m i c e l l a r wat^r p o o l and the b u l k o r g a n i c phase. Equilibrium
constant
(dm /mol) a r e g i v e n on a p e r monomer
basis
4
αϊ )· DDT = l , l , l - t r i c h l o r o - 2 , 2 - b i s ( p - c h l o r o p h e n y l ) e t h a n e . ^CTAOH = Hexadecyltrimethylammonium h y d r o x i d e . Amount o f a l c o h o l added i s < 0.07 M. Amount o f KBr added i s < 0.10 M. g
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
TABLE V I I .
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
19
Surfactant Assemblies in Separation Science
HINZE
Summary o f P a r t i t i o n C o e f f i c i e n t s f o r the D i s t r i b u t i o n of S o l u t e s between Normal M i c e l l a r and Aqueous Pseudophases
Solute
Aqueous Normal M i c e l l a r System
Partition Coefficient
Ref.
1- H e p t a n o l
NaDC NaLS
2000 2650 1500 1010 930
207 57
1.8- 0 c t a n e d i o l 1.9- N o n a n e d i o l 1.10- D e c a n e d i o l
NaLS
311 743 3800
57
1-Pentanol
NaDC NaLS NaDeS* SFONa NaLS/SFONa" NaLS/SFONa
100 820 650 535 755 1200
207 58
Chloropentaammine cobalt(III)
NaLS
1.5 χ 10*
59
Propranol Penthianatemethobromide
CTAB CTAB
0.43 0.24
60
2- H e p t a n o l 3- H e p t a n o l 4- H e p t a n o l
a
NaDeS = sodium d e c y l s u l f a t e .
b
SF0Na
sodium
perfluorooctanoate.
Mixed m i c e l l e i n which t h e mol f r a c t i o n o f SFONa i s 0.50. Mixed m i c e l l e i n w h i c h the mol f r a c t i o n o f SFONa i s 0.147.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
20
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
p o s s i b l e . For example, t h e b i n d i n g c o n s t a n t s f o r t h e i n t e r a c t i o n o f p r o t o n a t e d and u n p r o t o n a t e d R - m e t h y l t h i o p h e n o l w i t h c a t i o n i c CTAB normal m i c e l l e s a r e 1.0 χ 1 0 and 8.3 x 10 Μ , r e s p e c t i v e l y ( 6 1 ) . The l a r g e r b i n d i n g c o n s t a n t f o r t h e t h i o p h e n o l a t e i o n merely r e f l e c t s the a d d i t i o n a l e l e c t r o s t a t i c c o n t r i b u t i o n t o t h e b i n d i n g i n t e r a c t i o n compared t o t h a t p o s s i b l e f o r t h e n e u t r a l t h i o p h e n o l . The a d d i t i o n o f a d d i t i v e s (such as s a l t o r a l c o h o l s ) can a l s o i n f l u e n c e t h e magnitude of t h e b i n d i n g i n t e r a c t i o n ( r e f e r t o d a t a on DDT i n T a b l e V I ) .
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
3
To summarize, t h e b i n d i n g i n t e r a c t i o n o b s e r v e d ( o r d e s i r e d i n particular separation application) for a s p e c i f i c solute with a s u r f a c t a n t assembly can be c o n t r o l l e d by (1) v a r i a t i o n o f t h e s u r f a c t a n t c o n c e n t r a t i o n ( e q u a t i o n s 3 and 4 ) , (2) v a r i a t i o n o f t h e c h a r g e - t y p e and/or carbon c h a i n l e n g t h o f t h e s u r f a c t a n t ( r e f e r t o d a t a on d u r o q u i n o n e , T a b l e VI and 1 - p e n t a n o l , T a b l e V I I ) , and (3) a d d i t i o n o f a p p r o p r i a t e a d d i t i v e s ( r e f e r t o DDT data i n T a b l e V I ) . By m a n i p u l a t i o n o f t h e e x p e r i m e n t a l c o n d i t i o n s j u s t mentioned, i t i s p o s s i b l e t o observe d i f f e r e n c e s i n t h e b i n d i n g / p a r t i t i o n i n g f o r d i f f e r e n t f a m i l i e s o f s o l u t e s (Table V I ) as w e l l as f o r p o s i t i o n a l i s o m e r s (see d a t a i n T a b l e V I I on h e p t a n o l i s o m e r s ) w i t h o r g a n i z e d s u r f a c t a n t media. I n a d d i t i o n , d i f f e r e n c e s i n t h e b i n d i n g o f e n a n t i o m e r s have been o b s e r v e d i n a few cases (J_5,_62). The f a c t t h a t one can u t i l i z e d i f f e r e n t s u f a c t a n t o r g a n i z e d a s s e m b l i e s t o d i f f e r e n t i a l l y s o l u b i l i z e and b i n d a v a r i e t y o f s o l u t e m o l e c u l e s s e r v e s as t h e main b a s i s f o r t h e i r s u c c e s s f u l use i n s e p a r a t i o n s c i e n c e ( j _ , 5 ) . A d d i t i o n a l l y , some o f t h e o t h e r p r e v i s o u l y mentioned unique p r o p e r t i e s o f s u r f a c t a n t s o l u t i o n s and o r g a n i z e d s u r f a c t a n t systems can be j u d i c i o u s l y e x p l o i t e d i n o r d e r t o a i d t h e s e p a r a t i o n s c i e n t i s t i n some s p e c i f i c a p p l i c a t i o n s as w i l l be d e t a i l e d i n l a t e r sections o f t h i s overview. D i f f e r e n t Uses and E x p l o i t a t i o n o f S u r f a c t a n t Systems i n S e p a r a t i o n Science O r g a n i z e d s u r f a c t a n t a s s e m b l i e s have found a m a z i n g l y d i v e r s e and numerous p r a c t i c a l a p p l i c a t i o n s i n many a r e a s o f s e p a r a t i o n s c i e n c e . Space l i m i t a t i o n s p r e c l u d e an e x h a u s t i v e r e v i e w o f a l l such systems and a p p l i c a t i o n s . C o n s e q u e n t l y , o n l y c e r t a i n r e p r e s e n t a t i v e examples w i l l be g i v e n i n many i n s t a n c e s t o i l l u s t r a t e t h e c u r r e n t s t a t e - o f - t h e - a r t , w i t h emphasis g i v e n t o t h e more r e c e n t l y developed techniques. P o t e n t i a l a r e a s f o r f u r t h e r r e s e a r c h and f u t u r e developments w i l l be i d e n t i f i e d . The main t o p i c s t o be covered i n c l u d e : use o f s u r f a c t a n t s as m o b i l e phase a d d i t i v e s and/or s t a t i o n a r y phase m o d i f i c a t i o n r e a g e n t s i n chromatographic s e p a r a t i o n s , w i t h emphasis on m i c e l l a r l i q u i d chromatography; m i c e l l a r e l e c t r o k i n e t i c c a p i l l a r y chromatography; s u r f a c t a n t mediated s o l u b i l i z a t i o n and e x t r a c t i o n schemes; s u r f a c t a n t enhanced d e t e c t i o n schemes i n s e p a r a t i o n s c i e n c e ; a b r i e f d e s c r i p t i o n o f some m i s c e l l a n e o u s a p p l i c a t i o n s o f s u r f a c t a n t s ; and l a s t l y , a s e c t i o n on some e x p e r i m e n t a l c o n s i d e r a t i o n s i n c l u d i n g s u r f a c t a n t and/or s o l u t e recovery i n surfactant-mediated separations. S u r f a c t a n t - M e d i a t e d Chromatographic S e p a r a t i o n s . The s e l e c t i v e i n t e r a c t i o n o f s u r f a c t a n t s w i t h a v a r i e t y o f s o l u t e s (as i o n p a i r s w i t h monomeric s u r f a c t a n t m o l e c u l e s o r as bound ( " a s s o c i a t e d " ) s p e c i e s
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
HINZE
Surfactant Assemblies in Separation Science
21
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
with m i c e l l a r , vesicular, or l i q u i d / c r y s t a l l i n e organized surfactant media) e n a b l e s them t o be a p p l i e d i n chromatography. From an o p e r a t i o n a l v i e w p o i n t , t h e r e can be two t y p e s o f approaches t o t h e i r use i n such chromatographic s e p a r a t i o n s . F i r s t , they can be employed i n c h r o m a t o g r a p h i c m o b i l e phases. An e l u t i n g s o l v e n t ( m o b i l e phase) c o n t a i n s t h e s u r f a c t a n t ( s ) and s o l u t e s d i s t r i b u t e between t h e s t a t i o n a r y phase ( u s u a l l y s u r f a c t a n t m o d i f i e d ) and t h e s u r f a c t a n t (or s u r f a c t a n t a g g r e g a t e ) i n t h e m o b i l e phase ( F i g u r e 4 ) . Alternatively, s u r f a c t a n t s o r s u r f a c t a n t o r g a n i z e d a s s e m b l i e s can be i m m o b i l i z e d i n (or o n t o ) a s t a t i o n a r y phase. S o l u t e s a r e thus d i s t r i b u t e d between a c o n v e n t i o n a l m o b i l e phase and t h e s u r f a c t a n t - m o d i f i e d s t a t i o n a r y phase. Use o f S u r f a c t a n t s i n Chromatographic M o b i l e Phases. (1) P l a n a r and High-Performance L i q u i d Chromatography. Perhaps t h e most r e c e n t development c o n c e r n i n g t h e u t i l i z a t i o n o f s u r f a c t a n t s i n chromatography c o n c e r n s t h e i r use as LC m i c e l l a r m o b i l e phases 0 - 8 ) . S u r f a c t a n t s had p r e v i o u s l y been s u c c e s s f u l l y employed as mobile phase a d d i t i v e s i n s o - c a l l e d i o n - p a i r (68-73»Π 8), soap (74), h y d r o p h o b i c (75,173)» dynamic soap (76), i o n i n t e r a c t i o n (77), h e t a e r i c (78), d e t e r g e n t - b a s e d c a t ion-exchange (7_9) o r s u r f a c t a n t chromatography (_69). There i s s t i l l c o n s i d e r a b l e debate c o n c e r n i n g t h e r e t e n t i o n mechanism i n t h i s p a r t i c u l a r s e p a r a t i o n mode employing s u r f a c t a n t s as a d d i t i v e s i n t h e m o b i l e phase (68,_69,71_,72). F o r t h e s e a p p l i c a t i o n s , the s u r f a c t a n t c o n c e n t r a t i o n s and/or c o n d i t i o n s a r e such t h a t no m i c e l l a r aggregates form. That i s , s u r f a c t a n t c o n c e n t r a t i o n s a r e below t h e CMC v a l u e o r c o n d i t i o n s ( h i g h c o n c e n t r a t i o n s o f added a l c o h o l s ) a r e such t h a t m i c e l l e s do n o t f o r m . I n f a c t , d e v i a t i o n s from t h e expected i o n - p a i r r e t e n t i o n b e h a v i o r observed a t h i g h e r s u r f a c t a n t c o n c e n t r a t i o n s i s u s u a l l y a t t r i b u t e d t o m i c e l l e o r mixed m i c e l l e f o r m a t i o n (71,79-82,118,121 J 7 3 ) . F u r t h e r i n f o r m a t i o n on t h e use o f s u r f a c t a n t s as i o n - p a i r i n g r e a g e n t s i n chromatography a r e g i v e n i n s e v e r a l f i n e r e v i e w s (_69,8l_,83) as w e l l as i n a Chapter by M u l l i n s i n t h i s Symposium Volume (84). The f i r s t i n t e n t i o n a l u s e o f s u r f a c t a n t s i n c h r o m a t o g r a p h i c m o b i l e phases a t c o n c e n t r a t i o n s above t h e CMC was proposed i n 1977 by Armstrong and co-workers (1,86-100). S i n c e t h e i n i t i a l r e p o r t s , t h e g e n e r a l method, dubbed pseudophase l i q u i d chromatography (PLC) o r m i c e l l a r l i q u i d chromatography (MLC), has moved from t h e r e a l m o f an academic n o v e l t y t o a demonstrated p r a c t i c a l s e p a r a t i o n t e c h n i q u e . The b a s i s f o r s e p a r a t i o n employing m i c e l l a r m o b i l e phases stems from t h e i r a b i l i t y t o d i f f e r e n t i a l l y s o l u b i l i z e and b i n d s t r u c t u r a l l y s i m i l a r s o l u t e s . S k e p t i c s view MLC as a f a s c i n a t i n g example o f t h e i n c o r p o r a t i o n o f secondary e q u i l i b r i a f o r c o n t r o l o r adjustment o f r e t e n t i o n (101). However, i t i s t h e u l t i m a t e o f secondary e q u i l i b r i a s i n c e t h e types o f i n t e r a c t i o n s p o s s i b l e w i t h m i c e l l a r aggregates cannot be d u p l i c a t e d by any s i n g l e o t h e r e q u i l i b r i u m system, o r f o r t h a t m a t t e r , any one o r m i x t u r e o f t r a d i t i o n a l normal o r r e v e r s e d phase m o b i l e phase systems. T h i s i s due t o t h e f a c t t h a t s o l u t e s can i n t e r a c t w i t h t h e s u r f a c t a n t aggregates v i a hydrophobic, e l e c t r o s t a t i c , hydrogen b o n d i n g , and/or a c o m b i n a t i o n o f t h e s e factors. A m i c e l l a r m o b i l e phase can be viewed as b e i n g composed o f both t h e s u r f a c t a n t m i c e l l a r a g g r e g a t e s (pseudophase) and t h e r e s t o f t h e
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
22
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
F i g u r e 4. A r t i s t i c r e p r e s e n t a t i o n o f t h e s p e c i e s and e q u i l i b r i a p r e s e n t when employing s u r f a c t a n t m i c e l l a r m o b i l e phases i n LC.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
HINZE
23
Surfactant Assemblies in Separation Science
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
b u l k s o l v e n t ( F i g u r e 4 ) . A s o l u t e t h u s d i s t r i b u t e s between the b u l k s o l v e n t - s u r f a c t a n t m o d i f i e d s t a t i o n a r y phase (P ) and between the b u l k s o l v e n t - m i c e l l a r pseudophase (Ρ ). C o n s e q u e n t l y , t h e r e a r e two p a r t i t i o n c o e f f i c i e n t s which the s e p a r a t i o n s c i e n t i s t can t r y t o m a n i p u l a t e i n o r d e r t o a c h i e v e a d e s i r e d s e p a r a t i o n . The b a s i c f o r m u l a s r e l a t i n g t h e s e two p a r t i t i o n c o e f f i c i e n t s and r e t e n t i o n ( i n terms o f the r e c i p r o c a l o f the c a p a c i t y f a c t o r ) t o the m i c e l l e c o n c e n t r a t i o n are g i v e n i n e q u a t i o n s 5 and 6 f o r TLC and HPLC, respectively:
1
where R^, and k are the r e t a r d a t i o n and c a p a c i t y f a c t o r s , r e s p e c t i v e l y ; φ i s the phase r a t i o ( e q u a l t o V /V where V" and Y are the s t a t i o n a r y - p h a s e and v o i d volumes, r e s p e c t i v e l y ) ; C i s the m i c e l l e c o n c e n t r a t i o n [ e q u a l t o (C -CMC)/N where C i s the t o t a l s u r f a c t a n t c o n c e n t r a t i o n ] ; Κ i s the m i c e l l e - s o l u t e b i n d i n g c o n s t a n t (equal to ( P - 1)v, where Ρ i s the p a r t i t i o n c o e f f i c i e n t f o r d i s t r i b u t i o n o f t h e s o l u t e between the m i c e l l a r and b u l k s o l v e n t p h a s e s ) ; and Ρ i s the p a r t i t i o n c o e f f i c i e n t f o r d i s t r i b u t i o n o f the s o l u t e between the b u l k s o l v e n t and s t a t i o n a r y phases (1,96,98,102). These e q u a t i o n s can be employed t o d e s c r i b e o r p r e d i c t the r e t e n t i o n b e h a v i o r e x h i b i t e d by n e u t r a l s o l u t e s o r i o n i z a b l e s o l u t e s , p r o v i d e d t h a t t h e r e i s o n l y one form of t h e s o l u t e p r e s e n t o v e r the s u r f a c t a n t c o n c e n t r a t i o n range examined a t a p a r t i c u l a r pH ( i n the l a t t e r c a s e , i t would be n e c e s s a r y t o bear i n mind t h a t the K term must be f o r the a c t u a l form o f t h e s p e c i e s p r e s e n t ) . s
s
Q
T
s m
S
fe
I n the case o f an i o n i z a b l e s o l u t e where b o t h the a c i d and c o n j u g a t e base (or base and c o n j u g a t e a c i d ) forms are p r e s e n t , the f o l l o w i n g e q u a t i o n p r e d i c t s the dependence o f k' upon pH (at c o n s t a n t s u r f a c t a n t c o n c e n t r a t i o n ) or s u r f a c t a n t c o n c e n t r a t i o n (at c o n s t a n t pH):
K
^
1+
W
+
C
Vm
)]
+
+
[1
k
+ K
,
c b
bc
[
1
( C
+
m
K
bc
) ]
V
(
C
m
)
]
K
i
/
[
H
+
]
(7)
[ H + ]
where and K, a r e the b i n d i n g c o n s t a n t s f o r the i n t e r a c t i o n o f the weak a c i d and i ? s c o n j u g a t e b a s e , r e s p e c t i v e l y ; k^ and k£ a r e the l i m i t i n g c a p a c i t y f a c t o r s o f the weak a c i d and i t s c o n j u g a t e b a s e , r e s p e c t i v e l y ; C i s the m i c e l l e c o n c e n t r a t i o n as p r e v i o u s l y d e f i n e d ; and K.. i s the a p p a r e n t i o n i z a t i o n c o n s t a n t f o r the weak a c i d ( 1 0 3 ) . A s i m i l a r e q u a t i o n can be d e r i v e d f o r weak bases and t h e i r c o n j u g a t e a c i d s (103)· I t s h o u l d be n o t e d t h a t e q u a t i o n s 5, 6, and 7 can be r e - e x p r e s s e d i n terms o f s e v e r a l o t h e r c h r o m a t o g r a p h i c parameters o r by use o f p a r t i t i o n c o e f f i c i e n t s r a t h e r than b i n d i n g c o n s t a n t s U). fe
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
24
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
The d e r i v a t i o n o f t h e s e d i f f e r e n t r e t e n t i o n e q u a t i o n s i s i m p o r t a n t i n s e v e r a l r e s p e c t s . F i r s t , they a l l o w f o r c a l c u l a t i o n o f m i c e l l e - s o l u t e b i n d i n g c o n s t a n t s , parameters which a r e i m p o r t a n t i n many a r e a s of m i c e l l a r k i n e t i c s or c h e m i s t r y . There have been s e v e r a l r e p o r t s i n the l i t e r a t u r e d e m o n s t r a t i n g t h i s c h r o m a t o g r a p h i c approach f o r d e t e r m i n a t i o n o f m i c e l l e - s o l u t e b i n d i n g c o n s t a n t s (1,8,104,105). More i m p o r t a n t l y , t h e y a l l o w f o r p r e d i c t i o n of r e t e n t i o n b e h a v i o r as a f u n c t i o n o f s u r f a c t a n t c o n c e n t r a t i o n (or o f pH at c o n s t a n t m i c e l l e c o n c e n t r a t i o n ) , p r o v i d e d t h a t the m i c e l l e - s o l u t e b i n d i n g c o n s t a n t (or s o l u t e i o n i z a t i o n c o n s t a n t ) i s known (which can be d e t e r m i n e d s p e c t r o s c o p i c a l l y or from k i n e t i c s t u d i e s ) (1,96,102). C o n s e q u e n t l y , t h e t h e o r y a l l o w s t h e chromatographer t o determine t h e optimum conditions required for a desired separation. E x a m i n a t i o n of e q u a t i o n s 5, 6, and 7 r e v e a l s t h a t r e t e n t i o n can be c o n t r o l l e d by v a r i a t i o n o f the s u r f a c t a n t m i c e l l e c o n c e n t r a t i o n , v a r i a t i o n o f pH ( f o r i o n i z a b l e s p e c i e s ) , and by m a n i p u l a t i o n o f the s o l u t e - m i c e l l e b i n d i n g c o n s t a n t (K.) w h i c h , i n t u r n can be i n f l u e n c e d by a d d i t i v e s ( s a l t , a l c o h o l ; r e f e r t o d a t a on DDT, T a b l e VI) o r the t y p e (charge and h y d r o p h o b i c i t y ) o f m i c e l l e - f o r m i n g s u r f a c t a n t employed ( r e f e r t o d a t a i n T a b l e V I I f o r 1 - p e n t a n o l ) . T a b l e V I I I summarizes some o f the f a c t o r s t h a t i n f l u e n c e r e t e n t i o n f o r s u r f a c t a n t - c o n t a i n i n g m o b i l e phases and compares the e f f e c t of changes i n t h e s e f a c t o r s upon the r e t e n t i o n b e h a v i o r o b s e r v e d i n b o t h m i c e l l a r l i q u i d and i o n - p a i r chromatography ( 8 1 ) . I n a d d i t i o n t o the f a c t o r s l i s t e d i n T a b l e V I I I , t h e n a t u r e o f the s u r f a c t a n t - m o d i f i e d s t a t i o n a r y phase a f f e c t s Ρ (partition c o e f f i c i e n t f o r d i s t r i b u t i o n o f s o l u t e between bulîPsolvent and m o d i f i e d s t a t i o n a r y phases) and t h u s w i l l i n f l u e n c e the r e t e n t i o n o b s e r v e d . I t s h o u l d be r e a l i z e d t h a t most of the normal and reversed-phase packing m a t e r i a l s w i l l adsorb/absorb s u r f a c t a n t m o l e c u l e s from t h e m o b i l e phase s o l u t i o n and become c o a t e d t o d i f f e r e n t degrees when s u r f a c t a n t m o b i l e phases a r e p a s s e d t h r o u g h them. Numerous a d s o r p t i o n i s o t h e r m s have been r e p o r t e d f o r v a r i o u s s u r f a c t a n t - s t a t i o n a r y phase c o m b i n a t i o n s i l l u s t r a t i n g t h i s p o i n t (82,85,106,115-128,206). The p r e s e n c e o f a d d i t i v e s can mediate the amount o f s u r f a c t a n t s u r f a c e coverage o b t a i n e d (110-129,175,206). I t has been p o s t u l a t e d t h a t the a r c h i t e c t u r e w h i c h adsorbed s u r f a c t a n t m o l e c u l e s can assume on c o n v e n t i o n a l s t a t i o n a r y phases can range from m i c e l l a r , h e m i - m i c e l l a r , o r a d m i c e l l a r t o mono-,bi-, o r m u l t i l a y e r e d , and/or o t h e r l i q u i d c r y s t a l l i n e - t y p e s t r u c t u r e s (93,106,124,128,129, 132,208,212,217,221). I n a few c a s e s , i t has been r e p o r t e d t h a t t h e r e can be a r e l a t i v e l y s l o w r e o r g a n i z a t i o n of t h e s t a t i o n a r y phase s u r f a c t a n t s t r u c t u r e (137) and s i m i l a r a g e i n g ( s t o r a g e ) e f f e c t s on the m i c e l l a r aggregate s t r u c t u r e i n s o l u t i o n have been noted as w e l l ( 1 3 8 ) . A l s o , the s t r u c t u r a l parameters ( i . e . pore diameter and p a r t i c a l s i z e d i s t r i b u t i o n ) of the s t a t i o n a r y phase p a c k i n g m a t e r i a l can be a l t e r e d due t o s u r f a c t a n t a d s o r p t i o n (133-135)· The f a c t t h a t many s t a t i o n a r y phase p r o p e r t i e s a r e s u b s t a n t i a l l y a l t e r e d by the p r o c e s s o f s u r f a c t a n t a d s o r p t i o n has i m p o r t a n t i m p l i c a t i o n s w i t h r e g a r d t o c h r o m a t o g r a p h i c r e t e n t i o n and e f f i c i e n c y (93,106,110,126-128). A r e v i e w on the r o l e o f the s t a t i o n a r y phase i n MLC i s g i v e n i n a Chapter by B e r t h o d , e t a l i n t h i s Volume ( 1 3 6 ) .
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
TABLE V I I I .
Comparison o f the G e n e r a l E f f e c t o f V a r i a b l e s on R e t e n t i o n i n Reversed-Phase I o n - P a i r (RP-IPC) and M i c e l l a r L i q u i d Chromatography (MLC)
Factor Varied
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
25
Surfactant Assemblies in Separation Science
1. HINZE
E f f e c t upon R e t e n t i o n a i n RP-MLC i n RP-IPC
Concentration of surfactant of m o b i l e phase
Increasing concentration increases retenti o n (up t o a l i m i t )
Increasing concentration decreases r e t e n t i o n (down jto a l i m i t i n g value)
P r e s e n c e o f an organic modifier (added a l c o h o l o r acetonitrile)
Retention decreases w i t h i n c r e a s i n g concent r a t i o n or hydrophobic i t y o f the o r g a n i c additive
Same as i n RP-IPC
PH
R e t e n t i o n i n c r e a s e s as pH m a n i p u l a t i o n maxim i z e s the c o n c e n t r a t i o n of t h e i o n i c form o f the s o l u t e
Depends upon t h e nature ( i . e . chargetype and c o n c e n t r a t ion) o f the s u r f a c t ant m i c e l l e and i o n i z a b l e s o l u t e ; eq. 7 predicts a sigmoidaltype dependence between r e t e n t i o n and pH ( a t c o n s t a n t s u r factant c o n c e n t r a t ion)
Temperature
R e t e n t i o n i n c r e a s e s as temperature d e c r e a s e s
Retention decreases s l i g h t l y as temperature increases
Ionic
R e n t i o n d e c r e a s e s as ionic strength i n linear creases dej)çndence__1jet;ween
Strength
^ I n f o r m a t i o n taken 114,121,131.
from Réf. 81.
u
See references
1,96,102,105,106,
°See r e f e r e n c e s 106-112,121,130,131,154,201; some e x c e p t i o n s w i t h s h o r t - c h a i n a l c o h o l s (MeOH) (110). T a b l e IX shows t h e e f f e c t o f a l t e r a t i o n o f a l c o h o l h y d r o p h o b i c i t y i n MLC r e t e n t i o n (112). d e See r e f e r e n c e 103. R e f e r t o r e f e r e n c e 113, F i g u r e 2. f
very
R e f e r t o r e f e r e n c e s 98,99,107,108,110,130,131). There a r e some a p p a r e n t n o t a b l e e x c e p t i o n s t o the g e n e r a l t r e n d , s e e , f o r i n s t a n c e , Ref. 98,99,103,110.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
26
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
TABLE IX.
E f f e c t o f Added A l c o h o l s upon the C h r o m a t o g r a p h i c R e t e n t i o n and E f f i c i e n c y o f 2 - E t h y l a n t h r a q u i n o n e u s i n g a M i c e l l a r Sodium D o d e c y l s u l f a t e M o b i l e Phase and a C-18 Reversed Phase Column
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
Additive
Capacity Factor
b
Ν
none
37.1
50
5% added methanol
27.3
56
5% added
20.6
100
13.2
320
9.5
725
2% added n - p e n t a n o l 5% "
12.3 7.3
810
5% added DMSO
22.1
ethanol
5% added n - p r o p a n o l 5% added n - b u t a n o l
temperature
23.5° C, d a t a t a k e n from Ref.
112.
^The m i c e l l a r m o b i l e phase i n a l l e x p e r i m e n t s c o n s i s t e d o f aqueous 0.285M NaLS, f l o w r a t e l.OOmL/min, 10-cm column.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1. HINZE
27
Surfactant Assemblies in Separation Science
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
From an e x p e r i m e n t a l s t a n d p o i n t , i t i s i m p o r t a n t t o p r o p e r l y e q u i l i b r a t e t h e column w i t h t h e s u r f a c t a n t m o b i l e phase p r i o r t o use so t h a t r e p r o d u c i b l e c h r o m a t o g r a p h i c r e s u l t s can be o b t a i n e d . In terms o f chromatographic a p p l i c a t i o n s , t h e advantages o f employing s u r f a c t a n t m i c e l l a r m o b i l e phases t h a t have been c i t e d i n c l u d e : enhanced s e l e c t i v i t y , low c o s t , low t o x i c i t y , ease o f m o b i l e phase d i s p o s a l , ease o f p u r i f i c a t i o n o f t h e m o b i l e phase ( i . e . water and s u r f a c t a n t ) , and t h e a b i l i t y t o s i m u l t a n e o u s l y chromatograph both h y d r o p h i l i c and h y d r o p h o b i c s o l u t e s among o t h e r s (1-3>88,95,97,111)· More r e c e n t l y , s e v e r a l o t h e r unique c h r o m a t o g r a p h i c advantages o b t a i n a b l e have been r e p o r t e d ( 1 3 9 ) . F i r s t , use o f some m i c e l l a r m o b i l e phases a l l o w s f o r more c o n v e n i e n t and r a p i d g r a d i e n t e l u t i o n ( i . e . g r a d i e n t i n terms o f m i c e l l a r c o n c e n t r a t i o n ) compared t o t h a t p o s s i b l e w i t h c o n v e n t i o n a l h y d r o - o r g a n i c m o b i l e phases (140,141). S e c o n d l y , i t has been r e p o r t e d t h a t u t i l i z a t i o n o f r e v e r s e m i c e l l a r m o b i l e phases (AOT i n hexane) i n normal phase chromatography can g r e a t l y reduce o r e l i m i n a t e t h e s o l u t e r e t e n t i o n dependence upon water c o n t e n t t h a t i s u s u a l l y o b s e r v e d i n normal phase LC ( 1 4 2 ) . T h i r d , t h e use o f some m i c e l l a r m o b i l e phases a l l o w s f o r new o r enhanced modes o f d e t e c t i o n i n TLC or HPLC. More d e t a i l s on t h i s p o i n t w i l l be p r e s e n t e d i n a l a t t e r s e c t i o n o f t h i s r e v i e w a r t i c l e . Some o f t h e s e unique c h r o m a t o g r a p h i c c a p a b i l i t i e s o f m i c e l l a r m o b i l e phases a r e d i s c u s s e d i n more d e t a i l i n a Chapter by Dorsey i n t h i s Symposium Volume ( 1 4 3 ) . A f o u r t h major r e a s o n f o r employing such m i c e l l a r phases i n HPLC i s t h a t they allow f o r the d i r e c t i n j e c t i o n of untreated b i o l o g i c a l f l u i d s ( u r i n e , plasma, s a l i v a ) (144-149,218) as w e l l as waste water samples ( 1 1 2 ) . Thus, t h i s t e c h n i q u e i s v e r y u s e f u l i n t h e r a p e u t i c drug m o n i t o r i n g s i n c e t h e m i c e l l a r s o l u t i o n can s o l u b i l i z e t h e serum/urine p r e v e n t i n g p r o t e i n p r e c i p i t a t i o n and d i s p l a c e t h e d r u g / a n a l y t e from t h e serum/urine components t h u s a l l o w i n g t h e a n a l y t e t o p a r t i t i o n t o t h e s u r f a c t a n t m o d i f i e d s t a t i o n a r y phase (144-149). C o n s e q u e n t l y , m i n i m a l sample p r e p a r a t i o n i s r e q u i r e d and t h e a n a l y s i s t i m e i s r e d u c e d . There w i l l no doubt be f u r t h e r b r e a k - t h r o u g h s i n t h i s f a s t - m o v i n g f i e l d i n t h e near f u t u r e w i t h r e s p e c t t o n o v e l c h r o m a t o g r a p h i c advantages o f s u r f a c t a n t - c o n t a i n i n g m o b i l e phases. L a s t l y , t h e use o f m i c e l l a r m o b i l e phases a l l o w s a c o n v e n i e n t means o f s t u d y i n g m i c e l l e - s o l u t e i n t e r a c t i o n s ( i . e . d e t e r m i n a t i o n o f b i n d i n g c o n s t a n t s ) (1,104,105) as w e l l as d e t e r m i n a t i o n o f s u r f a c t a n t CMC v a l u e s (from b r e a k s i n t h e l o g k* . vs. log C plots) (64,109,148,172). I n t h i s a r e a , t h e more i m p o r t a n t a p p l i c a t i o n i s i t s use i n t h e d e t e r m i n a t i o n o f b i n d i n g c o n s t a n t s (J_). T
The main d i s a d v a n t a g e s o f m i c e l l a r chromatography a r e t h e o b s e r v e d d i m i n i s h e d c h r o m a t o g r a p h i c e f f i c i e n c y , h i g h e r column back p r e s s u r e , and i n p r e p a r a t i v e work, t h e need t o s e p a r a t e t h e f i n a l r e s o l v e d a n a l y t e from t h e s u r f a c t a n t (95) (a l a t e r s e c t i o n o f t h i s r e v i e w w i l l d i s c u s s t h i s l a t t e r problem and i t s r e s o l u t i o n i n f u r t h e r d e t a i l ). The h i g h e r column back p r e s s u r e and p a r t o f t h e d e c r e a s e d e f f i c i e n c y stem from t h e f a c t t h a t s u r f a c t a n t - c o n t a i n i n g m o b i l e phases a r e more v i s c o u s compared t o t h e u s u a l h y d r o - o r g a n i c m o b i l e phases employed i n c o n v e n t i o n a l RP-HPLC ( r e f e r t o v i s c o s i t y d a t a i n T a b l e X)
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
28
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
TABLE X.
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
V i s c o s i t y o f Commonly Employed S o l u t i o n s i n M i c e l l a r L i q u i d Chromatography
Surfactant
System
Methanol alone D i s t i l l e d Water 0.10 0.10 0.10 0.10
M M M M
V i s c o s i t y , cP
0.55 1.01
alone
NaLS CTAC SB-12 NaDC
1.21 1.31 1.16 1.32
0.27 M CTAB + 50% n-Bu0H 0.40 0.40 0.40 0.43 0.04
a
M M M M M
NaLS CTAC SB-12 CPC DODAB ( V e s i c l e
b
System)
4.48 2.27 2.46 1.76 3.40 5.2
D a t a t a k e n a t 25.6° C; R e f e r e n c e 112.
^ P r o b a b l y a m i c r o e m u l s i o n system.
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Surfactant Assemblies in Separation Science
1. HINZE
29
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
(106,112,118). Due t o t h e r e l a t i v e l y h i g h v i s c o s i t y o f s u r f a c t a n t v e s i c l e and m i c r o e m u l s i o n systems ( r e f e r t o d a t a on DODAB and CTAB/50Î BuOH i n T a b l e X ) , t h e i r use i n HPLC w i l l be l i m i t e d s i n c e lower f l o w r a t e s would be r e q u i r e d which would l e n g t h e n t h e r e q u i r e d t i m e f o r a s e p a r a t i o n . A d d i t i o n a l l y , most s u r f a c t a n t v e s i c u l a r (112) as w e l l as some m i c e l l a r s o l u t i o n s a r e o p t i c a l l y opaque which l i m i t s t h e wavelength range a v a i l a b l e f o r s p e c t r o s c o p i c d e t e c t i o n u n l e s s a postcolumn d i l u t i o n s t e p i s employed (219). The major c o n t r i b u t i o n s which r e s u l t i n t h e r e d u c e d c h r o m a t o g r a p h i c e f f i c i e n c y have been a s c r i b e d t o slow mass t r a n s f e r p r i n c i p a l l y due t o poor w e t t i n g o f t h e s u r f a c t a n t m o d i f i e d s t a t i o n a r y phase ( 1 0 9 ) , poor mass t r a n s f e r between t h e m i c e l l e and s t a t i o n a r y phase ( 1 1 3 ) , and poor mass t r a n s f e r i n t h e s t a t i o n a r y phase (100,106). In some c a s e s , t h e use o f s m a l l amounts o f a l c o h o l a d d i t i v e s (MeOH, n-Pr0H) and o p e r a t i o n a t e l e v a t e d temperature (40 C) r e s u l t i n c h r o m a t o g r a p h i c e f f i c i e n c i e s comparable t o t h a t seen i n t r a d i t i o n a l LC u s i n g h y d r o - o r g a n i c m o b i l e phases (109,113,154,206). I n o u r own work, we have found n-pentanol t o be s u p e r i o r t o n-propanol i n t h i s r e g a r d ( r e f e r t o T a b l e I X ) ( 1 1 2 ) . F u r t h e r work i s c l e a r l y needed i n t h i s e f f i c i e n c y area i n order t o c l a r i f y the exact reason(s) f o r the r e d u c t i o n i n e f f i c i e n c y . I t appears t h a t a c o m b i n a t i o n o f f a c t o r s can c o n t r i b u t e t o t h i s e f f e c t w i t h t h e dominant e f f i c i e n c y r e d u c t i o n mode dependent upon t h e n a t u r e o f t h e s o l u t e , m i c e l l a r m o b i l e phase, and s t a t i o n a r y phase p a c k i n g m a t e r i a l employed (100,112,135). C o n s e q u e n t l y , a l l e x p l a n a t i o n s g i v e n t o date a r e p r o b a b l y c o r r e c t f o r the p a r t i c u l a r l i m i t e d c a s e s examined i n t h e work c i t e d . M i c e l l a r m o b i l e phases have been u t i l i z e d i n numerous r e c e n t p a p e r , t h i n - l a y e r , and h i g h - p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h i c s e p a r a t i o n s . T a b l e XI summarizes t h e s e p a r a t i o n s performed t o d a t e . As can be s e e n , t h e g e n e r a l approach i s amenable t o s e p a r a t i o n o f a wide v a r i e t y o f o r g a n i c , b i o l o g i c a l and i n o r g a n i c s p e c i e s . I t appears t o h o l d p a r t i c u l a r promise i n t h e a r e a s o f m e t a l / a n i o n s p e c i a t i o n (156,162,163) and i n b i o l o g i c a l / p r o t e i n s e p a r a t i o n s (137,165,170, 223). More d e t a i l s c o n c e r n i n g a p p l i c a t i o n o f m i c e l l a r m o b i l e phases i n t h e s e p a r a t i o n o f o r g a n i c and i n o r g a n i c i o n s i s p r e s e n t e d i n a Chapter by M u l l i n s i n t h i s Volume ( 8 4 ) . A r e c e n t r e v i e w by Matson and Goheen (165) o u t l i n e some o f t h e c o n s i d e r a t i o n s and a p p l i c a t i o n s o f u t i l i z i n g d e t e r g e n t - m i c e l l e m o b i l e phases i n t h e HPLC s e p a r a t i o n o f membrane p r o t e i n s . I n many i n s t a n c e s , t h e c o m b i n a t i o n o f s e v e r a l c h r o m a t o g r a p h i c s t e p s , one o r more of w h i c h employed s u r f a c t a n t / m i c e l l e m o b i l e phases, has proven t o be u s e f u l i n t h e s e p a r a t i o n o f b i o l o g i c a l m a t e r i a l s (166,167,171,223,224,233). G
e
l
F i l t r a t i o n . M i c e l l a r s o l u t i o n s have a l s o been u t i l i z e d i n g e l permeation ( f i l t r a t i o n ) chromatography (J_). In f a c t , the f i r s t example o f a s e p a r a t i o n which used a m i c e l l a r m o b i l e phase was i n t h i s a r e a o f e x c l u s i o n l i q u i d chromatography (ELC) (86). The l a s t s i x e n t r i e s i n T a b l e XI summarize some o f t h e s e p a r a t i o n s / w o r k r e p o r t e d c o n c e r n i n g m i c e l l a r m o b i l e phases i n ELC. I n most o f t h e s e a p p l i c a t i o n s , t h e work was conducted w i t h s t a t i o n a r y phases o f r e l a t i v e l y s m a l l pore s i z e . With t h e s e t y p e phases, t h e r e l a t i v e l y l a r g e m i c e l l a r a g g r e g a t e s a r e c o n f i n e d t o t h e e x c l u d e d volume o f t h e column and e l u t e r a p i d l y whereas s m a l l e r s o l u t e m o l e c u l e s i n a m i x t u r e
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
30 TABLE X I .
Summary o f Some S e l e c t e d S e p a r a t i o n s R e p o r t e d which have U t i l i z e d Surfactant-Containing Mobile Phases
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
3
Component(s) Separated
Stationary Phase
M o b i l e Phase Composition
Mode
P h e n o l s (28)
Whatman No. 3 paper s t r i p s
Aq. NaLS o r CTAB/ 8% PrOH
PC
Dyestuffs (13), anions ( 2 ) , c a t i o n s (3)
Whatman No. 1 paper
CTAB o r NaLS i n c,d 50%HOH/50% BuOH'
PC
P o l y c y c l i c aromatic hydrocarbons, p e s t i c i d e s (4)
polyamide o r alumina sheets
Aq. NaLS o r CTAB
TLC
87, 91
N u c l e o s i d e s (4)
silanized s i l i c a gel-60
Reversed m i c e l l e s of sodium d i o c t y l s u l f o succinate i n cyclohexane
TLC
87
N u c l e o s i d e s (4)
polyamide
Aq. NaLS
TLC
87
Dyes, P e s t i c i d e s
polyamide o r alumina
Aq.
N L S o r CTAB
TLC
151
Dyes, Food C o l o r s
alumina or polyamide
Aq.
NaLS
TLC
94
Mycotoxins
polyamide, alumina, o r RP s h e e t s
Aq. NaLS
TLC
1,168
Amino a c i d s (3)
column
B r i j - 3 5 / 3 0 % EtOH
P r o t e i n s (6)
supelcosil LC-8
Aq. N e o d e l
Hydroxybenzenes (phenols, q u i n o l s , c a t e c h o l s ) (18)
C-18 RP
Aq.
Dithiocarbamates (5)
Bondapak CN
A n i o n s (5)
T e s t Mix
a
U
Ref.
150
164
column
213
HPLC
152
NaLS
HPLC
105
Aq.
CTAB/30% MeOH
HPLC
108, 206
Spherisorb ODS
Aq.
CTAC
HPLC
107
Polygosil ODS
Aq.
NaLS
HPLC
153
H y p e r s i l ODS
Aq. B r i j - 3 5
HPLC
147
Aq. 0.01M NaLS, pH 3.4
HPLC
218
Aq.
HPLC
220
91-6
Anthracyclines PolyvinylNucleosides, alcohol bases Alkyl-benzenes, C-8 s i l i c a PAH's, p h t h a l a t e s , c h l o r i n a t e d benzenes
0.2M NaLS
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Surfactant Assemblies in Separation Science
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
1. HINZE
Component(s) Separated
Stationary Phase
3-Alkylbenzenesulfonates
QAE-2SW Aq. DTAB (anion-exchanger)
Substituted benzenes ( 9 ) , e t h y l e s t e r s (5)
RP-18
Aq.
Berberine-type a l k a l o i d s (4) Therapeutic drugs (9)
Bondapak-Ph
Tyrosinyl peptides (5), a r o m a t i c ketones (7) Phenols
(8)
T r i g l y c e r i d e s (10)
Catecholamines (5), 1-phenyla l k a y l a m i n e s (4)
31
M o b i l e Phase Composition
Mode
Ref.
HPLC
222
HPLC
128
Aq. NaLS/30% MeOH
HPLC
154
Supelcosil LC-18 o r LC-CN
Aq.
HPLC
144
Hypersil
60:40 Water:MeOH c o n t a i n i n g Tween-20 and NaLS; pH 3.08°
HPLC
76
Ultrasphere octyl
Aq. NaLS ( g r a d i e n t ) pH 2.5
HPLC
155
HPLC
160
HPLC
lby, 222
HPLC
156
SB-12
NaLS
V a r i o u s RP Aq. NaLS, Aq. CTAB C-18 MCH10, b o t h end-capped and non Aq. NaLS, pH 3.5 SP-2SW cation(or 4.6) exchanger
c i s / t r a n s Co(III) complexes
methyl or p h e n y l bonded phases
Aq.
Cu(II)/Ni(II)
methyl or phenyl
Aq. NaLS/5% Me OH
HPLC
156
Zn(II), Pd(II), Cu(II) A r o m a t i c aminosulfonic acids, n u c l e o t i d e s (9)
R a d i a l paksilica octadecylSpherisorb
Aq. NaLS
HPLC
163
Aq. SB-10/20% a c e t o n i t r i l e , pH 4.7 o r 3.0
HPLC
130, 131
Micro-Pak 10
Aq. NaLS
HPLC
95
Microparticu l a t e bonded phases
n-Decylbetaine, pH 5.5 - 6.5
HPLC
130
C-18 endcapped
Brij-35 or T r i t o n X-100/15-30% added acetonitrile
HPLC
120
Bromhexine
Bondapak C-18
NaLS/25% Me0H
HPLC
210
Drugs (5)
Supelcocil CN
Aq.
HPLC
148
g
Phenols,
1
PAN s
t-RNA's (6)
Polypeptides (9), protonated phenylalanine o l i g o m e r s (5)
MCH-
CTAB
Brij-35
c
C o n t i n u e d on next page
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
32
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
Table XI.
Continued
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
Component(s) Separated
Stationary Phase
M o b i l e Phase Composition
Mode
Ref.
T e s t mix ( 6 ) , Vanillin/ethyl Vanillin
Radial-PAK C-18
Aq. B r i j - 3 5
HPLC
106
Determination of folylpolyglutamate hydrolase a c t i v i t y
PXS 10/25 ODS
Aq. 0.20M NaLS
HPLC
224
Thiols (8), n i t r o soamines ( 9 ) , and quinones (20)
C-18 o r C-8 RP
HPLC Aq. NaLS, CTAB, CTAC normal m i c e l l e s or AOT/cyclohexane reversed micelles
112
Proline/hydroxyproline
Ultrasphere ODS
Aq. NaLS, pH 2.8
HPLC
162
GF
h
86
t-RNA s (5)
Sephadex G-100- Aq. CTAB/NaCl, pH 8 120
Nucleosides, n u c l e o t i d e s (8)
Sephadex
G-25
Aq. Sodium dodecanoate pH 8
GF
157
Amino a c i d s (14)
Sephadex
G-25
Aq. Sodium dodecanoate
GF
158
N u c l e o t i d e s (5)
Sephadex G-25300 o r G-100120
Aq. CTAB, pH 8.0
GF
159
A l k y l b e n z e n e s (4)
H y p e r s i l s i l i c a Aq. NaLS/2% BuOH
GF
193
GF
194
f
Amino a c i d s
Sephadex
G-25
Aq. NaLS
a
M i c e l l a r m o b i l e ghases u n l e s s o t h e r w i s e s p e c i f i e d . ^ PC = paper chromatography. Presence of m i c e l l e s i s u n c l e a r . Mçst l i k e l y a m i c r o e m s u l i o n system. As i m i n o d i a c e t a t e complexes. As N,N E t h y l e n e - b i s ( a c e t y l a c e t o n e i m i n e ) c h e l a t e s . S e p a g a t e d as t e t r a k i s ( l m e t h y l p y r i d i n i u m - 4 - y l ) p o r p h i n e m e t a l complexes. GF = g e l f i l t r a t i o n . f
g
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
HINZE
33
Surfactant Assemblies in Separation Science
can r e s i d e i n the pore volume, t h u s r e q u i r i n g l o n g e r e l u t i o n t i m e s . However, i f t h e s e s m a l l e r s o l u t e m o l e c u l e s can p a r t i t i o n t o the m i c e l l a r pseudophase and b i n d the m i c e l l e e n t i t y , then t h e y w i l l e l u t e more r a p i d l y (J_). C o n s e q u e n t l y , s o l u t e s can be s e p a r a t e d based on t h e i r d i f f e r e n t i a l b i n d i n g a b i l i t y t o a p a r t i c u l a r m i c e l l a r assembly. E q u a t i o n 8 shows the dependence o f t h e e l u t i o n volume, V , c o r r e s p o n d i n g t o the maximum c o n c e n t r a t i o n i n an emerging band, upon the s u r f a c t a n t m i c e l l e c o n c e n t r a t i o n i n the m o b i l e phase e q u i l i b r a t i n g the column (183): Q
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
- — î - ^ — = ακ C + α V - V b m e ο
(8)
where α i s an e x p e r i m e n t a l c o n s t a n t (see r e f e r e n c e s 1,159,182,183), V i s the e x c l u d e d volume, and Κ i s the m i c e l l e - s o l u t e b i n d i n g c o n s t a n t as p r e v i o u s l y d e f i n e d (1,86,157,158,159,183). V i a use o f e q u a t i o n 8 o r a l t e r n a t i v e r e - e x p r e s s e d v e r s i o n s (V), the b i n d i n g c o n s t a n t (or p a r t i t i o n c o e f f i c i e n t ) o f d i f f e r e n t s o l u t e s t o m i c e l l a r systems have been d e t e r m i n e d (159,182,183,226).
Q
A c u r s o r y r e v i e w o f the l i t e r a t u r e r e v e a l s t h a t the ELC t e c h n i q u e w i t h m i c e l l a r m o b i l e phases has proven t o be very b e n e f i c i a l i n the c h a r a c t e r i z a t i o n o f m i c e l l a r systems (184-186,190-192,227,228). For example, microcolumn e x c l u s i o n LC has been a p p l i e d t o the d e t e r m i n a t i o n o f the CMC v a l u e o f s u r f a c t a n t s (or m i c e l i a r - f o r m i n g p r o t e i n s ) , d e t e r m i n a t i o n of the k i n e t i c r a t e and e q u i l i b r i u m a s s o c i a t i o n c o n s t a n t s f o r s u r f a c t a n t (or p r o t e i n ) m i c e l l i z a t i o n (184,192), d e t e r m i n a t i o n o f the s i z e or s i z e d i s t r i b u t i o n o f m i c e l l e s ( e s p e c i a l l y t h o s e formed from b l o c k copolymers or m i l k c a s e i n ) (185,186,191,192,225) as w e l l as f o r e s t i m a t i o n o f the t i m e r e q u i r e d f o r f o r m a t i o n o f m i c e l l e s (or m i c e l l e - f o r m i n g m a c r o m o l e c u l e s ) (186) among o t h e r s . The s i z e and s t a b i l i t y of r e v e r s e d m i c e l l e s has a l s o been e v a l u a t e d u s i n g ELC (195). The use o f ELC t o c h a r a c t e r i z e m i c e l l a r and r e l a t e d a g g r e g a t e s thus appears t o be p o p u l a r and u s e f u l . I n f a c t , i t s use i n t h i s manner overshadows the a n a l y t i c a l a p p l i c a t i o n s o f m i c e l l a r m o b i l e phases t o a i d ELC s e p a r a t i o n s . However, s e v e r a l r e c e n t r e p o r t s do p o i n t out the advantages o f m i c e l l a r m o b i l e phases i n ELC (187~189) f o r t h e i s o l a t i o n and p u r i f i c a t i o n o f b a c t e r i a l and v i r a l p r o t e i n s . For i n s t a n c e , b a c t e r i o r h o d o p s i n s o l u b i l i z e d i n o c t y l g l u c o s i d e s (0G) was i s o l a t e d a t a n a l y t i c a l and p r e p a r a t i v e l e v e l s from the denatured p r o t e i n and f r e e r e t i n a l (187) and an i n f l u e n z a v i r a l p r o t e i n was i s o l a t e d u s i n g NaLS o r B r i j - 3 5 e l u e n t s w i t h TSK G3000SW o r TSK G5000PW columns (188). Other such a p p l i c a t i o n s w i l l no doubt be f o r t h c o m i n g i n the near f u t u r e . I t has been r e p o r t e d t h a t f o r m i c e l l a r - m e d i a t e d ELC t o d e v e l o p i n t o a v i a b l e t e c h n i q u e r e q u i r e s " t h e development o f a h i g h - p e r f o r m a n c e GPC p a c k i n g m a t e r i a l t h a t has an e x c l u s i o n l i m i t of r o u g h l y 1,000 - 2,000 and i s c o m p a t i b l e w i t h the aqueous m i c e l l a r m o b i l e phase" (J_). F u t u r e work s h o u l d be d i r e c t e d i n t h i s a r e a . S u r f a c t a n t s as S t a t i o n a r y P h a s e s . (1) A p p l i c a t i o n s o f S u r f a c t a n t s " I m m o b i l i z e d " as a S t a t i o n a r y Phase. A p a r t from t h e i r use as m o b i l e phase a d d i t i v e s , t h e r e are i n s t a n c e s where s u r f a c t a n t s have been i m m o b i l i z e d or c o a t e d on s t a t i o n a r y p h a s e s , e s p e c i a l l y f o r
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
34
ORDERED MEDIA IN CHEMICAL SEPARATIONS
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
p a c k i n g m a t e r i a l s i n GC, GLC, and column, paper o r TLC (176-180,229231). S u r f a c t a n t s such a s A l i q u a t 336, c e t r i m i d e , CTAB, NaLS, TX-100, S u r f y n o l 485, t r i o c t y l a m i n e , e t c . have been coated o r d e p o s i t e d on c a p i l l a r y , m a c r o r e t i c u l a r r e s i n s , Whatman No. 1 p a p e r , chromosorb P, alumina, or s i l i c a supports. B o r o s i l i c a t e g l a s s c a p i l l a r y columns i n which CTAB i s e l e c t r o s t a t i c a l l y i n c o r p o r a t e d t o t h e i n n e r s u r f a c e t h u s f o r m i n g a t h i n f i l m o f h y d r o p h o b i c s t a t i o n a r y phase f o r use i n c a p i l l a r y l i q u i d chromatography have a l s o been d e s c r i b e d (232). When used i n c o n j u n c t i o n w i t h s u r f a c t a n t CTAB m o b i l e phases, e f f i c i e n t s e p a r a t i o n s o f drugs from t h e i r m e t a b o l i t e s a r e p o s s i b l e u s i n g such open t u b u l a r columns (232,233)· The problem w i t h u s i n g s u r f a c t a n t - m o d i f i e d s t a t i o n a r y phases i n LC i s t h a t t h e s u r f a c t a n t w i l l u s u a l l y s l o w l y e l u t e ( b l e e d ) from t h e support t h u s r e s u l t i n g i n d i f f e r e n t r e t e n t i o n b e h a v i o r o f s o l u t e s w i t h t i m e . T h i s i s why most a p p l i c a t i o n s a r e i n t h e a r e a o f GC o r GLC. An e x c i t i n g r e c e n t advance h a s been r e p o r t e d by Okahata, e t a l ( 1 8 1 ) . Namely, a procedure has been d e v e l o p e d f o r i m m o b i l i z i n g a s t a b l e s u r f a c t a n t v e s i c l e b i l a y e r as t h e s t a t i o n a r y phase i n GC. A b i l a y e r p o l y i o n complex composed o f DODAB v e s i c l e s and sodium p o l y ( s t y r e n e s u l f o n a t e ) was d e p o s i t e d on U n i p o r t HP and i t s p r o p e r t i e s a s a GC s t a t i o n a r y phase e v a l u a t e d . U n l i k e p r e v i o u s l i p i d b i l a y e r s which e x h i b i t e d poor p h y s i c a l s t a b i l i t y , t h e DODAB p o l y i o n phase was s t a b l e . A d d i t i o n a l l y , the temperature-retention behavior of t e s t s o l u t e s e x h i b i t e d a phase t r a n s i t i o n i n f l e c t i o n p o i n t . The work demonstrates t h a t i m m o b i l i z e d s u r f a c t a n t v e s i c l e b i l a y e r s t a t i o n a r y phases c a n be employed i n GC s e p a r a t i o n s ( 1 8 1 ) . F u r t h e r work i n t h i s d i r e c t i o n w i l l l i k e l y l e a d t o many such unique gas chromatographic s u p p o r t s and n o v e l separations. 11
11
(2) M i c e l l e s as a L i q u i d Ρseudo-Stationary Phase — M i c e l l a r E l e c t r o k i n e t i c C a p i l l a r y Chromatography (MECC). MECC ( a l s o c a l l e d m i c e l l a r c a p i l l a r y e l e c t r o o s m o t i c chromatography ( 2 0 5 ) ) i s a s e p a r a t i o n t e c h n i q u e f i r s t d e s c r i b e d by Terabe e t a l (196) which combines many o f t h e o p e r a t i o n a l p r i n c i p a l s and advantages o f m i c e l l a r l i q u i d chromatography and c a p i l l a r y zone e l e c t r o p h o r e s i s (196-205). S o l u t e s i n a m i x t u r e (both i o n i c and n e u t r a l ) a r e s e p a r a t e d based on t h e i r d i f f e r e n t i a l p a r t i t i o n i n g between an e l e c t r o o s m o t i c a l l y - p u m p e d aqueous m o b i l e phase and t h e i o n i c s u r f a c t a n t m i c e l l a r a g g r e g a t e which p o s s e s s e s an o v e r a l l f r a c t i o n a l charge and moves a t a v e l o c i t y d i f f e r e n t t h a n t h a t o f t h e aqueous m o b i l e phase due t o e l e c t r o p h o r e t i c e f f e c t s . Thus, t h e s e p a r a t i o n mechanism i s a k i n t o t h a t o f c o n v e n t i o n a l l i q u i d - l i q u i d p a r t i t i o n chromatography, w i t h t h e m i c e l l a r e n t i t y f u n c t i o n i n g a s a " p s e u d o - s t a t i o n a r y " phase (197»201). Some view MECC as an example o f a l a m i n a r m i c r o s c o p i c c o u n t e r - c u r r e n t s e p a r a t i o n t e c h n i q u e O ) . The fundamental c h a r a c t e r i s t i c s and f a c t o r s e f f e c t i n g r e t e n t i o n and e f f i c i e n c y i n MECC have been d e s c r i b e d (196,197,199,202,204,214). The approach r e s u l t s i n e x c e l l e n t r e s o l u t i o n due t o t h e very h i g h e f f i c i e n c y o b t a i n a b l e (200,000 600,000 t h e o r e t i c a l p l a t e s , HETP c a . 1.9 - 3.7 ym) (196,203). MECC has been employed t o s e p a r a t e a v a r i e t y o f e n v i r o n m e n t a l and b i o l o g i c a l - t y p e m i x t u r e s (see T a b l e X I I ) ; i n c l u d i n g t h e a n a l y s i s o f v i t a m i n s i n s p i k e d human u r i n e ( 2 0 1 ) . E l e c t r o k i n e t i c measurements c a n a l s o be employed t o e v a l u a t e s u r f a c t a n t c r i t i c a l m i c e l l e concentrations (236).
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
TABLE X I I .
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
35
Surfactant Assemblies in Separation Science
1. HINZE
Summary o f S u c c e s s f u l A p p l i c a t i o n s e m p l o y i n g M i c e l l a r E l e c t r o k i n e t i c C a p i l l a r y Chromatography (MECC) i n Separations
C l a s s o f Compounds Separated
Micellar Solutions Employed/Conditions
Phenols
Aq.
Reference
0.05 M NaLS, pH 7.0
196
Amino a c i d s (22) [as t h e i r phenylthiohydantoin d e r i v a t i v e s ]
Aq. 0.05 M NaLS o r 0.05 M DTAB, pH 7.0
198
C h l o r i n a t e d phenols
Aq.
0.10 M NaLS, pH 7.0
199
Aq.
0.07 M NaLS, pH 7.0
199
( 8 ) , x y l e n o l s (6)
(7)
Isomeric
chloro-phenols
Aromatic
s u l f i d e s (11)
(222)
Aq. 0.02 o r 0.05 M NaLS; 80:20(%) 0.03 M NaLS: Me OH pH 7.0
M e t a b o l i t e s o f V i t a m i n B. (6)
b
200
Aq. 0.05 M NaLS, 0.01 M 201 phosphate, 0.001 M b o r a t e
S u b s t i t u t e d p u r i n e s (6)
Aq. 0.05 M NaLS, 0.001 M b o r a t e , 0.01 M phosphate
202
N i t r o a r o m a t i c compounds (4)
Aq. 0.01 M NaLS, 0.01 M phosphate
203
Metal ions [Mn(II), C o ( I I ) , Z n ( I I ) , C u ( I I ) ] as t h e i r tetrakis(4-carboxyphenyl)porphinato chelates
Aq. 0.02 M NaLS, 0.05 M 205 phosphate, 0.0125 M b o r a t e
O l i g o n u c l e o t i d e s (7)
Aq.
P o l y t h y m i d i n e s (7)
Aq. 0.05 M NaLS/0.3mM Cu(II)
0.05 M NaLS/3mM Mg(II) 235
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
235
36
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
MECC i s t h e most r e c e n t and f a s t e s t d e v e l o p i n g s u r f a c t a n t mediated t e c h n i q u e . F u t u r e work i s r e q u i r e d t o extend t h e range o f r e t e n t i o n p o s s i b l e ( 1 9 7 ) . P r e s e n t l y , t h e t o t a l e l u t i o n range i s r e l a t i v e l y n a r r o w . I t s h o u l d be p o s s i b l e t o m a n i p u l a t e r e t e n t i o n and improve s e p a r a t i o n a t t h e two extremes o f t h e e l u t i o n range by j u d i c i o u s a d d i t i o n of a d d i t i v e s ( o r g a n i c s / s a l t s ) t o the m i c e l l a r s u r f a c t a n t s o l u t i o n (200,234,235). As p r e v i o u s l y mentioned, t h e presence o f such a d d i t i v e s can a l t e r t h e p a r t i t i o n i n g (P ) o f a s o l u t e between t h e aqueous and m i c e l l a r phases. A l t e r n a t i v e l y , t h e use o f o t h e r t y p e s o f c a p i l l a r y m a t e r i a l s (as a l t e r n a t i v e s t o f u s e d s i l i c a ) o r c o a t i n g s o f p o l y m e r i c m a t e r i a l s on t h e i n n e r w a l l o f t h e f u s e d s i l i c a (214) may prove b e n e f i c i a l i n t h i s r e g a r d . More d e t a i l s on t h e c u r r e n t s t a t u s o f t h i s s e p a r a t i o n t e c h n i q u e a r e g i v e n i n a r e v i e w by Armstong Ο ) and a r e p o r t by Sepaniak e t a l (203) i n t h i s Symposium Volume. S u r f a c t a n t - M e d i a t e d S o l v e n t E x t r a c t i o n s . P a r t i t i o n i n g and e x t r a c t i o n s e p a r a t i o n t e c h n i q u e s s e r v e t o p r o v i d e sample p u r i f i c a t i o n as w e l l as a s i m p l e and e f f e c t i v e means f o r improvement o f a n a l y t i c a l methods by enhancement o f b o t h s e n s i t i v i t y (by sample c o n c e n t r a t i o n ) and s e l e c t i v i t y (by removal o f p o t e n t i a l i n t e r f e r e n c e s ) . A l t h o u g h n o t w e l l a p p r e c i a t e d , many s u r f a c t a n t and m i c e l i a r - m e d i a t e d e x t r a c t i o n systems have been d e s c r i b e d i n t h e l i t e r a t u r e , e s p e c i a l l y i n t h e a r e a o f m e t a l s a n a l y s i s and i n b i o l o g i c a l p u r i f i c a t i o n s (1,5.237.238). There a r e s e v e r a l d i f f e r e n t t y p e s o f s u r f a c t a n t - m e d i a t e d e x t r a c t i o n schemes p o s s i b l e depending upon t h e n a t u r e o f t h e a n a l y t e m i x t u r e and t h e e x t r a c t i n g s u r f a c t a n t system employed. These c a n be b r o a d l y d i v i d e d i n t o two t y p e s : (1) those i n v o l v i n g nonpolar s o l v e n t - s u r f a c t a n t (or r e v e r s e d m i c e l l a r ) systems and (2) those i n v o l v i n g aqueous s u r f a c t a n t /mice l i a r media. I n many i n s t a n c e s , t h e p o s s i b i l i t y o f w/o o r o/w m i c r o e m u l s i o n f o r m a t i o n i n t h e s e systems a l s o e x i s t s ( 2 3 9 ) . S u r f a c t a n t s i n o r g a n i c s o l v e n t s have been u t i l i z e d t o e x t r a c t i o n s , complexes, and enzymes from aqueous o r s o l i d m a t r i c e s . L i k e w i s e , some aqueous s u r f a c t a n t / n o r m a l m i c e l l a r systems have been employed to e x t r a c t b i o l o g i c a l , o r g a n i c , o r a g r i c u l t u r a l m a t e r i a l s from o t h e r aqueous, o r g a n i c , o r s o l i d m a t r i c e s . A d d i t i o n a l l y , use o f c e r t a i n aqueous m i c e l l a r media a l l o w s f o r c o n c e n t r a t i o n and p u r i f i c a t i o n o f m e t a l i o n s , o r g a n i c compounds, o r b i o l o g i c a l substances due t o t h e i r phase s e p a r a t i o n b e h a v i o r ( i . e . c l o u d p o i n t phenomena o r c o a c e r v a t i o n b e h a v i o r ) . W h i l e t h e r e have been many p r a c t i c a l a p p l i c a t i o n s u s i n g these s u r f a c t a n t systems i n e x t r a c t i o n s , m e c h a n i s t i c s t u d i e s have lagged b e h i n d due t o t h e c o m p l i c a t e d n a t u r e o f t h e p h y s i c o c h e m i c a l p r o c e s s e s i n v o l v e d and l a c k o f knowledge o f t h e s u r f a c t a n t s t r u c t u r e s p r e s e n t under t h e e x t r a c t i o n c o n d i t i o n s . S i n c e t h e r a t i o n a l d e s i g n o f f u t u r e s e p a r a t i o n systems r e q u i r e s an u n d e r s t a n d i n g o f t h e p r o cesses i n v o l v e d i n these s u r f a c t a n t e x t r a c t i o n procedures, f u t u r e work s h o u l d c o n c e n t r a t e on t h e mechanism o f such s e p a r a t i o n s . N e x t , a b r i e f d e s c r i p t i o n and i l l u s t r a t i v e examples o f each o f t h e s e t y p e s o f s u r f a c t a n t - m e d i a t e d e x t r a c t i o n t e c h n i q u e s w i l l be g i v e n . E x t r a c t i o n s U t i l i z i n g S u r f a c t a n t s i n O r g a n i c S o l v e n t s . The u s e of organic solvents c o n t a i n i n g s u r f a c t a n t s i n e x t r a c t i v e m e t a l l u r g y has p r o b a b l y been t h e most p r e v a l e n t a p p l i c a t i o n o f s u r f a c t a n t s i n c h e m i c a l s e p a r a t i o n s (1.5.240-262). T a b l e X I I I summarizes some o f t h e
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
1.
37
Surfactant Assemblies in Separation Science
HINZE
TABLE X I I I .
Name and S t r u c t u r e o f S e v e r a l D i f f e r e n t Types o f Extractants U t i l i z e d f o r Metal Ion Separations Structure
Name A n i o n Exchanger Type:
(CH ) C(CH C(CH ) ) NH
Primene
3
2
R N(CH ) 0
A l i q u a t 336
+
3
2
4
2
C l " where R = C
0
g
- C
10
R^N where R = i s o o c t y l
Adogen 381
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
3
A l a m i n e 336
R^N where R = C
TOA
R^N where R
Adogen 283
R NH where R = C
g
"10
octyl
2
1 3
Acidic Extractants: Di-2-ethylhexylphosphoric acid
(C H CH(C H )CH 0) P0 H
V e r s a t i c 10
R CCO H where R = C J Ζ ο
Fatty
RCO Η where R = C 2 14
Acids
4
9
2
5
2
2
2
1 7
J
18
SYNEX 1051
Ο TO L
where R C
H
9 19
0 H 3
Solvating Extractants: Tri-n-butylphosphate Trioctylphosphine
R P 0 where R - C,H 0 3 4 9 o
oxide
Dihexylsulfide
R P 0 where R 3
RSR where R •
C
H
" 8 17 C
H
6 13
C h e l a t i n g Type E x t r a c t a n t s : K e l e x 100
©si L I X 63
where R = d o d e c e n y l
C H C H (OH C H )CH(0H)C(N0H)CH(C H )C H 4
9
2
5
2
5
4
9
L I X 34
Ο JΟ Polyols
j . ρ
. ..
where R = p - d o d e c y l NHSO^R benzene 2
C o n t i n u e d on next page
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
38
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
Table X I I I .
Continued
Name
Structure
L I X 65N where R^
L I X 54
phenyl, R
= H, and
2
R where ^
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
s
^^^COCH COR 2
1
= C H and R 3
2
= p- o r m-
dodecyl
^ a t a t a k e n from r e f e r e n c e ( 2 6 4 ) .
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
1.
HINZE
Surfactant Assemblies in Separation Science
39
d i f f e r e n t t y p e s o f e x t r a c t a n t s w h i c h have been u t i l i z e d t o e x t r a c t m e t a l i o n s f r o m aqueous s o l u t i o n i n t o an o r g a n i c l a y e r c o n t a i n i n g the e x t r a c t a n t . As c a n be s e e n , many o f t h e s e e x t r a c t a n t s a r e s u r f a c t a n t s . Depending upon t h e s p e c i f i c c o n d i t i o n s and type o f a n a l y t e s p r e s e n t , such s u r f a c t a n t s c a n f u n c t i o n as e i t h e r i o n - p a i r or phase t r a n s f e r agents (264-266). o r e x i s t i n aggregated f o r m as r e v e r s e d m i c e l l e s (240.241.264) o r i n some c a s e s , m i c r o e m u l s i o n s (239.251). A l t h o u g h s t i l l s u b j e c t t o d e b a t e , r e c e n t accumulated e v i d e n c e s t r o n g l y s u p p o r t s t h e argument t h a t r e v e r s e d m i c e l l e s a r e p r e s e n t i n t h e o r g a n i c phase and p l a y a v i t a l r o l e i n many m e t a l i o n e x t r a c t i o n s i n v o l v i n g s u r f a c t a n t e x t r a c t a n t s such as t h o s e d e p i c t e d i n T a b l e X I I I (240-266). F o r example, i t has been r e c e n t l y shown that reversed m i c e l l e s o f di-n-butylphosphate, quaternary a l k y l ammonium s a l t s , m e t a l a I k y l a r y l s u l f o n a t e s , a l k y l s u l f a t e s , d i a l k y l dithiophosphates, di(2-ethylhexyl)phosphoric a c i d , phenols, d i n o n y l n a p h t h a l e n e s u l f o n i c a c i d , and SP-3 c a r b o z o l i n e c a n f o r m i n t h e o r g a n i c l a y e r d u r i n g m e t a l i o n e x t r a c t i v e c o n d i t i o n s (267-283). Under some c o n d i t i o n s , m i c r o e m u l s i o n s form (284.285). I n a d d i t i o n t o t h e s e s u r f a c e a c t i v e e x t r a c t a n t s , many e x t r a c t i o n schemes a l s o have some o t h e r s u r f a c t a n t s p r e s e n t (such as t h o s e g i v e n i n T a b l e V) t h a t c a n f o r m r e v e r s e d m i c e l l e s i n t h e o r g a n i c phase (1.4.5.283.330). The d i a l k y l n a p h t h a l e n e s u l f o n a t e s (see T a b l e V, a n i o n i c s u r f a c t a n t s e c t i o n ) have been e s p e c i a l l y u s e f u l i n t h i s r e g a r d (263). Some o f t h e o r g a n i c - c o n t a i n i n g s u r f a c t a n t systems t h a t have been u t i l i z e d i n t h e e x t r a c t i o n o f a v a r i e t y o f m e t a l i o n s (as c a t i o n s o r m e t a l complexes) f r o m aqueous s o l u t i o n a r e summarized i n T a b l e X I V (286-321). I n s p e c t i o n o f t h e T a b l e i n d i c a t e s t h a t most o f the s u c c e s s f u l e x t r a c t i o n schemes i n v o l v e u s e o f e i t h e r c a t i o n i c o r anionic surfactants/extractants. In contrast, only a r e l a t i v e l y few r e c e n t a p p l i c a t i o n s employed z w i t t e r i o n i c o r n o n i o n i c s u r f a c e a c t i v e a g e n t s . The i n t e r e s t e d r e a d e r i s r e f e r r e d t o s e v e r a l r e c e n t monographs/review a r t i c l e s f o r more e x t e n s i v e c o m p i l a t i o n s o f d i f f e r e n t e x t r a c t i o n systems i n v o l v i n g s u r f a c e a c t i v e agents (330-332. 346.356.358). I t s h o u l d be emphasized t h a t o r g a n i c s p e c i e s t h a t a r e c a p a b l e o f b e i n g i o n i z e d c a n a l s o be e x t r a c t e d from aqueous media o r s o l i d m a t r i c e s ( r e f e r t o t h e l a s t 4 e n t r i e s o f T a b l e XIV) (322-325). L a s t l y , m e n t i o n should be made o f t h e f a c t t h a t many o f t h e systems g i v e n i n T a b l e X I V c a n n o t o n l y be conducted a t a n a l y t i c a l o r p r e p a r a t i v e s c a l e s but a l s o a t the process l e v e l (356). Some o f t h e p r a c t i c a l a p p l i c a t i o n s i n c l u d e r e c o v e r y o f m e t a l s from spent e l e c t r o l y t i c o r s c r a p l e a c h i n g l i q u o r s ( 3 5 3 ) . e x t r a c t i o n s from s y n t h e t i c mixed f i s s i o n p r o d u c t s o l u t i o n s ( 3 5 4 ) . and s e p a r a t i o n o f r a r e e a r t h m e t a l s f r o m o r e s (355). The g e n e r a l approach s h o u l d a l s o be p o t e n t i a l l y u s e f u l i n p y r o m e t a l l u r g i c a l operations i n v o l v i n g melts o r m o l t e n s l a g s ( i f h i g h e r b o i l i n g o r g a n i c s o l v e n t s a r e employed). I n many o f t h e examples p r e s e n t e d i n T a b l e XIV, t h e e x i s t e n c e o f r e v e r s e d m i c e l l e s (275.278.279.282.293.315.326.347) o r m i c r o e m u l s i o n s (3^9-352) i s i m p l i c a t e d and t h e i r p r e s e n c e i s an i m p o r t a n t f a c t o r which influences the c h a r a c t e r i s t i c s of a p a r t i c u l a r extract i o n process. O f t e n , q u a n t i t a t i v e d e s c r i p t i o n s o f such e x t r a c t i o n s i s d i f f i c u l t due t o t h e f a c t t h a t many o f t h e r e v e r s e d m i c e l l a r systems formed undergo an i n d e f i n i t e t y p e o f s e I f - a s s o c i a t i o n i n
Hinze and Armstrong; Ordered Media in Chemical Separations ACS Symposium Series; American Chemical Society: Washington, DC, 1987.
40
O R D E R E D M E D I A IN C H E M I C A L SEPARATIONS
TABLE XIV.
C o m p i l a t i o n o f S e l e c t e d E x t r a c t i o n Systems t h a t I n v o l v e Use o f O r g a n i c S o l v e n t s i n Presence o f S u r f a c t a n t s *
Downloaded by 80.82.78.170 on December 27, 2016 | http://pubs.acs.org Publication Date: June 30, 1987 | doi: 10.1021/bk-1987-0342.ch001
Component/Aqueous Conditions (Ref.)
Surfactant/ Organic Solvent
Nd, Tb, Tm (286. 287)
Di(2-ethylhexyl) phosphoric acid [HDEHP] i n c y c l o hexane
none glycine 3-mercaptopropionic acid
Cm,Cf ( i n p r e s e n c e o f many o t h e r s a l t s ) (288)
HDEHP
none
Ta,Nb i n aqueous oxalic acid or HC1 (289)
HDEHP i n heptane
none
Co, N i (290)
HDEHP i n x y l e n e , n-dodecanol, o r dodecane
none
Lanthanides/ A c t i n i d e s (291)
HDEHP i n a r o m a t i c solvents
Dinonylnaphthalenesulfonic acid
Zn i n aqueous z i n c s u l f a t e (292)
HDEHP i n k e r o s i n e
none
A l , G , I n (293)
Decanoic a c i d i n benzene o r o c t a n o l
NaCIO, 4
Cu i n aqueous N C 1 0 (294)
Decanoic a c i d i n benzene o r o c t a n o l
Th from o t h e r metals i n a c e t i c a c i d (295)
Versatic-10 i n butanol
none
Cu,Cd,Co,Ni from wastewater (296)
Palmitic, stearic, or l i n o l e i c a c i d i n kerosine
none
Zn,Co from aqueous s o l u t i o n s (297)
(t-dodecylthio) acetic acid i n kerosine
none
Fe from aqueous HNO (298)
Tributylphosphate i n kerosine
none
Mo from aqueous HC1 (299)
1,5-Bis(dioctylphosphiny1)pentane i n chloroform
none
Pd i n n i t r i c (300)
Diheptylsulfide i n benzene o r c h l o r o form
none
a
a
4
acid
Comments
Additives/ Coextractant