10 Relations Among Equilibrium and Nonequilibrium Aqueous Species of Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
Aluminum Hydroxy Complexes ROSS W. S M I T H University of Nevada, Reno, N e v . 89503
The form by
of aluminum
preparing
of aluminum composition
compositions colorimetric
of three separate a
b
Al , Al
of small,
n
values)
and Al .
Al
solid
Al(OH) a
of Al
tration,
c
and Al
increased
In all cases, equilibrium
the
of
were
aging
determined estimation
that have been c
material.
was constant,
varying
that allowed
particles.
3
concentration
but with
was composed
was polynuclear
studied
concentration
as a function
types of aluminum a
was
and determining
of the solutions procedure c
Al , b
species.
(r
and pH of the solutions
The
media
constant
ionic strength,
to aluminum
by a timed nated
containing
and constant -
ratios of OH time.
in acid aqueous
solutions
Al
of
b
Al
monomeric
was
For each r
in concentration
composed value,
n
decreased
was only slowly
desig-
in
the
concen-
with aging
time.
achieved.
' " p h e n a t u r e o f a l u m i n u m ( I I I ) i n aqueous e n v i r o n m e n t s has b e e n exp l o r e d i n a n u m b e r o f papers (1-24).
I f t h e p H o f t h e s o l u t i o n is
a b o v e n e u t r a l i t y , i t appears t h a t t h e p r e d o m i n a n t species present is t h e a n i o n A l ( O H ) ( H 0 ) - (8, 9,10,13). 4
2
D e l t o m b e a n d P o u r b a i x (4) w r i t e
2
this species as A 1 0 " a n d / o r H A 1 0 ~ . I f t h e p H is b e l o w a b o u t 4, m o s t 2
2
3
authors agree that t h e h e x a a q u o - A l ( I I I ) i o n A 1 ( H 0 ) 2
6
3 +
dominates. B e -
t w e e n p H 4 a n d 7, there is l i t t l e agreement as to w h a t species are present. Schofield a n d T a y l o r ( 2 1 ) , F r i n k a n d Peech ( 5 ) , a n d R a u p a c h
(17)
b e l i e v e that t h e system c a n b e h a n d l e d s a t i s f a c t o r i l y i n this r e g i o n o n t h e basis o f s i m p l e m o n o m e r i c species.
T h e agreement a m o n g t h e i r deter-
m i n a t i o n s o f K i , t h e e q u i l i b r i u m constant f o r t h e r e a c t i o n
( p K values 4.98, 5.02, a n d 4.97, r e s p e c t i v e l y ) is excellent.
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
Equilibrium
SMITH
in Aluminum
Hydroxy
251
Complexes
I n spite of this g o o d agreement a n d the f a c t t h a t s i m p l e h y d r o l y s i s reactions represent t h e i r d a t a w e l l , the s i m p l e h y d r o l y t i c m e c h a n i s m has b e e n q u e s t i o n e d b y a n u m b e r of researchers. Brosset ( 2 ) , f r o m measurements of t h e p H of a l u m i n u m p e r c h l o r a t e solutions, p o s t u l a t e d t h a t the p r o d u c t of h y d r o l y s i s of the a l u m i n u m i o n is a n infinite series of p o l y n u c l e a r complexes w i t h t h e g e n e r a l i z e d f o r m u l a Al[(OH) Al] 3
n
3 +
.
Brosset, B i e d e r m a n n , a n d Sillén ( 3 )
later r e c a l c u l a t e d
Brossets data a n d concluded that the major hydrolysis product c o u l d be either a single c o m p l e x s u c h as Α 1 ( Ο Η ) ι Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
6
plexes of the t y p e A l [ ( O H ) A l ] n 5
2
+ 3 + w
3 +
or a n infinite series of c o m
. Aveston, using ultracentrifugation,
f o u n d evidence for either [ A l ( O H ) ] 2
δ
2
or [ A l
4 +
species has b e e n f a v o r e d r e c e n t l y b y Sillén ( 2 5 ) A c c o r d i n g to H s u a n d Bates (11, 12),
1 3
(OH) 2] 3
7 +
.
T h e latter
a n d b y Johansson
(26).
d i s s o l v e d a l u m i n u m b e l o w or
near p H 4 is i n the f o r m of a s i x - m e m b e r r i n g of a p p r o x i m a t e c o m p o s i t i o n Al (OH)i2 6
6 +
.
T h e r i n g s p o l y m e r i z e as p H is i n c r e a s e d a b o v e 4 w i t h a n
average e q u i l i b r i u m p o l y m e r i z a t i o n n u m b e r that increases w i t h p H u n t i l p H 7 is e x c e e d e d . W h e n this h a p p e n s , b a y e r i t e o r g i b b s i t e is p r e c i p i t a t e d . T h u s , i n t h e i r scheme, p o l y n u c l e a r complexes of a size d e t e r m i n e d b y p H exist i n solution—i.e., the h i g h e r the p H u p to 7, the greater t h e size of the complexes.
A l s o , as p H increases, the average c h a r g e p e r a l u m i n u m
a t o m decreases f r o m a b o u t Γ at p H 4 to 0 n e a r p H 7 w h e r e the r a t i o of O H / Α Ι is 3 or greater. U p t o this p o i n t the h y d r o x o - a l u m i n u m p o l y m e r s w o u l d r e p e l one another a n d l i m i t t h e i r g r o w t h , b u t s l i g h t l y a b o v e i t t h e y s h o u l d a n d d o r a p i d l y p r e c i p i t a t e as A l ( O H ) . A t s t i l l h i g h e r p H v a l u e s , 3
m o r e a l u m i n u m goes i n t o s o l u t i o n as i n c r e a s i n g amounts of A l ( O H ) ~ 4
are f o r m e d . H e m and Roberson
(8)
b e l i e v e t h a t p o l y m e r i c species,
probably
s i x - m e m b e r rings a n d c o m b i n a t i o n s of these r i n g s , f o r m r a p i d l y i n f r e s h l y p r e p a r e d s u p e r s a t u r a t e d a l u m i n u m solutions i n w h i c h the i n i t i a l p H is b e t w e e n 4 a n d 7 a n d the r a t i o of O H to a l u m i n u m i n complexes b e t w e e n 0.6 a n d 3.
averages
T h e c o m p l e x species are n o t stable, h o w e v e r ,
and
u l t i m a t e l y g r o w to a size that m u s t be c o n s i d e r e d a s o l i d phase. A l s o , t h e v e r y large p o l y m e r s are o r g a n i z e d a n d a p p e a r to b e c r y s t a l l i n e w i t h t h e structure of g i b b s i t e , yet are s m a l l e n o u g h to pass a 0 . 4 5 - m i l l i p o r e a n d h e n c e s h o u l d be c o n s i d e r e d c o l l o i d a l .
filter
After e q u i l i b r i u m becomes
e s t a b l i s h e d , w h i c h m a y take years, it m a y b e t h a t the o n l y i o n i c a l u m i n u m species present i n significant q u a n t i t i e s are the m o n o m e r i c A l ( O H ) 2
Al(OH)(OH ) 2
5
2 +
6
3
\
, A l ( O H ) ( O H ) \ a n d A l ( O H ) " ions. 2
2
4
4
It is possible t h a t d i s t r i b u t i o n of A l ( I I I ) a m o n g
hydroxo-complexes
is h i g h l y v a r i a b l e a n d is sensitive to i o n i c s t r e n g t h , t o t a l a l u m i n u m c o n c e n t r a t i o n , t o t a l O H a v a i l a b l e , p H , t e m p e r a t u r e , the i d e n t i t y of
other
species present s u c h as N 0 " , C 1 0 " , S 0 " , C I " , etc., a n d , p e r h a p s
most
3
4
4
2
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
252
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
i m p o r t a n t , t i m e . T h e latter factor appears p a r t i c u l a r l y i m p o r t a n t , c o n s i d e r i n g the e x p e r i m e n t a l w o r k of H e m a n d R o b e r s o n ( 8 ) a n d t h e statem e n t b y Brosset, B i e d e r m a n n , a n d Sillén (3) ties w e r e
that "Considerable difficul-
m e t w i t h b e c a u s e e q u i l i b r i u m was
attained rather slowly,
e s p e c i a l l y i n the r e g i o n w h e r e p r e c i p i t a t i o n o c c u r r e d .
It is, h o w e v e r ,
t h o u g h t t h a t the values finally g i v e n w e r e not f a r f r o m those at r e a l e q u i librium.
F r o m the present w o r k , i t w o u l d a p p e a r that the d a t a u s e d b y
, ,
these authors w e r e c o n s i d e r a b l y f u r t h e r f r o m e q u i l i b r i u m t h a n t h e y h a d Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
t h o u g h t . A t a n y rate, i t appears that the n a t u r e of A l ( I I I ) i n a q u e o u s m e d i a is n o t w e l l k n o w n , p a r t i c u l a r l y at m i l d l y a c i d p H values. Experimental T h e f o r m of a l u m i n u m i n a c i d a q u e o u s m e d i a w a s s t u d i e d b y p r e p a r i n g a series of solutions c o n t a i n i n g the same t o t a l c o n c e n t r a t i o n
of
a l u m i n u m , b u t w i t h v a r y i n g a m o u n t s of a d d e d base a n d d e t e r m i n i n g the c o m p o s i t i o n a n d p H of the solutions after v a r i o u s p e r i o d s of a g i n g .
For
c o n v e n i e n c e , these solutions w i l l b e d e s i g n a t e d " a g i n g s t u d y s o l u t i o n s . " E l e c t r o n m i c r o s c o p y w a s u s e d to h e l p d e t e r m i n e the n a t u r e of c o l l o i d a l size m a t e r i a l t h a t f o r m e d i n some of the solutions. T h e solutions s t u d i e d c o n t a i n e d 4.54
X
10~ m o l e / l i t e r a l u m i n u m 4
a n d t o t a l i o n i c s t r e n g t h was 10" , the r e m a i n d e r of the t o t a l i o n i c strength 2
b e i n g m a d e u p w i t h s o d i u m a n d p e r c h l o r a t e ions. T h e r a t i o of O H to A l i n the solutions as m a d e u p ( n o m i n a l r v a l u e or r ) n
to 3.01.
v a r i e d f r o m 0.55
I n p r e p a r i n g these a g i n g s t u d y solutions, three " s t o c k " solutions
w e r e p r e p a r e d i n i t i a l l y a n d m i x e d together a c h i e v e the d e s i r e d r
n
value.
T h e procedure
described by H e m and Roberson (8).
i n correct p r o p o r t i o n s
to
for d o i n g this has b e e n
I n a l l cases, the s o l u t i o n c o n t a i n -
i n g base, b u t n o a l u m i n u m , w a s a d d e d
last i n s o l u t i o n p r e p a r a t i o n .
R e a g e n t g r a d e c h e m i c a l s w e r e used. Analytical
Procedure
T h e c o m p o s i t i o n s of solutions w e r e d e t e r m i n e d b y a t i m e d spectrop h o t o m e t r i c m e t h o d . T h e t e c h n i q u e w a s a m o d i f i c a t i o n of a s t a n d a r d f e r r o n - o r t h o p h e n a n t h r o l i n e m e t h o d f o r a l u m i n u m (27, 28) a n d is i d e n t i c a l i n p r i n c i p l e to a m e t h o d d e v e l o p e d b y T u r n e r (22). T h e method was m o d i f i e d i n the f o l l o w i n g m a n n e r . Standard
Modification
Procedure
1 ) P i p e t a v o l u m e of s a m p l e c o n t a i n i n g not m o r e t h a n 0.075 m g (25 m l max.) into a 50-ml beaker a n d adjust the v o l u m e to 25.0 m l .
1)
S a m e as s t a n d a r d p r o c e d u r e .
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
SMITH
Equilibrium
in Aluminum
2 ) P r e p a r e a 2 5 - m l metal-free w a t e r b l a n k a n d necessary s t a n d ards. 3 ) A d d 2.0 m l N H O H H C 1 r e agent to b l a n k standards a n d s a m p l e a n d let s t a n d 30 m i n u t e s . 2
2)
253
Complexes
S a m e as s t a n d a r d p r o c e d u r e .
3 ) A d d 2 m l N a C H 0 to 5 m l ferron-orthophenanthroline re agent ( r e a g e n t is t w i c e as s t r o n g i n f e r r o n as s t a n d a r d p r o c e d u r e ) . 2
3
2
4 ) A d d 5.0 m l f e r r o n - o r t h o p h e n a n t h r o l i n e reagent a n d stir.
4 ) A d d ( 3 ) a b o v e to b o t h b l a n k a n d s a m p l e a n d stir.
5 ) A d d 2.0 m l N a C H 0 . Stir a n d let s t a n d for at least 10 m i n utes b u t not m o r e t h a n 30 m i n u t e s before t a k i n g a r e a d i n g of color.
5 ) A s q u i c k l y as possible ( a t least w i t h i n 4 m i n u t e s ) , a d d 2.0 m l N H o O H H C 1 reagent, stir q u i c k l y , a n d at the same t i m e start t i m i n g .
6 ) D e t e r m i n e the a b s o r b a n c y of the test s a m p l e a n d standards against the b l a n k at 370 χημ.
6 ) A s q u i c k l y as possible, r e a d a b s o r b e n c y against the b l a n k at 370 m/i. T i m e the r e a d i n g a n d c o n t i n u e to take t i m e d r e a d i n g s (at 3 - 4 m i n i n t e r v a l s for the first h a l f h o u r , t h e n at w i d e r i n t e r v a l s for as l o n g as n e c e s s a r y ) .
2
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
Hydroxy
3
2
It s h o u l d b e n o t e d i n the m o d i f i e d p r o c e d u r e that the last reagent a d d e d is the h y d r o x y l a m i n e h y d r o c h l o r i d e , w h i c h b r i n g s the p H to a b o u t 5. T h u s , a p H l o w e r t h a n this v a l u e is not o b t a i n e d at a n y stage of a d d i n g a n a l y t i c a l reagents, u n l i k e i n the s t a n d a r d p r o c e d u r e w h e r e the h y d r o x y l a m i n e is a d d e d at the start of the p r o c e d u r e a n d u s u a l l y l o w e r s p H of the s a m p l e to a b o u t 1.5.
H e m and Roberson (8)
discuss at some l e n g t h
the possible c o m p l e x f o r m e d b e t w e e n f e r r o n a n d a l u m i n u m . W h e n o p t i c a l d e n s i t y of a l u m i n u m standards p r e p a r e d b y d i s s o l v i n g e i t h e r a l u m i n u m w i r e i n H C 1 s o l u t i o n or a l u m i n u m sulfate i n w a t e r is m e a s u r e d as a f u n c t i o n of a l u m i n u m c o n c e n t r a t i o n u s i n g the m o d i f i e d p r o c e d u r e , curves of the t y p e s h o w n i n F i g u r e 1 are o b t a i n e d .
Optical
d e n s i t y values p l o t t e d o n this figure, w h i c h are for d u p l i c a t e sets of ex p e r i m e n t s , w e r e r e a d a b o u t 30 m i n u t e s after h a v i n g a d d e d the 2 m l of hydroxylamine hydrochloride.
T h e straight l i n e c u r v e appears to o b e y
Beer's l a w at least u p to 0.05-0.06 m g of a l u m i n u m . T h e p H of
the
s t a n d a r d solutions b e f o r e analysis w a s i n a l l cases b e l o w 3. T h e m o d i f i e d p r o c e d u r e a l l o w e d for the e s t i m a t i o n of three different types of a l u m i n u m present i n a p a r t i c u l a r s a m p l e at a n y p a r t i c u l a r a g i n g t i m e , b a s e d o n the m a n n e r i n w h i c h the v a r i o u s types of a l u m i n u m r e a c t e d w i t h f e r r o n . T h e w a y i n w h i c h the e s t i m a t i o n is m a d e is i l l u s t r a t e d b y F i g u r e s 2 a n d 3, w h i c h h a v e b e e n c a l c u l a t e d f r o m r a w a n a l y t i c a l d a t a . S h o w n o n F i g u r e 2 is a l u m i n u m r e c o v e r e d as a f u n c t i o n of analysis t i m e after h a v i n g a d d e d the h y d r o x y l a m i n e reagent. cal absorbance
I n this figure, o p t i
r e a d i n g s h a v e b e e n c o n v e r t e d to m o l a r i t i e s a n d
u s i n g p r o p e r factors to a c c o u n t for a l i q u o t s t a k e n , etc.
ppm's
C u r v e s are for
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
254
NONEQUILIBRIUM SYSTEMS IN N A T U R A L
.01
.02 .03 ALUMINUM
.04 (mg.)
.05
WATERS
.06·
Figure 1. Optical density as a function of aluminum concentration for aluminum standards using the mod ified ferron procedure solutions w i t h r
n
values r a n g i n g f r o m 0.94 to 2.76 a g e d 625 h o u r s , a n d
i n a d d i t i o n curves are s h o w n for a s o l u t i o n w i t h a n r v a l u e of 2.13 a g e d n
f r o m 23 h o u r s to 961 days. c o n c e n t r a t i o n of 4.54 χ
A l l these solutions h a d a t o t a l a l u m i n u m
10" m o l e / l i t e r . A l s o s h o w n are s i m i l a r t i m e d 4
d a t a for 2 5 - m l s t a n d a r d solutions c o n t a i n i n g 2, 6, a n d 10 p p m a l u m i n u m . T h e fact that the c o l o r i m e t r i c r e a d i n g s for the s t a n d a r d solutions c h a n g e d l i t t l e d u r i n g the three h o u r s of analysis t i m e is g o o d e v i d e n c e t h a t a m e r e c o l o r c h a n g e of f e r r o n w i t h t i m e is n o t w h a t is b e i n g o b s e r v e d w h e n the a m o u n t of a l u m i n u m r e c o v e r e d increases w i t h analysis t i m e . A d d i t i o n a l e v i d e n c e is to b e f o u n d i n the w a y i n w h i c h the curves for the s o l u t i o n with r = n
2.13 c o n v e r g e w h e n e x t r a p o l a t e d to z e r o analysis t i m e .
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
SMITH
Equilibrium
in Aluminum
Hydroxy
255
Complexes
F i g u r e 2 shows that the solutions c o n t a i n e d three different types o f a l u m i n u m species, one o f w h i c h d i s a p p e a r e d s l o w l y d u r i n g l o n g a g i n g . F o r c o n v e n i e n c e , the three species w i l l b e r e f e r r e d t o as A P , A P , a n d A l , c
a n d f r o m the s t o i c h i o m e t r y o f p r e p a r a t i o n o f t h e solutions, i t is k n o w n that i n e a c h case A l = A l + A P + A P = 4.54 X IO" m o l e / l i t e r . I t i s a
4
i n t e r e s t i n g t o note t h a t T u r n e r ( 2 2 ) ,
using his similar analytical tech-
n i q u e , also c o n c l u d e d t h a t three different types o f a l u m i n u m c a n exist i n aqueous media. Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
T h e fastest r e a c t i n g f o r m , A P , i s c o n v e r t e d t o the f e r r o n
complex
almost i m m e d i a t e l y , a n d for a p a r t i c u l a r r v a l u e is present i n n e a r l y the n
same a m o u n t regardless o f a g i n g t i m e , as s h o w n b y t h e c o n v e r g e n c y o f a l l t h e d e t e r m i n a t i o n s a t z e r o t i m e for t h e s o l u t i o n w i t h a n r v a l u e o f n
2.13. T h e slowest r e a c t i n g m a t e r i a l , A P , i s represented b y the n e a r l y flat
80 ANALYSIS
TIME
Figure 2. Aluminum recovered as a function of analysis time for selected aging study solutions plus several standards
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
256
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
slope s h o w n b y the s a m p l e r e a d i n g s after a b o u t 120 m i n u t e s . M e t a s t a b l e m a t e r i a l , A P , is t h e m a t e r i a l w h i c h reacts w i t h a n i n t e r m e d i a t e r a t e , g i v i n g the c u r v e d p o r t i o n s o f the lines o f F i g u r e 2. F r o m these curves, i t is a s i m p l e m a t t e r t o measure t h e a m o u n t s present o f the t h r e e types o f a l u m i n u m . B y e x t r a p o l a t i n g t h e essentially s t r a i g h t p o r t i o n s o f the c u r v e s ( A l sections) b a c k to z e r o t i m e , one c a n c
estimate the t o t a l q u a n t i t y o f A l
a
+
A P present a t a p a r t i c u l a r a g i n g
t i m e . A l c a n b e o b t a i n e d d i r e c t l y f r o m the zero t i m e v a l u e o f a l u m i n u m a
r e c o v e r e d a n d A P o b t a i n e d b y s u b t r a c t i n g the v a l u e o f A l f r o m the v a l u e Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
a
of A l
a
+
A P . H o w e v e r , i t is s o m e w h a t
difficult t o extrapolate
these
curves a c c u r a t e l y , a n d thus the curves o f the t y p e o f F i g u r e 3 w e r e c o n s t r u c t e d t o d e t e r m i n e m o r e a c c u r a t e l y A l a n d A P concentrations a n d to a
obtain
additional information
o n the ferron
reaction
with
type
b
aluminum.
625 HRS.
505 HRSAGE
I I I I I I I
AGE
ι ι ι ι ι ι I I
Δ SOLUTION Β Ο
«
Ε
•
Il
6
1
J6
1
ia
1
J6
1
jo jo ANALYSIS
Figure
3.
TIME
1
46
A)
1
8*6
(min.)
Minus log At residual as a function of analysis time for age study solutions aged 505-625 hours 3
F i g u r e 3 shows first o r d e r rate plots o f t h e n e g a t i v e l o g o f A P r e s i d u a l vs. t i m e f o r solutions a g e d 505 to 625 h o u r s . T h e i n d i v i d u a l A P r e s i d u a l points w e r e d e t e r m i n e d b y s u b t r a c t i n g d a t a p o i n t s o f F i g u r e 2 f r o m the v a l u e s o f the e x t r a p o l a t e d ( d o t t e d ) fines a t the same analysis r e a c t i o n times. B e c a u s e the curves o b t a i n e d w e r e consistently g o o d , s t r a i g h t l i n e s , e v e n w h e n 9 0 % o f the r e a c t i n g A P h a d b e e n c o n s u m e d , i t w a s a s i m p l e m a t t e r t o extrapolate t h e m t o zero t i m e t o o b t a i n m o r e exact values o f A P a n d therefore also A P . T h u s , the k i n e t i c b e h a v i o r o f the a l u m i n u m
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
Equilibrium
SMITH
in Aluminum
Hydroxy
257
Complexes
species p r o v i d e d a c o n v e n i e n t means of i d e n t i f i c a t i o n . A l s o of interest is the f a c t t h a t A P reacts w i t h f e r r o n a c c o r d i n g to a first o r d e r rate l a w .
General Equation The
for
Curves
of Figure
2
f o l l o w i n g e q u a t i o n s h o u l d b e g e n e r a l for the curves of F i g u r e 2,
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
a s s u m i n g a l l of t y p e a a l u m i n u m to react w i t h f e r r o n i n s t a n t a n e o u s l y η >
0
( a n d η is p r o b a b l y close to z e r o )
— H Al - ~ -
c
= W
(2b)
w h e r e k is a rate constant of some u n k n o w n o r d e r for t y p e c a l u m i n u m . c
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
258
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
Table I.
First O r d e r Rate Constants for Α Γ Aging
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
Solution Β C D Ε F G H J a
23 Hours
48 Hours
9.9 7.8 5.5 5.8 5.1 5.1 4.4 3.2
8.5
-
-
4.6
-
4.4 -
4.8 5.1
-
7.4 5.8 5.8 5.3 5.3 5.1 4.4
—
5.5 4.8
288 Hours
168 Hours
96 Hours
5.5 5.5
-
5.1
-
3.9
-
-
Average (48 hours-259 days) : Β 7.0; C 5.3; D 5.2; Ε 5.3; F 4.2; G 4.2; H 3.8.
Integrating between the limits 0 a n d t a n d A 1 Al^"
= Alo "
n
c l
n
0
C
and Al*
c
- T ^ — 1 — η
and A V
= (AV
1 - 7 1
(4)
γ ^ ) ^
-
Substituting Equations 3 and 4 into E q u a t i o n 1 *A1
T
= A P + [AU 6
Al e-H
Al°
pH
1.0 23 48 168 505 41 77 116 188 254
hrs hrs hrs hrs hrs days days days days days
2.24 1.56 1.82 1.46 1.44 1.50 1.53 1.60 1.51 1.50
1.50 2.10 2.00 1.86 2.14 1.81 1.45 1.20 0.49 0.12
0.80 0.88 0.72 1.22 0.96 1.23 1.56 1.74 2.54 2.92
4.79 4.68 4.66 4.61 4.56 4.54 4.54 4.52 4.44 4.32
O l d solution : r„ v a l u e n e a r Ε 1038 d a y s
1.79
-
2.77
4.13
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
262
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
T a b l e II.
Continued
Solution (r» =
F 8.18)
Concentration
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
Age
Time
1.2 h r s
X 10*
Al*
Al
Al'
pH
1.46 1.11 1.12
1.78 2.05 1.86
1.30
4.88
1.38 1.56
4.75
1.12
1.86 1.82
b
23
hrs
96 168
hrs hrs
288
hrs
625
hrs
1.05 1.05
1.35
1.56 1.67 2.04
46
days
1.02
0.78
2.74
82 121
days days
1.20 1.21
3.08
4.37 4.30
193
days
3.23 3.43
4.28 4.22
259
days
1.07 1.02
0.26 0.10 0.04 0.02
3.50
4.20
-
3.33
4.19
4.63 4.60 4.52 4.42
Old solution: r v a l u e near F n
967
days
1.16
Solution (r
n
G
= 247) Concentration
Age
Time
1.2 h r s
X 10*
Al*
AI»
AI"
1.17 0.60 0.60
1.97 1.20 1.15
1.40 2.74
1.05
2.79 2.94
0.81
3.09
4.49
0.40 0.13 0.043 0.019
3.46 3.63 3.84
4.42 4.40
0.007
3.91
23 48
hrs hrs
168
hrs
505
hrs
0.55 0.64
41 77 116 188 254
days days days days days
0.68 0.68 0.66 0.61 0.62
3.91
pH 5.02 4.82 4.77 4.75
4.35 4.31 4.28
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
10.
Equilibrium
SMITH
in Aluminum
T a b l e II.
Hydroxy
263
Complexes
(Continued)
Solution H (r« = 2.76)
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
Concentration Age
Time
1.1 23 96 168 288 625 46 82 121 193 259
hrs hrs hrs hrs hrs hrs days days days days days
X 10*
Al*
Al
Al
pH
0.78 0.20 0.20 0.23 0.24 0.24 0.28 0.29 0.284 0.232 0.235
1.36 0.50 0.40 0.39 0.36 0.30 0.17 0.05 0.011 0.008
3.40 3.84 3.94 3.92 3.94 4.00 4.09 4.20 4.24 4.30 4.30
5.23 5.16 5.00 4.76 4.72 4.62 4.53 4.51 4.49 4.45 4.45
e
b
Solution J ( r . = 3.01) Concentration
Age
Time
1.0 23 48 168 505 41 77 116 188
hrs hrs hrs hrs hrs days days days days
Of
X 10*
Al*
Al>
Al"
pH
0.56 0.08 0.07 0.05 0.05 0.065 0.08 0.057 0.019
1.90 0.22 0.16 0.07 0.03 0.01
2.08 4.24 4.31 4.42 4.46 4.47 4.46 4.48 4.52
7.15 6.64 6.59 6.52 6.54 6.43 6.28 6.40 6.21
--
interest f r o m this t a b l e is the f a c t t h a t for most solutions A l
a
c o n c e n t r a t i o n r e m a i n s constant after 23 hours of a g i n g , A P decreases as a f u n c t i o n of a g i n g t i m e , a n d A P increases. T h e r e l a t i o n s h i p b e t w e e n
r
n
v a l u e a n d A P v a l u e is s h o w n g r a p h i c a l l y i n F i g u r e 4. Experimental
Character
of
Al
&
S i n c e A P reacts almost i n s t a n t l y w i t h f e r r o n , i t w o u l d seem r e a s o n able
that
Al(OH)
2 +
,
i t consists Al(OH)
water molecules). (AG°)
2
+
of , and
only
simple
Al(OH) ~ 4
S t a n d a r d G i b b s free
monomeric (with
species—i.e.,
appropriate
energies
of
Al , 3 +
coordinated
formation
values
for the species are a v a i l a b l e i n the c h e m i c a l l i t e r a t u r e . T a b l e I I I
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF MISSOURI COLUMBIA on March 15, 2013 | http://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0106.ch010
264
NONEQUILIBRIUM SYSTEMS IN N A T U R A L WATERS
r
value
Figure 4. Concentration of Al* as a func tion of r value for solutions containing 4.54 X 10~ mole/liter total aluminum n
4
lists some of these values p l u s a G i b b s free e n e r g y v a l u e f o r g i b b s i t e [«Al(OH) ]. 3
T h e values for A l , A l ( O H ) 3 +
2 +
, A l ( O H ) " , and « A l ( O H ) 4
3
w e r e se
l e c t e d to b e consistent w i t h the w o r k of H e m a n d R o b e r s o n . F e w v a l u e s for A l ( O H )
2
+
w e r e a v a i l a b l e , a n d R a u p a c h s w a s selected for consistency
because of the use of his v a l u e for A l ( O H ) . 2+
F r o m d a t a of this t a b l e , the f o l l o w i n g equations c a n b e w r i t t e n . A 1 ( 0 H ) . (gibbsite) + 3 H + *± A l + + 3 H 0 3
*K
B0
=
10+ · 8
2
22
Table III. Gibbs Free Energies of Formation of Monomeric A l u m i n u m Species
Species Al + Al(OH) + Al(OH) + Al(OH) α Α 1 ( Ο Η ) (gibbsite) 3
2
2
4
3
Standard Gibbs Free Energies of Formation (AG°kcal)
Reference
-115.0 -164.9 -215.1 -311.7 -273.9
(29) (18,19) (18,19) (8) (29)
In Nonequilibrium Systems in Natural Water Chemistry; Hem, J.; Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
(7)
10.
Equilibrium
SMITH
Al(OH)
8
in Aluminum
Hydroxy
265
Complexes
(gibbsite) + 2 H +