10
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
Recovery and Purification of Light Gases by Pressure Swing Adsorption HSING C. CHENG and FRANK B. HILL Brookhaven National Laboratory, Upton, NY 11973
A c e l l model is presented for the description of the separation of two-component gas mixtures by pressure swing adsorption processes. Local equi librium is assumed with linear, independent iso therms. The model is used to determine the light gas enrichment and recovery performance of a single-column recovery process and a two-column recovery and purification process. The results are discussed in general terms and with reference to the separation of helium and methane. Pressure swing a d s o r p t i o n (PSA) p r o c e s s e s are widely applied i n d u s t r i a l l y f o r gas s e p a r a t i o n s . Applications are numerous and i n c l u d e h y d r o g e n and h e l i u m r e c o v e r y and p u r i f i c a t i o n , a i r d r y i n g , t h e p r o d u c t i o n o f o x y g e n from a i r , and the s e p a r a t i o n o f n o r m a l p a r a f f i n s from i s o p a r a f f i n s . I n s p i t e o f i t s w i d e s p r e a d u s e , d e s i g n i n f o r m a t i o n on PSA p r o c e s s e s h a s b e e n r a t h e r s p a r s e i n t h e open l i t e r a t u r e . In r e c e n t y e a r s , h o w e v e r , a b e g i n n i n g has been made i n terms o f t h e d e v e l o p m e n t o f m a t h e m a t i c a l m o d e l s o f PSA p r o c e s s e s . T h i s paper i s concerned w i t h the f u r t h e r development o f such m o d e l s . Modeling efforts to date have been confined to two processes: a s i n g l e c o l u m n r e c o v e r y p r o c e s s and a t w o - c o l u m n r e c o v e r y and p u r i f i c a t i o n p r o c e s s . The s i n g l e - c o l u m n p r o c e s s ( F i g u r e 1) i s s i m i l a r t o t h a t o f Jones et a l . ( 1 ) . This process i s useful for bulk separations. It produces a h i g h pressure p r o d u c t e n r i c h e d i n l i g h t com ponents. L o c a l e q u i l i b r i u m m o d e l s o f t h i s p r o c e s s have b e e n d e s c r i b e d by T u r n o c k and K a d l e c (2_), F l o r e s F e r n a n d e z and K e n n e y ( 3 ) , and H i l l ( 4 ) . V a r i o u s approaches were u s e d including d i r e c t n u m e r i c a l s o l u t i o n o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s , use o f a c e l l m o d e l , and u s e o f t h e method o f c h a r a c t e r i s t i c s . F l o r e s F e r n a n d e z and K e n n e y ' s work was r e p o r t e d t o employ a c e l l m o d e l b u t no d e t a i l s were g i v e n . E q u i l i b r i u m models p r e d i c t 0097-6156/83/0223-0195$06.00/0 © 1983 American Chemical Society In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
196
INDUSTRIAL
GAS S E P A R A T I O N S
HIGH PRESSURIZATION WITH
FEED
PRESSURE FEED
BLOWDOWN
HIGH PRESSURE PRODUCT
F i g u r e 1.
S t e p s i n s i n g l e - c o l u m n PSA p r o c e s s .
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
10.
CHENG AND HILL
Pressure Swing
197
Adsorption
t h a t t h i s p r o c e s s i s n o t c a p a b l e o f p r o d u c i n g t h e l i g h t com ponent i n pure form. Because o f t h i s f a c t the process is r e f e r r e d t o h e r e as a r e c o v e r y p r o c e s s . The t w o - c o l u m n p r o c e s s ( F i g u r e 2) i s t h e h e a t l e s s a d s o r p t i o n p r o c e s s o f S k a r s t r o m (5^). T h i s p r o c e s s can p e r f o r m b o t h r e c o v e r y and p u r i f i c a t i o n o f a l i g h t component. Local e q u i l i b r i u m m o d e l s o f t h i s p r o c e s s h a v e been p r e s e n t e d by Shendalman and M i t c h e l l ( 6 ) , Chan e t a l . (7), and K n a e b e l and H i l l ( 8 ) . In e a c h c a s e t h e method o f c h a r a c t e r i s t i c s was u s e d . Models with f i n i t e mass t r a n s f e r r a t e s h a v e b e e n p u b l i s h e d by Kawazoe and K a w a i ( 9 ) , M i t c h e l l and Shendalman ( 1 0 ) , C h i h a r a and Suzuki (11), and R i c h t e r e t a l . ( 1 2 ) . I n t h e s e m o d e l s t h e method o f c h a r a c t e r i s t i c s and d i r e c t i n t e g r a t i o n o f p a r t i a l d i f f e r e n t i a l e q u a t i o n s were e m p l o y e d . Much o f t h e m o d e l i n g work t o d a t e has d e a l t w i t h the separation of binary mixtures composed o f a c a r r i e r and an impurity. S u c h s e p a r a t i o n c a n be r e a d i l y t r e a t e d u s i n g the method o f c h a r a c t e r i s t i c s . W h i l e I n some s i t u a t i o n s ( K n a e b e l and H i l l , (8), f o r i n s t a n c e ) t h e same method can be u s e d f o r binary mixtures of a r b i t r a r y composition, the c e l l model i s r e a d i l y and g e n e r a l l y u s e f u l f o r t h i s s i t u a t i o n . I t was this f e a t u r e w h i c h p r o m p t e d t h e use o f t h e c e l l m o d e l i n t h e p r e s e n t work. I n the p r e s e n t p a p e r , a c e l l model i s employed to s i m u l a t e e q u i l i b r i u m i s o t h e r m a l PSA w i t h a b i n a r y f e e d o f a r b i t r a r y com position. L i n e a r I s o t h e r m s a r e assumed. The m o d e l e q u a t i o n s d e r i v e d a r e a p p l i e d t o the one- and two-column p r o c e s s e s men t i o n e d e a r l i e r t o g i v e a g e n e r a l d e s c r i p t i o n o f t h e i r l i g h t com p o n e n t e n r i c h m e n t and r e c o v e r y p e r f o r m a n c e . A l s o some d i s c u s s i o n i s g i v e n o f t h e e f f e c t s o f v a r i o u s o p e r a t i n g p a r a m e t e r s on t h e s e p a r a t i o n o f methane and h e l i u m . C e l l Model A gas m i x t u r e c o n s i s t i n g o f two components i s s e p a r a t e d u s i n g one o r more a d s o r p t i o n b e d s . The b e d s a r e u s e d i n a c y c l i c p r o c e s s composed o f s t e p s i n v o l v i n g c o l u m n p r e s s u r i z a t i o n , d e p r e s s u r i z a t i o n (blowdown) and f l o w t h r o u g h t h e c o l u m n s at constant pressure. A n a l y s i s of such s e p a r a t i o n processes i n t e r m s o f a c e l l m o d e l p r o c e e d s as f o l l o w s . E a c h a d s o r p t i o n bed i s c o n s i d e r e d t o c o n s i s t o f Ν w e l l m i x e d c e l l s , e a c h c e l l b e i n g o f l e n g t h ΔΖ, as shown i n F i g u r e 3. T h i s f i g u r e d e p i c t s the n o t a t i o n used f o r p r o c e s s s t e p s w i t h f l o w from l e f t to r i g h t . The same n o t a t i o n c a n be u s e d f o r s t e p s w i t h f l o w i n the o p p o s i t e d i r e c t i o n i f the c e l l s are renumbered s t a r t i n g from the r i g h t , i . e . , i f i'
- Ν - i +
1
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
(1)
198
INDUSTRIAL
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
SEPARATIONS
STEP 2
STEP 3
STEP 4
SLOWDOWN
LOW PRESSURE PURGE
PRESSURIZATION WITH F E E D
STEP I HIGH PRESSURE FEEO
GAS
PRODUCT
PRODUCT
±
LOW PRESSURE PURGE
F i g u r e 2.
S t e p s i n two-column PSA p r o c e s s .
Hi
UF_
uT
u
BLOWDOWN
HIGH PRESSURE FEED
PRESSURIZATION WITH FEED
2
F i g u r e 3.
Hid,
us ' ' uT"
UN
U^|
Flow diagram f o r c e l l
"u " N
model.
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
e—
upg
10.
CHENG
AND
HILL
Pressure Swing
Adsorption
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
B e c a u s e o f i n t e r c h a n g e b e t w e e n t h e g a s and t h e a d s o r b e n t , t h e v e l o c i t y and c o m p o s i t i o n o f t h e g a s phase w i t h i n t h e bed c h a n g e w i t h p o s i t i o n and t i m e d u r i n g b o t h c o n s t a n t p r e s s u r e s t e p s and s t e p s w i t h c h a n g i n g p r e s s u r e . P r e s s u r e i s assumed t o v a r y w i t h time d u r i n g p r e s s u r e changes but n o t s p a t i a l l y . Also, p r e s s u r e d r o p due t o f l o w i s n e g l i g i b l e . F i n a l l y , heat e f f e c t s a r e n e g l e c t e d and l o c a l e q u i l i b r i u m w i t h l i n e a r i s o t h e r m s i s assumed t h r o u g h o u t t h e b e d . These i s o t h e r m s a r e r e p r e s e n t e d b y
where y i s t h e m o l e f r a c t i o n o f t h e l e s s s t r o n g l y a d s o r b e d o r l i g h t component. With the foregoing assumptions, the process steps o f i n t e r e s t may be d e s c r i b e d s t a r t i n g w i t h two m a t e r i a l b a l a n c e s , a b a l a n c e f o r t h e l i g h t component and a t o t a l b a l a n c e . The b a l a n c e s a r e t a k e n on t h e f i r s t and i - t h c e l l s and a r e w r i t t e n f o r a d i f f e r e n t i a l time d t . The b a l a n c e s on t h e l i g h t component c a n be e x p r e s s e d a s ϋ y Ρ - U y Ρ
d(Py,) - T ^ - - h d(P —
y i
ΔΖ
)
V
3
dt
*
-
a
P
ν
ι
ν
ι
(
ΔΖ
5
;
i = 2,3,...,N and
the t o t a l balance
yields d
(
p
V
dP
d
dp
(
P
y
i
)
u
p
i
u
"
V H
i "
u
i - i
i = 2,3,...,N where β
6
*
=
ε ε + (1-ε)ρ ^
(
8
)
8
h " ε + (1-ε)ρ k, s "h
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
(9)
200
INDUSTRIAL GAS SEPARATIONS
(10) P r e s s u r i z a t i o n a n d Blowdown. For these s t e p s , Eqs. ( 4 ) , ( 5 ) , ( 6 ) and ( 7 ) a r e c o m b i n e d by e l i m i n a t i n g d ( P y ) / d t b e t w e e n them, r e s p e c t i v e l y , o b t a i n i n g 1
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
dF~
h
V P - V Ρ i F Η ΔΖ
i-1 (11)
ΔΖ
where (12) and [β + (1-Î5) ] U yi
(13)
£
1,2,.·.,Ν For a p r e s s u r i z a t i o n s t e p feed gas e n t e r s the f i r s t c e l l a t velocity U a n d t h e r e i s no f l o w f r o m t h e N - t h c e l l , i . e . 0. T h e r e f o r e , when E q . ( 1 1 ) i s w r i t t e n f o r c e l l Ν and N F
U
again f o r c e l l solution i s
i , a difference
V
i
=
equation i n
i s obtained
(N-i)P, Η —
rtiose
(14)
A d i m e n s i o n l e s s t i m e i s d e f i n e d as άτ
dt
LP
(15)
U s i n g t h i s d e f i n i t i o n and E q s . ( 1 1 ) , ( 1 2 ) and ( 1 5 ) i n E q s . ( 4 ) and ( 6 ) , r e s p e c t i v e l y , one o b t a i n s
2i
N-i
A
. Λ
N-i+1
(16)
v
i = 1,2,...,N with y = y . One c a n f i n d t h e d i m e n s i o n l e s s t i m e r e q u i r e d t o a c c o m p l i s h t h e f u l l p r e s s u r e change from P to P by s u b s t i t u t i n g Eqs. ( 1 4 ) and ( 1 5 ) i n t o E q . ( 1 1 ) and i n t e g r a t i n g . The r e s u l t i s 0
F
L
τ
ρ
H
- i n P /P R
(17)
L
Thus t h e mole f r a c t i o n p r o f i l e a f t e r t h e p r e s s u r e i n c r e a s e i s c a l c u l a t e d by i n t e g r a t i n g t h e Ν s i m u l t a n e o u s d i f f e r e n t i a l e q u a t i o n s r e p r e s e n t e d by E q . ( 1 6 ) f r o m τ = 0 t o τ = τ . ρ
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
10.
CHENG
AND
HILL
Pressure
Swing
201
Adsorption
F o r a blowdown s t e p , g a s l e a v e s t h e b e d t h r o u g h t h e N - t h c e l l and t h e r e i s no f l o w i n t o t h e f i r s t c e l l , i . e . , Up • 0, and E q . ( 1 1 ) w r i t t e n f o r c e l l s Ν a n d i y i e l d s a d i f f e r e n c e equation i n whose s o l u t i o n i s (18)
V
ÏÏ N
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
The a p p r o p r i a t e d i m e n s i o n l e s s
time i s 3*V
dx Using finds dy JL dT
this
Ν
dt
(19)
and E q s . ( 1 1 ) a n d ( 1 8 ) i n E q . (6)
definition
[3 + (1-3) y±
one
(20) " *]
7
1
3 +
(ί-β)7
1 β 1
i = 1,2,...,N As b e f o r e , one c a n show t h a t t h e l e n g t h o f d i m e n s i o n l e s s time r e q u i r e d f o r t h e p r e s s u r e d e c r e a s e d u r i n g blowdown i s t h a t g i v e n by E q . ( 1 7 ) . The d i m e n s i o n l e s s t i m e d e f i n i t i o n i n t h i s c a s e i s g i v e n b y E q . ( 1 9 ) . Hence t h e m o l e f r a c t i o n p r o f i l e a f t e r t h e p r e s s u r e decrease i s found by i n t e g r a t i n g E q . (20) from τ » 0 t o τ = τ„.
(4),
Constant Pressure Step. For treatment o f t h i s step Eqs. ( 5 ) , ( 6 ) and ( 7 ) c a n be c o m b i n e d , r e s p e c t i v e l y , t o y i e l d V
N =
(21)
i-1
W i t h t h i s r e s u l t , E q s . ( 6 ) and ( 7 ) c a n be w r i t t e n d
y
άτ
i _
Β 1-β
where d i m e n s i o n l e s s
N
H
[
1 [β + (1-β)
1 y
i
ι
(22)
β + (1-B)y _ j i - 1,2 Ν i
1
time i s d e f i n e d a s dT = —i——- d t
(23)
E q u a t i o n s (22) a r e i n t e g r a t e d over the i n t e r v a l τ = 0 t o τ = τ ρ where τ ρ i s a n y d e s i r e d v a l u e . E q u a t i o n s ( 1 6 ) , ( 2 0 ) and ( 2 2 ) e a c h a r e a s e t o f Ν s i m u l t a n e o u s f i r s t o r d e r d i f f e r e n t i a l e q u a t i o n s w h i c h c a n be i n t e g r a t e d t o g i v e t h e mole f r a c t i o n p r o f i l e w i t h i n the a d s o r p t i o n bed a s a f u n c t i o n o f t h e d i m e n s i o n l e s s t i m e τ d u r i n g t h e s t e p
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
I N D U S T R I A L GAS
202
SEPARATIONS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
under c o n s i d e r a t i o n . The t r a n s i e n t p r o f i l e s f o r a g i v e n PSA c y c l e a r e c a l c u l a t e d by i n t e g r a t i n g these sets o f equations c y c l i c a l l y i n the proper order. S i n g l e Column B u l k S e p a r a t i o n P r o c e s s . A t h r e e - s t e p s i n g l e c o l u m n p r o c e s s was d e s c r i b e d by H i l l ( 4 ) ( F i g u r e 1 ) . The p r o c e s s i s s i m i l a r t o t h e r a p i d PSA p r o c e s s o f J o n e s e t a l . ( J L ) . The c y c l e f o r t h i s p r o c e s s c o n s i s t s o f p r e s s u r i z a t i o n w i t h f e e d i n t r o d u c e d t h r o u g h one end o f a c o l u m n f o l l o w e d by i n t r o d u c t i o n o f a d d i t i o n a l f e e d t h r o u g h t h e same end a t h i g h p r e s s u r e w i t h w i t h d r a w a l o f a p r o d u c t f r o m t h e o p p o s i t e e n d , and e n d i n g w i t h blowdown w i t h t h e e x h a u s t e d g a s l e a v i n g v i a t h e f e e d end o n l y . M o l e f r a c t i o n p r o f i l e s w i t h i n t h e bed a r e c a l c u l a t e d b y i n t e g r a t i n g E q . ( 1 6 ) from τ = 0 t o τ = τ f o r t h e p r e s s u r i z a t i o n step. An e x p e r i m e n t a l l y s i g n i f i c a n t i n i t i a l c o n d i t i o n i s t h a t of y ^ ( 0 ) = y « The p r o f i l e r e s u l t i n g from t h e i n t e g r a t i o n o f E q . ( 1 6 ) t o t i m e τ ρ t h e n becomes t h e i n i t i a l c o n d i t i o n f o r t h e i n t e g r a t i o n o f E q . ( 2 2 ) from τ = 0 t o τ = Tp f o r t h e f e e d step. The p r o f i l e f o r τ = τ ρ t h e n becomes t h e i n i t i a l c o n d i t i o n f o r t h e i n t e g r a t i o n o f E q . ( 2 0 ) from τ = 0 t o τ = τ f o r t h e blowdown s t e p . Before performing the l a t t e r i n t e g r a t i o n , t h e c e l l s and t h e c o r r e s p o n d i n g mole f r a c t i o n s a r e renumbered i n accordance with Eq. (1) s i n c e the f l o w d i r e c t i o n i s reversed i n t h e blowdown s t e p . Then t h e n e x t c y c l e i s s t a r t e d b y r e n u m b e r i n g t h e c e l l s and mole f r a c t i o n s and u s i n g t h e mole f r a c t i o n s a s the i n i t i a l c o n d i t i o n f o r the next p r e s s u r i z a t i o n step. The c y c l i c i n t e g r a t i o n o f E q s . ( 1 6 ) , ( 2 2 ) and ( 2 0 ) i s t h e n c o n t i n u e d u n t i l the c y c l i c steady state i s reached. Two i n d i c e s o f p r o c e s s p e r f o r m a n c e w h i c h a r e o f i n t e r e s t are t h e a v e r a g e s t e a d y s t a t e e n r i c h m e n t o f t h e l i g h t component i n the product stream d e f i n e d as ρ
F
Ε = y /y PRD yF and t h e s t e a d y product stream
state
recovery
(24)
of the light
component
in
ρ = ΕΘ
(25)
where t h e p r o d u c t c u t , Θ , i s g i v e n b y N
PRD
θ =
(26) Ν
Since a t the c y l i c
steady N
Eq.
F
+
N
F
+ Ν PRS
state PRS " V u
+
%
(
2
( 2 6 ) may be e x p r e s s e d a s
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
?
)
the
10.
CHENG AND HILL
Pressure Swing
N
p
203
Adsorption
R
D
(28)
+ N__ PRD BD
The p r o d u c t m o l e f r a c t i o n , yp^n> i n E q . ( 2 4 ) i s t h e a v e r a g e s t e a d y s t a t e mole f r a c t i o n l e a v i n g the a d s o r b e r d u r i n g the feed step, i . e . , y
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
y
PRD ~
3
/(¥
( T )
CF N 0 3 + (l-3)y (*0
d
1 3 + (l-3)y (O
3
7 0
N
d
T
(
2
9
)
N
where y ( T ) i s t h e m o l e f r a c t i o n t r a n s i e n t f o r t h e N - t h c e l l d u r i n g t h e f e e d s t e p i n a s t e a d y s t a t e c y c l e and i s o b t a i n e d from t h e i n t e g r a t i o n o f Eq. ( 2 2 ) . I t c a n be shown t h a t N , t h e m o l e s o f gas t a k e n o f f a s product a t c y c l i c steady s t a t e d u r i n g the feed step i s N
p R n
= W
PRD
(
£AL^H β RT
F
0
£
dT 3 + (l-3)y (T)
A l s o N , t h e moles o f gas taken from the column blowdown s t e p a t t h e c y c l i c s t e a d y s t a t e , i s B D
Ν
s
BD
Ρ f A L J L 3β RT
Î
τ c Ρ 0
l J
;
N
e
3+
during the
-τ dx (l-3)y (O
K
U
X
J
N
where i n t h i s e q u a t i o n ν^ίτ ) i s t h e m o l e f r a c t i o n t r a n s i e n t f r o m t h e N - t h c e l l d u r i n g t h e blowdown s t e p o f a s t e a d y s t a t e c y c l e and i s o b t a i n e d b y i n t e g r a t i o n o f E q . ( 2 0 ) . Two-Column P r o c e s s . The h e a t l e s s adsorption process ( F i g u r e 2 ) h a s two c o l u m n s . Each column undergoes a f o u r - s t e p cycle. T h r e e s t e p s i n v o l v e t h e same s e q u e n c e a s t h e s i n g l e column p r o c e s s : p r e s s u r i z a t i o n with feed, feed at high pres s u r e , and blowdown t h r o u g h t h e f e e d e n d . T h i s i s f o l l o w e d b y a low p r e s s u r e purge s t e p w i t h t h e purge b e i n g a f r a c t i o n o f t h e p r o d u c t f r o m t h e o t h e r c o l u m n and f l o w i n g f r o m t h e p r o d u c t end t o t h e f e e d e n d . F o r one c o l u m n t o p r o v i d e p u r g e f o r t h e o t h e r , t h e c y c l e s i n t h e two c o l u m n s a r e 180° o u t o f p h a s e . M o d e l i n g o f t h i s p r o c e s s p r o c e e d s i n t h e same way a s f o r t h e s i n g l e - c o l u m n p r o c e s s d e s c r i b e d above e x c e p t f o r i n t r o d u c t i o n o f a purge s t e p . The p r o c e s s i s s t a r t e d w i t h one c o l u m n e q u i l i b r a t e d w i t h f e e d a t h i g h p r e s s u r e and t h e o t h e r a t l o w pressure. E q s . ( 1 6 ) , ( 2 0 ) and ( 2 2 ) a r e u s e d a s b e f o r e w i t h r e n u m b e r i n g o f c e l l s and m o l e f r a c t i o n s a t a p p r o p r i a t e p o i n t s i n the c y c l e , b u t t h e purge s t e p i s i n s e r t e d i n t o the sequence a t the a p p r o p r i a t e p o i n t .
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
INDUSTRIAL
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
204
GAS
SEPARATIONS
Three i n d i c e s o f performance f o r t h i s process a r e o f interest: Ε , Ρ and H, t h e p u r g e - t o - t o t a l p r o d u c t r a t i o . The l a t t e r q u a n t i t y takes the place o f the purge-to-feed r a t i o i n the heavy i m p u r i t y - l i g h t c a r r i e r s e p a r a t i o n . For that separa t i o n i t h a s been shown t h a t t h e i m p u r i t y i s c o m p l e t e l y removed when t h e p u r g e - t o - f e e d r a t i o e x c e e d s a c r i t i c a l v a l u e ( 7 ) . When t h e h e a v y component c o n t e n t o f t h e f e e d i s a b o v e t h e i m p u r i t y l e v e l , a r a t i o w h i c h i s o p e r a t i o n a l l y more u s e f u l i n d e t e r m i n i n g w h e t h e r a p u r e l i g h t g a s c a n be o b t a i n e d i s t h e p u r g e - t o - t o t a l product r a t i o ( 8 ) . A t o t a l m a t e r i a l b a l a n c e a r o u n d one c o l u m n o f t h e twocolumn p r o c e s s a t c y c l i c steady s t a t e i s Ν
+ Ν PRS
The e x t e n t product i s
F
o f recovery
+ N ^ = N _ + Ν + N „ PGF PRD BD PG
of the l i g h t
( N n
(32)
n
gas i n the h i g h
N
PRD " P G F N
PRS
+
N
pressure
) E
(
3
3
)
F
I t c a n be shown t h a t H i s g i v e n b y τ
M Η
Ρ J L
P ; y
=
/Γ
Ρ Η
PGF β + (l-6)v Ρ τ * PGF _ L _PGF dx Ρ „ τ, Η F 3 + (l-3)y Cx)
ί
Ρ 0
(
3
4
) J
< *'
N
R e s u l t s and D i s c u s s i o n E q n s . ( 1 6 ) , ( 2 0 ) a n d ( 2 2 ) were i n t e g r a t e d n u m e r i c a l l y t o o b t a i n t h e s e p a r a t i o n p e r f o r m a n c e o f t h e o n e - and t w o - c o l u m n processes. The GEAR p a c k a g e ( 1 3 ) was u s e d f o r t h e i n t e g r a t i o n a f t e r d e t e r m i n i n g t h a t i t was f a s t e r t h a n , s a y , R u n g e - K u t t a methods. F o r a l l c a l c u l a t i o n s Ν - 50 a n d ε = 0.40. Dimension V less parameters varied were 3, H^PL» F» and, f o r the t w o - c o l u m n p r o c e s s , H. C o m b i n a t i o n s o f t h e p a r a m e t e r s o f 3 and PH/PL were chosen to correspond to the methane-helium s y s t e m on B P L c a r b o n . A d s o r p t i o n i s o t h e r m d a t a f o r methane a t 25°C ( 1 4 ) were r e p r e s e n t e d b y P
5.69 n
χ 10" P 4
T
1 + 8.11 χ 10 ' P h
L
where P ^ i s i n atm and i s i n gm mole/gm c a r b o n . H e l i u m was t a k e n t o be i n e r t . The a d s o r p t i o n c o e f f i c i e n t k^ u s e d t o c a l c u l a t e 3 was e v a l u a t e d a s t h e s l o p e o f t h e s t r a i g h t l i n e c o n n e c t i n g p o i n t s on the i s o t h e r m , Eqn. ( 3 5 ) , c o r r e s p o n d i n g t o the h i g h and l o w p r e s s u r e s P H a n d Ρ^· W i t h v a l u e s o f 3 and P H / L P
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
10.
CHENG AND
HILL
Pressure Swing
Adsorption
205
r e l a t e d i n t h i s way, t h e c a l c u l a t e d p r o c e s s p e r f o r m a n c e c a n be d e s c r i b e d i n t e r m s o f b o t h i t s g e n e r a l f e a t u r e s and i t s a p p l i c a b i l i t y to the methane-helium s e p a r a t i o n . Single-Column Process. T y p i c a l r e l a t i o n s showing e n r i c h ment and r e c o v e r y o f t h e l i g h t component i n t h e p r o d u c t a s a f u n c t i o n o f p r o d u c t c u t a r e shown i n F i g u r e 4 w i t h f e e d l i g h t component m o l e f r a c t i o n a s a p a r a m e t e r . F i g u r e s 4 ( a ) and 4 ( b ) a r e f o r h i g h and l o w p r e s s u r e s o f 60 and 30 p s i a , f o r w h i c h 3 0.083. F o r F i g u r e s 4 ( c ) and 4 ( d ) t h e h i g h p r e s s u r e i s i n c r e a s e d t o 300 p s i a . B e c a u s e o f t h e l e v e l i n g o f f o f t h e methane i s o t h e r m , 3 i n c r e a s e s t o 0.156. F o r any f e e d m o l e f r a c t i o n t h e enrichment i s greatest a t small c u t s . T h i s f o l l o w s from the f a c t that p r e s s u r i z a t i o n leads to a s p a t i a l f r a c t i o n a t i o n w i t h i n t h e c o l u m n w i t h h i g h m o l e f r a c t i o n s o f t h e l i g h t component n e a r the c l o s e d end. Small c u t s then d i s p l a c e gas e n r i c h e d i n t h e light component i n t o the product stream. Enrichment a l s o i n c r e a s e s a s t h e m o l e f r a c t i o n o f t h e l i g h t component i n t h e feed decreases. As a c o m p a r i s o n o f F i g u r e 4 ( a ) and 4 ( c ) shows, i n c r e a s i n g t h e h i g h p r e s s u r e p r o d u c e s an i n c r e a s e i n e n r i c h ment. However, b e c a u s e o f t h e l e v e l i n g o f f o f t h e methane i s o t h e r m t h e i n c r e a s e i s not as l a r g e as t h a t expected f o r a l i n e a r i s o t h e r m (4_). As s e e n i n F i g u r e s 4 ( b ) and 4 ( d ) , r e c o v e r y increases r a p i d l y w i t h c u t a t s m a l l c u t s and l e v e l s o f f a t l a r g e c u t s . S m a l l l i g h t component m o l e f r a c t i o n s i n t h e f e e d and l a r g e pressure r a t i o s favor high recoveries. An e x a m p l e o f t h e e f f e c t o f p r e s s u r e on t h e p e r f o r m a n c e o f the s i n g l e column process f o r the methane-helium s e p a r a t i o n i s shown i n T a b l e 1. U s i n g F i g u r e 4 ( b ) and 4 ( d ) , t h e c u t s c o r r e s p o n d i n g t o 80 p e r c e n t r e c o v e r y o f h e l i u m were d e t e r m i n e d as a function of y and P H ^ L * Th t h e e n r i c h m e n t s and i n t u r n t h e p r o d u c t m o l e f r a c t i o n s c o r r e s p o n d i n g t o t h e s e c u t s were f o u n d f r o m F i g u r e s 4 ( a ) and 4 ( c ) . Except f o r the leanest feed mole f r a c t i o n , y - 0.005, t h e u s e o f t h e h i g h e r t o p p r e s s u r e l e a d s t o a s i g n i f i c a n t l y h i g h e r p r o d u c t mole f r a c t i o n .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
s
e n
F
F
Two-Column P r o c e s s . T y p i c a l enrichment-cut and r e c o v e r y c u t r e l a t i o n s f o r t h i s p r o c e s s a r e shown i n F i g u r e 5. For t h i s figure P • 60 p s i a , P 30 p s i a , and 3 - 0.083. For F i g u r e s 5 ( a ) and 5 ( b ) , y * 0.005 and f o r F i g u r e s 5 ( c ) and 5(d), y » 0.1. The p a r a m e t e r i n F i g u r e 5 i s H, t h e p u r g e to-product r a t i o . The maximum e n r i c h m e n t p o s s i b l e f o r t h e 0.5 p e r c e n t helium f e e d i s 200. F o r 10 p e r c e n t h e l i u m i t i s 10. Pure helium i s o b t a i n e d w i t h t h e 10 p e r c e n t f e e d w i t h H • 0.8 a t c u t s s m a l l e r t h a n 0.018. A t s m a l l e r v a l u e s o f H, p u r e h e l i u m c a n n o t be produced. Very l a r g e enrichments are obtained at small cuts f o r 0.5 p e r c e n t h e l i u m b u t p u r e h e l i u m i s n o t o b t a i n e d . This findi n g i s c o n s i s t e n t w i t h t h e r e s u l t s o f K n a e b e l and H i l l ( 8 ) who s
H
L
F
F
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
I N D U S T R I A L GAS
SEPARATIONS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
206
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
CHENG
AND
HILL
Pressure Swing
Adsorption
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
10.
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
207
208
I N D U S T R I A L GAS
SEPARATIONS
Table I E f f e c t o f P r e s s u r e on Single-Column P r o c e s s f o r Helium-Methane S e p a r a t i o n
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
Ρ = 0.80 p
H
/ p
L
θ
Ε
V
PRD
0.005
2 10
0.057 0.063
14 13
0.070 0.065
0.05
2 10
0.128 0.063
8.2 13
0.41 0.65
0.1
2 10
0.238 0.107
3.4 7.5
0.34 0.75
0.2
2 10
0.364 0.203
2.13 3.95
0.43 0.79
f o u n d t h a t a c r i t i c a l p r e s s u r e r a t i o ( a s w e l l a s a c r i t i c a l H) had t o be e x c e e d e d t o o b t a i n p u r e l i g h t g a s and t h a t t h i s r a t i o was h i g h e r t h e s m a l l e r t h e l i g h t g a s c o n t e n t o f t h e f e e d . The c r i t i c a l r a t i o s f o r t h e c o n d i t i o n s o f F i g u r e 5 c a n n o t be c a l c u l a t e d from t h e r e s u l t s o f K n a e b e l and H i l l s i n c e t h e i r r e s u l t s were o b t a i n e d f o r t h e " s h o r t e s t c l e a n c o l u m n " c o n d i t i o n . B u t e v i d e n t l y a p r e s s u r e r a t i o o f 2.0 i s h i g h enough f o r p e r f e c t c l e a n u p f o r a 10 p e r c e n t h e l i u m f e e d b u t n o t h i g h enough f o r a 0.5 p e r c e n t f e e d . The c u r v e s f o r Η - 0 r e p r e s e n t t h e p e r f o r m a n c e o f t h e single-column process. I t i s apparent that t h e single-column process i s s u p e r i o r a t l a r g e product c u t s i n terms o f both e n r i c h m e n t and r e c o v e r y . F o r s m a l l c u t s , t h e two-column p r o c e s s is superior. The e f f e c t o f f e e d c o m p o s i t i o n on e n r i c h m e n t a t maximum r e c o v e r y i s shown i n T a b l e 2. B o t h h i g h e n r i c h m e n t and good r e c o v e r y a r e o b t a i n a b l e w i t h t h e l e a n e r feed c o m p o s i t i o n , a r e s u l t which i s counter t o i n t u i t i o n . The e x p l a n a t i o n l i e s i n t h e f a c t t h a t l i g h t g a s l o s s e s i n t h e p u r g e and blowdown g a s d e c r e a s e a s t h e f e e d becomes l e a n e r i n t h e l i g h t g a s .
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
10.
CHENG AND HILL
Pressure Swing
209
Adsorption
Table I I E n r i c h m e n t a t Maximum R e c o v e r y Two-Column P r o c e s s 3 = 0.083
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
P-Pmax F
1.0 0.863 0.905 0.800
T
- 2 Ε
Λ
K
0.0 0.2 0.4 0.6
W
ϋ
Ρ max y
P /P
P'Pmax
- 0.005 1.0 0.122 0.032 0.017
1.0 7.0 24.3 50.0
= 0.1 0.0 0.2 0.4 0.6 0.8
1.0 0.835 0.750 0.522 0.244
1.0 0.2 0.115 0.062 0.037
1.0 4.28 6.5 8.4 6.6
Conclusion The equations f o r a local equilibrium cell model o f p r e s s u r e s w i n g a d s o r p t i o n p r o c e s s e s w i t h l i n e a r i s o t h e r m s have been d e r i v e d . These e q u a t i o n s may be used t o d e s c r i b e a n y PSA c y c l e composed o f p r e s s u r i z a t i o n and blowdown s t e p s a n d s t e p s with flow a t constant pressure. The u s e o f t h e e q u a t i o n s was i l l u s t r a t e d by o b t a i n i n g s o l u t i o n s f o r a single-column recovery p r o c e s s a n d a t w o - c o l u m n r e c o v e r y and p u r i f i c a t i o n p r o c e s s . The s i n g l e - c o l u m n p r o c e s s was s u p e r i o r i n e n r i c h m e n t and r e c o v e r y o f t h e l i g h t component a t l a r g e p r o d u c t c u t s . The t w o - c o l u m n p r o c e s s was s u p e r i o r a t s m a l l c u t s . A c k n o w l e dgment s This work was s u p p o r t e d by t h e D i v i s i o n o f Chemical S c i e n c e s , U.S. D e p a r t m e n t o f E n e r g y , W a s h i n g t o n , D.C., u n d e r C o n t r a c t No. DE-AC02-76CH00016.
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
I N D U S T R I A L GAS
210
SEPARATIONS
Notation
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
Ε Η i L η Ν Ρ R t Τ U V y ΔΖ
enrichment o f l i g h gas i n product stream molar p u r g e - t o - t o t a l product r a t i o c e l l number column l e n g t h c o n c e n t r a t i o n o f s o r b a t e i n s o l i d phase number o f m o l e s e n t e r i n g o r l e a v i n g a d s o r b e r t o t a l number o f c e l l s gas p r e s s u r e gas constant time temperature i n t e r s t i t i a l g a s v e l o c i t y i n bed c o n c e n t r a t i o n v e l o c i t y d e f i n e d i n Eq . ( 1 3 ) g a s phase mole f r a c t i o n o f l i g h t g a s c e l l length
per c y c l e o r
Greek symbols 3 3^ ε Ρ Ρ θ τ
s
s e p a r a t i o n f a c t o r 3^/3^ e q u i l i b r i u m r a t i o o f g a s c a p a c i t y o f component i t o t o t a l c a p a c i t y o f g a s and s o l i d p h a s e s f o r component i void fraction recovery o f l i g h t gas density of solid particles p r o d u c t c u t , m o l e s o f p r o d u c t p e r mole o f f e e d d i m e n s i o n l e s s time
Subscripts BD F h H ι L PG PRD PRS
refers refers refers refers refers refers refers refers refers
to to to to to to to to to
blowdown feed heavy gas high pressure l i g h t gas low pressure purge high pressure product pressurization
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
10. CHENG AND HILL
Pressure Swing Adsorption
211
Literature Cited
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 18, 2016 | http://pubs.acs.org Publication Date: June 16, 1983 | doi: 10.1021/bk-1983-0223.ch010
1.
Jones, R. L.; Keller, II, G. E.; Wells, R. C., U.S. Patent 4,194,892, March 25, 1980. 2. Turnock, P.; Kadlec, R. H. A.I.Ch.E. J . 1971, 17, 335. 3. Flores Fernandez, G.; Kenney, C. Ν. paper presented at San Francisco A.I.Ch.E. Meeting, November, 1979. 4. H i l l , F. B. Chem. Eng. Commun. 1980, 7, 37. 5. Skarstorm, C. W. Ann. N.Y. Acad. Sci. 1959, 72, 751. 6. Shendalman, L. H.; Mitchell, J . E. Chem. Eng. S c i . 1972, 27, 1449. 7. Chan. Υ. Ν. I.; Hill, F. B.; Wong, Y. W. Chem. Eng. S c i . 1981, 36, 243. 8. Knaebel, K. S.; Hill, F. B. paper presented at Washington A.S.M.E. Meeting, November, 1981. 9. Kawazoe, K.; Kawai, T. Kagaku Kogaku 1973, 3, 228. 10. Mitchell, J . E.; Shandalman, L. H. A.I.Ch.E. Symp. Ser. 1973, 39, 134, 23. 11. Chihara, K.; Suzuki, M. paper presented at 2nd World Congress of Chem. Eng., Montreal, Canada, October, 1981. 12. Richter, E.; Knoblauch, K.; Jüntger, H. paper presented at the 7th Int. Congr. of Chem. Eng. Chem. Equipment Des. and Automation, Chisa '81, Praha, Czechoslovakia, Aug. 31Sept. 4, 1981. 13. Hindmarsh, A. C. "GEAR: Ordinary Differential Equation System Solver"; Lawrence Livermore Laboratory, Report UCID-30001, Revision 3, December, 1974. 14. Grant, K. J.; Manes, M. I.E.C. Fundamentals 1966, 5, 490. RECEIVED
December 28, 1982
In Industrial Gas Separations; Whyte, Thaddeus E., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.