Solid State Chemistry of Energy Conversion and ... - ACS Publications

94. SOLID STATE CHEMISTRY. Table I. Rough Estimates of Energy .... H 2 0. > i0 2. + H 2. This reaction sequence might be driven at temperatures attain...
0 downloads 0 Views 2MB Size
5 Solar Energy Conversion through Photosynthesis? RODERICK K. CLAYTON

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

Division of Biological Sciences, Cornell University, Ithaca, Ν. Y. 14853

Ultimately the use of sunlight offers the clearest way to meet our needs for energy without running afoul of serious environmental problems. Direct solar heating is approach­ ing technical and economic feasibility on a large scale. Generation of fuel from organic wastes can be economically profitable now, especially when combined with the waste­ -assisted growth of algae. Growth of energy-efficient plants such as sugarcane and harvesting of wild plants such as water hyacinth as sources of fuel are attractive possibilities. Schemes to modify normal photosynthesis or to use ex­ tracted parts of photosynthetic tissues to generate hydrogen or electricity from sunlight are visionary, but they are in their infancy and should be developed along with all other reasonable approaches.

We

estimate t h a t i n t h e U n i t e d States w e h a v e e n o u g h f o s s i l f u e l , i n one f o r m o r another, t o m e e t o u r e n e r g y r e q u i r e m e n t s f o r m o r e t h a n

a t h o u s a n d years at t h e present rate of c o n s u m p t i o n , b e t w e e n 1 0 10

2 0

J (or about 1 0

1 7

1 9

and

B t u ) a n n u a l l y . R o u g h estimates o f energy reserves,

m o d i f i e d f r o m d a t a l i s t e d b y H a m m o n d ( I , 2 ) , are s h o w n i n T a b l e I . H o w e v e r , t h e use of a l l o u r fossil f u e l reserves w i l l r e q u i r e n e w solutions to economic a n d environmental problems.

I n t h e l o n g r u n , o n l y solar

e n e r g y is r e l a t i v e l y free f r o m t h e r m a l a n d c h e m i c a l p o l l u t i o n . E v e n t h e i n c r e a s e d a b s o r p t i o n o f solar r a d i a t i o n b e c a u s e of its c o l l e c t i o n as a n e n e r g y source c o u l d b e offset b y c o m p e n s a t i n g reflectors, so t h a t t h e a b s o r p t i o n of heat b y t h e p l a n e t as a w h o l e r e m a i n s u n a l t e r e d . C u r r e n t l y the U . S . E n e r g y Research a n d Development

Administration ( E R D A )

projects t h a t 6 % o f o u r e n e r g y needs w i l l b e m e t w i t h solar systems b y t h e y e a r 2000, a n d 2 5 % b y 2020 ( 3 ) . 93

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

94

SOLID STATE

Table I.

CHEMISTRY

Rough Estimates of Energy Reserves in the United States at the Present Rate of Consumption Energy

Source

Years

P r e s e n t l y developed o i l a n d gas E s t i m a t e d t o t a l o i l a n d gas Fission (conventional) C o a l a n d o i l shale Geothermal Fusion Solar


>

2

3

3

α

q

>

6

9

9

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

L e t us list e n e r g y sources t h a t c a n b e m a d e q u a n t i t a t i v e l y i m p o r t a n t i n t h e U n i t e d States, a n d t h a t are d i r e c t l y or i n d i r e c t l y of

contemporary

solar o r i g i n . W e s h a l l t h e n r e v i e w these b r i e f l y a n d c o n s i d e r i n m o r e d e t a i l those t h a t i n v o l v e photosynthesis. 1.

W i n d - p o w e r e d turbine.

2.

O c e a n t h e r m a l g r a d i e n t s ; heat engine.

3.

D i r e c t solar h e a t i n g ; h e a t engine or c h e m i c a l r e a c t i o n c y c l e p r o ­

ducing hydrogen from water. 4.

P h o t o s y n t h e t i c systems,

p l a n t s i n c l u d i n g algae,

( a ) V a r i a t i o n s of a g r i c u l t u r e ; g r o w t h of

and conversion

to fuels,

(b)

Photosynthetic

hydrogen production. 5.

Photoelectric

devices,

possibly

using materials

derived

from

p h o t o s y n t h e t i c tissues. I n m a n y of these systems h y d r o g e n is l i k e l y to p l a y a c e n t r a l r o l e (4)

b o t h as a c l e a n f u e l a n d as a means of s t o r i n g a n d t r a n s p o r t i n g

energy.

A s a f u e l , the o n l y c h e m i c a l p o l l u t a n t m i g h t b e oxides of n i t r o ­

g e n i f a t m o s p h e r i c n i t r o g e n is exposed to a h i g h c o m b u s t i o n t e m p e r a t u r e . A s a m e d i u m of exchange h y d r o g e n c a n be c o n v e r t e d to e l e c t r i c i t y w i t h about 4 0 %

efficiency, a n d e l e c t r i c i t y t o h y d r o g e n at a b o u t 8 0 %

effi­

c i e n c y . I t has b e e n e s t i m a t e d ( 5 ) t h a t t h e t r a n s p o r t of energy as h y d r o ­ gen is c h e a p e r

t h a n the t r a n s m i s s i o n of e l e c t r i c i t y i f the d i s t a n c e is

greater t h a n a b o u t 250 m i l e s . Wind W i n d - p o w e r e d e l e c t r i c generators c a n be g o o d d e c e n t r a l i z e d sources of p o w e r i n r u r a l areas, a l t h o u g h the o p t i m u m size f o r efficiency is e s t i ­ m a t e d at s e v e r a l megawatts.

T h e cost of s u c h a p o w e r p l a n t is e s t i m a t e d

( 3 ) to b e t w o to f o u r times greater t h a n t h e present cost, a b o u t $400 p e r k i l o w a t t , of a n u c l e a r p o w e r p l a n t . A n extensive a r r a y of m a j o r w i n d - p o w e r e d p l a n t s , a b s o r b i n g m u c h of the surface w i n d over a large r e g i o n , c o u l d h a v e a n effect o n t h e l o c a l w e a t h e r t h a t m e r i t s serious s t u d y .

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

5.

CLAYTON

Sohr Energy

Ocean Thermal

Gradients

95

Conversion

A t e m p e r a t u r e difference of 20 ° C exists v e r t i c a l l y t h r o u g h a d e p t h of 1000 m i n t r o p i c a l w a t e r s , a n d a s i m i l a r difference is f o u n d at the e d g e of t h e G u l f S t r e a m n e a r the coast of F l o r i d a . T h i s difference a r o u n d 3 0 0 ° Κ could provide ~ 6 %

efficiency for a heat engine w i t h a C a r n o t c y c l e ,

a n d a n efficiency greater t h a n 2 % h y d r o g e n c o u l d b e expected. problems

(2)

concerned

f o r the g e n e r a t i o n of e l e c t r i c i t y or

There w o u l d be formidable

engineering

w i t h thermal conductivity between

the

sea

w a t e r a n d the w o r k i n g fluid, p e r h a p s a m m o n i a , w h e n t h e d i f f e r e n t i a l i n t e m p e r a t u r e is so s m a l l . T h e c o r r o s i v e a c t i o n of sea w a t e r m u s t also b e Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

c o n s i d e r e d i n e s t i m a t i n g cost a n d l i f e t i m e of s u c h a p o w e r p l a n t . A b s t r a c t i o n of heat f r o m the o c e a n w o u l d b e c o m p e n s a t e d f a c t t h a t the o p t i c a l a b s o r b a n c e

b y the

of c o l d w a t e r is greater t h a n t h a t of

w a r m e r w a t e r . T h u s there w o u l d b e a net increase i n the flow of h e a t f r o m the s u n to t h e earth's surface, w h e r e the e n e r g y is e v e n t u a l l y r e ­ leased, b u t t h e l o c a l t e m p e r a t u r e of

t h e ocean

would

remain fairly

constant. W i t h a v e r t i c a l g r a d i e n t the u p w e l l i n g of d e e p e r w a t e r w o u l d c a r r y o r g a n i c nutrients t h a t m i g h t b e u s e d to f e e d p h y t o p l a n k t o n at t h e surface. A l s o , t h e system c o u l d b e a r r a n g e d to p r o v i d e f r e s h w a t e r , a c o m m o d i t y that m a y soon b e c o m e c r i t i c a l l y scarce i n F l o r i d a . Direct

Solar

Heating

T h e t o t a l flux at the earth's surface f r o m the s u n at its z e n i t h is a b o u t lkW/m

2

(6).

T h e a n n u a l m e a n flux i n the U n i t e d States is a b o u t 200

W / m . T h e c o n s u m p t i o n of p o w e r i n t h e U n i t e d States amounts to a b o u t 2

0.2 W / m . 2

T h u s a solar p o w e r p l a n t o p e r a t i n g at 5 %

o v e r a l l efficiency

w o u l d r e q u i r e a b o u t 1/50 of the country's surface, o r t h e average

size

of one state. R o o f t o p solar h e a t i n g of w a t e r i n i n d i v i d u a l houses a l r e a d y w i d e s p r e a d use, e s p e c i a l l y i n t r o p i c a l regions.

finds

E v e n i n the northeastern

U n i t e d States one c a n r e a d i l y p r o v i d e 2 0 % of the t o t a l d o m e s t i c r e q u i r e m e n t i n this w a y , at a cost c o m p e t i t i v e

power

w i t h electric heating

d e r i v e d f r o m the costlier fuels ( a b o u t t w i c e the cost of e n e r g y f r o m a nuclear or a coal b u r n i n g p l a n t ) . T h e p r a c t i c a l i t y of d i r e c t solar h e a t i n g d e p e n d s o n t h e

"greenhouse

effect." T h e glass of a greenhouse transmits n e a r l y a l l the solar r a d i a t i o n . W h e n a b s o r b e d b y the e a r t h , most of this r a d i a t i o n is c o n v e r t e d to heat, c o r r e s p o n d i n g to q u a n t a i n t h e i n f r a r e d . T h e r e - r a d i a t e d heat at these w a v e l e n g t h s is almost e n t i r e l y reflected o r a b s o r b e d b y the glass of t h e greenhouse,

a n d is t h e r e b y t r a p p e d i n s i d e e x c e p t for t h e p a r t t h a t is

r a d i a t e d f r o m the outer surface of the glass. A n i d e a l m a t e r i a l f o r t r a p -

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

SOLID STATE

96

CHEMISTRY

p i n g h e a t i n this w a y w o u l d t r a n s m i t a l l w a v e l e n g t h s of t h e solar s p e c t r u m b e l o w a b o u t 2000 n m a n d reflect a l l greater w a v e l e n g t h s .

This can be

a c h i e v e d w i t h a m u l t i l a y e r i n t e r f e r e n c e filter a n d c a n b e a p p r o x i m a t e d b y d e p o s i t i n g a t h i n film of s i l i c o n o n glass. H o w e v e r , t h e use of s u c h high-performance "greenhouse"

m a t e r i a l s entails u n s o l v e d p r o b l e m s

of

cost a n d l o n g t e r m s t a b i l i t y . T h i s t y p e of solar h e a t t r a p c a n r e a c h t e m p e r a t u r e s

approaching

3 0 0 ° C w i t h n o f o c u s i n g of t h e s u n . F o c u s i n g t h e s u n i n t o a l i n e a r i m a g e w i t h a b o u t t e n f o l d c o n c e n t r a t i o n of i n t e n s i t y c a n g i v e a b o u t 5 0 0 ° C a n d a n a p p r o x i m a t e p o i n t focus c a n g i v e t e m p e r a t u r e s

(7),

greater t h a n

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

1 0 0 0 ° C . O f course the f o c u s i n g systems ( a r r a y s of m i r r o r s t h a t t r a c k the sun's m o v e m e n t )

e n t a i l g r e a t l y i n c r e a s e d costs. A l s o , t h e u n f o c u s e d sys­

t e m c a n f u n c t i o n w i t h a c l o u d y sky. "greenhouse"

F i n a l l y , the p e r f o r m a n c e

material becomes poorer

of

the

as the stored t e m p e r a t u r e i n ­

creases, b e c a u s e t h e s p e c t r u m of t h e r m a l r a d i a t i o n is s h i f t e d to shorter w a v e l e n g t h s a n d overlaps m o r e w i t h t h e s p e c t r u m of s u n l i g h t . D e g r a d a ­ t i o n of the m a t e r i a l s h o u l d also b e c o m e a greater p r o b l e m at the h i g h e r temperatures. T h e t r a p p e d solar h e a t c a n b e t r a n s f e r r e d to a l a r g e r e s e r v o i r b y means of a c i r c u l a t i n g fluid o r a "heat p i p e " w h i c h relies o n gaseous convection.

T h e r e s e r v o i r c a n t h e n d r i v e a n e n g i n e to p r o d u c e

t r i c i t y , h o p e f u l l y w i t h o v e r a l l efficiency t r i c i t y ) as great as 2 0 % . cally w i t h comparable

elec­

( f r o m solar r a d i a t i o n to

elec­

H y d r o g e n c o u l d then be p r o d u c e d electrolyti-

efficiency.

A l t e r n a t i v e l y , the heat c o u l d b e u s e d to d r i v e a c y c l e of c h e m i c a l reactions t h a t p r o d u c e

hydrogen and oxygen from water.

M a n y such

cycles h a v e b e e n c o n c e i v e d ; s o m e h a v e b e e n b r o u g h t to a s e m b l a n c e t e c h n i c a l f e a s i b i l i t y , a n d n o n e has b e e n

established on a large

A single e x a m p l e p r o p o s e d b y A b r a h a m a n d S c h r e i n e r ( 8 )

of

scale.

follows.

300°K LiN0

2

+ I

2

+ H 0 2

>LiN0

3

+

> I +

H

>L i N 0

2

2HI

700°K 2HI

2

2

750°K LiN0 Net :

3

H 0 2

> i0

2

+

+ H

\0

2

2

T h i s r e a c t i o n s e q u e n c e m i g h t b e d r i v e n at temperatures a t t a i n e d w i t h a l i n e focus of t h e s u n . A p r i m i t i v e b u t effective t y p e of solar heat c o l l e c t o r is the solar p o n d ( 6 ) . T h e p o n d s h o u l d b e a b o u t l m d e e p a n d 5 0 m or m o r e i n

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

5.

CLAYTON

Solar Energy

97

Conversion

d i a m e t e r , t o m i n i m i z e h e a t loss at the edges i n t o t h e e a r t h . H e a t t r a n s ­ f e r r e d t o e a r t h t h r o u g h t h e b o t t o m is l a r g e l y r e t a i n e d a n d c a n b e r e ­ t r i e v e d at n i g h t . T h e b o t t o m of the p o n d is b l a c k to m a x i m i z e a b s o r p t i o n , a n d t h e surface is c o v e r e d to r e t a r d e v a p o r a t i o n a n d c o n s e q u e n t c o o l i n g . A n i n g e n i o u s a p p r o a c h ( 9 ) is to use b r i n e c o v e r e d b y a s h a l l o w l a y e r of f r e s h w a t e r . T h e surface l a y e r r e m a i n s c o o l b u t does n o t m i x w i t h t h e denser b r i n e b e l o w .

D a y t i m e t e m p e r a t u r e s at t h e b o t t o m c o u l d r e a c h

about 100°C. I n c o n c l u s i o n , d i r e c t solar h e a t i n g appears t o b e e s p e c i a l l y f a v o r a b l e as a m e t h o d f o r large-scale solar energy c o n v e r s i o n , w i t h m u c h of t h e Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

technology already proven. Y aviations

of

Agriculture

T h e o v e r a l l efficiency w i t h w h i c h solar e n e r g y is s t o r e d as o r g a n i c matter (mostly carbohydrate)

i n crops a n d forests is i n t h e r a n g e

0 . 1 - 0 . 4 % for " C " p l a n t s [those t h a t use t h e C a l v i n - B e n s o n c y c l e 3

of (10)

f o r c a r b o n a s s i m i l a t i o n ] , a n d a b o u t t w i c e t h a t f o r t r o p i c a l grasses a n d o t h e r " C " p l a n t s , u s i n g t h e H a t c h - S l a c k (11) 4

p a t h w a y for

fixing

C0 . 2

I n t h e latter category sugarcane c a n s h o w a n a n n u a l y i e l d of 5 0 tons d r y w e i g h t p e r acre a n d o v e r a l l efficiency a b o u t 2 . 5 % f o r s t o r i n g the e n e r g y of s u n l i g h t i n o r g a n i c m a t t e r , a b o u t h a l f of w h i c h is sucrose. T h e s u g a r c a n b e f e r m e n t e d to e t h y l a l c o h o l at a n e s t i m a t e d cost less t h a n $1 p e r g a l l o n (12).

T h e same c o u l d b e d o n e w i t h o t h e r r e a d y sources of c a r b o ­

h y d r a t e , s o m e i n the category of w a s t e , s u c h as s p o i l e d g r a i n i n o u r m a j o r w h e a t f a r m i n g areas. P l a n t m a t e r i a l s as w e l l as o r g a n i c wastes c a n also b e c o n v e r t e d to fuels b y o t h e r means ( 2 ) .

P y r o l y s i s , effected b y a n a e r o b i c h e a t i n g to

a b o u t 5 0 0 ° C at a t m o s p h e r i c pressure, p r o d u c e s a m i x t u r e of c r u d e o i l , l o w - g r a d e c o m b u s t i b l e gas, a n d " c h a r . " T h e gas a n d c h a r c a n b e b u r n e d to m a i n t a i n the h i g h t e m p e r a t u r e a n d some of the gas r e c y c l e d to p r e ­ serve a n a n a e r o b i c atmosphere. A m o r e efficient process, b u t t e c h n i c a l l y m o r e difficult, is hydrogénation, c o n d u c t e d at a l o w e r t e m p e r a t u r e ( a b o u t 3 0 0 ° C ) b u t at ~ 200 a t m . C a r b o n m o n o x i d e a n d steam are i n t r o d u c e d to p r o v i d e a r e d u c i n g e n v i r o n m e n t ; t h e o r g a n i c m a t t e r is c o n v e r t e d a l m o s t e n t i r e l y to c r u d e o i l . A t h i r d a l t e r n a t i v e is a n a e r o b i c b a c t e r i a l f e r m e n t a t i o n . T h i s a v o i d s the use of h i g h pressures o r t e m p e r a t u r e s a n d gives p r i n c i p a l l y a v e r y d e s i r a b l e f u e l , m e t h a n e . A d r a w b a c k of b a c t e r i a l f e r m e n t a t i o n is t h a t a b o u t 4 0 % of the o r g a n i c m a t t e r is left as a r e s i d u a l s l u d g e t h a t m u s t b e d i s p o s e d of or t r e a t e d b y one of t h e other m e t h o d s . I f a l l t h e r e a d i l y c o l l e c t e d w a s t e w e r e p r o c e s s e d i n o n e of these w a y s , we could provide 3 %

of o u r present o i l use, or 6 %

of the o u t p u t of

present p o w e r stations. T h e s e schemes as a p p l i e d to w a s t e are c o m -

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

SOLID S T A T E

98

CHEMISTRY

m e r c i a l l y a d v a n t a g e o u s n o w , w h e n t h e cost of a l t e r n a t i v e d i s p o s a l ( l a n d ­ fill)

has b e e n d i s c o u n t e d . W h e n these schemes are a p p l i e d to p r o d u c t s of

a g r i c u l t u r e , t h e c o n v e r s i o n to f u e l m u s t c o m p e t e w i t h use as sources of f o o d , fiber, a n d c h e m i c a l s .

H o w e v e r , w i t h some p l a n t s t h e c o n v e r s i o n

to f u e l is c l e a r l y a d v a n t a g e o u s .

O n e s u c h p l a n t is t h e w a t e r h y a c i n t h ,

w h i c h g r o w s so p r o l i f i c a l l y i n s h a l l o w t r o p i c a l waters that i t is a n u i s a n c e to n a v i g a t i o n a n d at the same t i m e is easy to harvest.

Its w h o l e s a l e

r e m o v a l m i g h t , h o w e v e r , t h r e a t e n the e x t i n c t i o n of some a n i m a l s , s u c h as t h e manatee. A l g a e a n d photosynthetic bacteria comprise a special category i n

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

" e n e r g y f a r m i n g " ( 1 3 ) . I n p o n d s , w i t h t h e i r g r o w t h assisted b y o r g a n i c wastes a n d w i t h a d e q u a t e s u n l i g h t , algae c a n y i e l d i n a f e w d a y s w h a t a c a n e field c a n y i e l d i n a n e n t i r e c r o p , w i t h a b o u t 4 % of t h e solar e n e r g y s t o r e d as o r g a n i c m a t t e r , m a i n l y l i p i d s a n d p r o t e i n .

( U n l i k e t h e algae,

t h e p h o t o s y n t h e t i c b a c t e r i a cannot g r o w w i t h o u t a source of

reduced

c o m p o u n d s , as t h e y c a n n o t use w a t e r as a source of h y d r o g e n f o r t h e fixation

of c a r b o n d i o x i d e . A great v a r i e t y of o r g a n i c c o m p o u n d s

serve this p u r p o s e . )

can

A one-acre " w a s t e p l u s a l g a e " p o n d , w i t h the h a r ­

vest c o n v e r t e d to f u e l a n d t h e n c e t o e l e c t r i c i t y , m i g h t g i v e a b o u t 15 k w at a b o u t one cent p e r k i l o w a t t h o u r . C a t t l e f e e d lots p r o v i d e a l a r g e c o n c e n t r a t e d source of w a s t e t h a t c a n b e c o u p l e d to a n algae f a r m . S o m e of t h e algae m i g h t b e f e d to t h e cattle. A n a e r o b i c f e r m e n t a t i o n of the algae w o u l d y i e l d m e t h a n e , s l u d g e , a n d some b y - p r o d u c t s ( C 0 , N , a n d P ) t h a t c o u l d b e r e c y c l e d to t h e 2

algae. T h e a m o u n t of e a s i l y c o l l e c t e d w a s t e is n o t e n o u g h to p r o v i d e t h e greater p a r t of o u r needs f o r f u e l a n d e n e r g y b y these m e a n s , b u t t h e greatest p o s s i b l e d e v e l o p m e n t of the f o r e g o i n g systems is c l e a r l y a d v a n ­ tageous a n d e c o n o m i c a l l y s o u n d . M u c h of t h e l a n d a n d m o n e y r e q u i r e d f o r s u c h projects w o u l d b e n e e d e d f o r w a s t e d i s p o s a l i n a n y case. 'Photosynthetic Hydrogen

Production

A f a r m o r e v i s i o n a r y v a r i a t i o n of a g r i c u l t u r e is f o u n d i n schemes, p r e s e n t l y b e i n g e x p l o r e d , to r e d i r e c t t h e p h o t o s y n t h e t i c process to y i e l d h y d r o g e n i n s t e a d of c a r b o h y d r a t e . Photosynthesis i n g r e e n p l a n t s a n d algae i n v o l v e s t w o d i s t i n c t p h o t o ­ c h e m i c a l systems (14).

I n one of these, c a l l e d s y s t e m 2, a q u a n t u m of

light energy absorbed by chlorophyll induces a photochemical o x i d a t i o n r e d u c t i o n r e a c t i o n w h i c h generates a s t r o n g o x i d a n t a n d a w e a k r e d u c t a n t . T h e o x i d a n t is s t r o n g e n o u g h to r e m o v e electrons f r o m w a t e r , r e l e a s i n g o x y g e n f r o m t h e w a t e r . T h e r e d u c t a n t feeds electrons, t h r o u g h a c h a i n of e l e c t r o n t r a n s p o r t i n g m o l e c u l e s , to t h e s e c o n d p h o t o c h e m i c a l s y s t e m (system 1).

I n s y s t e m 1 a p h o t o c h e m i c a l process, a g a i n d r i v e n b y t h e

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

5.

CLAYTON

Solar Energy

Conversion

99

energy of l i g h t a b s o r b e d b y c h l o r o p h y l l , generates a s t r o n g r e d u c t a n t a n d a w e a k o x i d a n t . T h e w e a k o x i d a n t is n e u t r a l i z e d b y the electrons flowing

f r o m system 2. T h e s t r o n g r e d u c t a n t p r o d u c e d b y s y s t e m 1 is

s t o r e d i n i t i a l l y i n the f o r m of r e d u c e d f e r r e d o x i n , a n i r o n - c o n t a i n i n g p r o ­ t e i n t h a t c a n i n t u r n r e d u c e other substances. the r e d u c t i o n of C 0

2

T h e n o r m a l e n d r e s u l t is

to c a r b o h y d r a t e . T h e p l a n of schemes f o r p r o d u c ­

i n g h y d r o g e n t h r o u g h photosynthesis is to a l t e r the n o r m a l u t i l i z a t i o n of r e d u c e d f e r r e d o x i n . I n s t e a d of flowing to the e n z y m e s t h a t c a t a l y z e C 0 fixation,

t h e electrons f r o m r e d u c e d f e r r e d o x i n cause r e d u c t i o n of H

2 +

ions to H :

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

2

2H

+ 2e"

+

H

2

T h i s r e a c t i o n is c a t a l y z e d b y e i t h e r of t w o e n z y m e s t h a t o c c u r i n m a n y algae a n d b a c t e r i a : h y d r o g e n a s e a n d n i t r o g e n a s e

(15).

H y d r o g e n a s e is f o u n d i n g r e e n algae a n d i n some b a c t e r i a . I n the algae its n a t u r a l f u n c t i o n m a y b e to rid the o r g a n i s m of excess r e d u c t a n t s that c a n arise u n d e r c e r t a i n c o n d i t i o n s , t h e r e b y r e s t o r i n g a d e s i r a b l e b a l a n c e b e t w e e n o x i d i z e d a n d r e d u c e d states of t h e c h a i n of carriers

electron

(16).

Nitrogenase, f o u n d i n blue-green algae a n d i n b o t h photosynthetic a n d some n o n - p h o t o s y n t h e t i c b a c t e r i a , has the p r i m a r y f u n c t i o n of n i t r o ­ gen

fixation,

reducing N

to a m m o n i a . H o w e v e r , this e n z y m e c a n also

2

m e d i a t e t h e r e d u c t i o n of H

+

to H . Its a c t i v i t y r e q u i r e s a d e n o s i n e t r i ­ 2

p h o s p h a t e a n d is i n h i b i t e d b y N ; h y d r o g e n a s e is n o t subject to these 2

complications. B o t h h y d r o g e n a s e a n d nitrogenase are i n h i b i t e d b y o x y g e n , w h i c h i n t r o d u c e s a serious p r o b l e m since the photosynthesis of g r e e n p l a n t s generates o x y g e n a l o n g w i t h r e d u c i n g p o w e r .

I n fact, the

hydrogenase

a c t i v i t y of algae w a s d i s c o v e r e d i n c u l t u r e s t h a t h a d b e e n k e p t i n the d a r k u n d e r a n a e r o b i c c o n d i t i o n s f o r s e v e r a l h o u r s ( 17).

U p o n illumina­

t i o n , t h e h y d r o g e n a s e a c t v i t y d e c l i n e d as the a l g a e b e g a n t o oxygen.

produce

N o one has f o u n d c o n d i t i o n s u n d e r w h i c h i n t a c t algae p r o d u c e

h y d r o g e n a n d o x y g e n c o n c o m i t a n t l y at rates e x c e e d i n g a m i n i s c u l e f r a c ­ t i o n of the n o r m a l rate of photosynthesis

(18).

W e are thus l e d to c o n s i d e r schemes, p r o p o s e d b y K r a m p i t z a n d others (15,

19),

i n w h i c h t h e p l a n t cells a r e b r o k e n a n d t h e i r p h o t o ­

c h e m i c a l c o m p o n e n t s are d i s s e c t e d a n d r e a r r a n g e d t o p r o d u c e h y d r o g e n w h i l e s h i e l d i n g t h e h y d r o g e n a s e o r nitrogenase f r o m o x y g e n .

T h e r e are

s e v e r a l reasons w h y the o x y g e n - e v o l v i n g s y s t e m m u s t b e k e p t separate f r o m the r e d u c t a n t s a n d catalysts t h a t p r o d u c e h y d r o g e n . genase a n d nitrogenase are sensitive to o x y g e n .

First, hydro­

S e c o n d , the r e d u c t a n t s

m u s t n o t b e a l l o w e d to r e a c t w a s t e f u l l y w i t h o x y g e n b e f o r e t h e y c a n d r i v e t h e c o n v e r s i o n of H

+

t o H . T h i s a p p l i e s to n a t u r a l r e d u c e d p r o d 2

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

100

SOLID STATE

CHEMISTRY

u c t s a n d also a r t i f i c i a l ones t h a t m i g h t u s e f u l l y b e i n t e r p o s e d t o l i n k the r e d u c i n g side of system 1 to t h e e v o l u t i o n of h y d r o g e n . T h i r d , the o x y g e n e v o l v i n g system m u s t b e s h i e l d e d f r o m the s t r o n g r e d u c t a n t s w h i c h c o u l d o t h e r w i s e p r e v e n t the o p e r a t i o n of s y s t e m 2.

F i n a l l y , the o x y g e n a n d

h y d r o g e n m u s t b e s e p a r a t e d i f t h e h y d r o g e n is t o b e s t o r e d a n d u s e d . T h e a l t e r n a t i v e , b u r n i n g the e v o l v e d h y d r o g e n i m m e d i a t e l y w i t h

the

e v o l v e d o x y g e n , w o u l d b e h a z a r d o u s o n a l a r g e scale a n d w o u l d r e s t r i c t t h e options f o r use of t h e h y d r o g e n . T h r e e examples c a n b e c i t e d of p h o t o s y n t h e t i c systems i n w h i c h t h e e v o l u t i o n of h y d r o g e n is c o u p l e d w i t h t h e release of o x y g e n f r o m w a t e r . Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

(a)

Chloroplasts from

s p i n a c h leaves

are m i x e d w i t h

bacterial

h y d r o g e n a s e , a n d the i n h i b i t o r y a c t i o n of o x y g e n is m i n i m i z e d w i t h a n o x y g e n - a b s o r b i n g system c o m p o s e d of glucose p l u s glucose oxidase

(20).

H y d r o g e n is t h e n e v o l v e d as a p r o d u c t of photosynthesis. (b)

The

filamentous

a l g a Anabena

has cells w h i c h p e r ­

cylindrica

f o r m photosynthesis, a n d other cells ( h e t e r o c y s t s )

t h a t are s p e c i a l i z e d

f o r n i t r o g e n fixation. R e s p i r a t i o n i n t h e heterocysts keeps the c o n c e n t r a ­ t i o n of o x y g e n l o w i n those cells. R e d u c e d p r o d u c t s c a n diffuse f r o m t h e p h o t o s y n t h e t i c cells i n t o the heterocysts, w h e r e t h e y p r o m o t e e v o l u t i o n u s i n g t h e nitrogenase as c a t a l y s t (21, (c)

T h e w a t e r f e r n Azolla

fives

hydrogen

22).

symbiotically w i t h nitrogen-fixing

b l u e - g r e e n algae. W h e n p r o v i d e d w i t h n i t r a t e a n d s h i e l d e d f r o m n i t r o ­ g e n , the system g r o w s , a n d h y d r o g e n evolves

(23).

I n n o n e o f these systems is the r a t e of h y d r o g e n e v o l u t i o n m o r e t h a n a s m a l l f r a c t i o n , c a . 0 . 2 - 3 % , of " n o r m a l " photosynthesis. S o m e c u r r e n t efforts a n d p r o p o s a l s t o i m p r o v e t h i s a p p r o a c h 19, 24)

w o u l d b e g i n w i t h t h e i s o l a t i o n of t h e essential c o m p o n e n t s

tems 1 a n d 2 a n d h y d r o g e n a s e )

(15, (sys­

f r o m t h e i r n a t i v e tissues. T h e c o m p o ­

nents c a n b e k e p t separate b y means of s e m i p e r m e a b l e m e m b r a n e s , b y a d s o r p t i o n o n s o l i d p a r t i c l e s , or b y m i c r o e n c a p s u l a t i o n . F u n c t i o n a l c o m ­ m u n i c a t i o n b e t w e e n t h e c o m p o n e n t s is m a i n t a i n e d b y d i f f u s i b l e e l e c t r o n carriers i n aqueous m e d i a .

S o m e of the necessary b u t f r a g i l e e n z y m e

systems m i g h t b e s t a b i l i z e d b y c r o s s - l i n k i n g t h e i r p r o t e i n s

internally

t h r o u g h g l u t a r a l d e h y d e fixation, o r b y a d s o r p t i o n o r m i c r o e n c a p s u l a t i o n . Obviously

these

approaches

raise difficult problems,

especially

with

r e g a r d to s t a b i l i t y , b u t one c a n at least e n v i s i o n a c o m p l e t e f u n c t i o n a l s y s t e m w i t h i n the b o u n d s of present t e c h n o l o g y . W e h a v e y e t to c o n s i d e r questions of efficiency a n d r a t e i n p h o t o ­ s y n t h e t i c systems t h a t p r o d u c e h y d r o g e n .

O f a l l the solar e n e r g y t h a t

falls o n a leaf o r a d e n s e c u l t u r e of algae, o n l y the p a r t w i t h w a v e l e n g t h s b e l o w 680 n m is a b s o r b e d b y c h l o r o p h y l l a n d o t h e r p i g m e n t s .

O f the

r a d i a t i o n t h a t is a b s o r b e d , t h e q u a n t a of shorter w a v e l e n g t h s h a v e r e l a -

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

5.

CLAYTON

Solar Energy

101

Conversion

t i v e l y m o r e energy, b u t this is q u i c k l y d e g r a d e d to the l e v e l of the l o n g w a v e a b s o r p t i o n b a n d of c h l o r o p h y l l n e a r 680 n m .

This degradation,

w i t h the excess e n e r g y d i s s i p a t e d as heat, h a p p e n s before t h e l i g h t e n e r g y can be used for photochemistry.

Because

of the c o m b i n e d

effects

of

n o n - a b s o r p t i o n at w a v e l e n g t h s b e y o n d 680 n m a n d d e g r a d a t i o n of e n e r g y a b s o r b e d at shorter w a v e l e n g t h s , a b o u t 4 0 % of the i n c i d e n t solar e n e r g y b e c o m e s a v a i l a b l e for p h o t o c h e m i s t r y i n t h e f o r m of 680 n m q u a n t a . A t 680 n m e a c h q u a n t u m has a n energy of 1.8 e V . W h e n systems 1 a n d 2 c o o p e r a t e to r e m o v e a n e l e c t r o n f r o m w a t e r a n d p r o m o t e i t to the l e v e l of h y d r o g e n , a n energy of 1.2 e V is stored (14, 2 5 ) .

This requires an i n p u t

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

of t w o q u a n t a , one i n e a c h system, or a t o t a l i n p u t of 3.6 e V . T h e m a x i ­ mum

efficiency t h e o r e t i c a l l y a t t a i n a b l e i n this w a y , f o r t h e storage

solar energy as h y d r o g e n w i t h the c o n c o m i t a n t release of o x y g e n w a t e r , is therefore ( 1 . 2 / 3 . 6 ) X 4 0 % or 1 3 % .

I n p r a c t i c e one w o u l d d o

w e l l to r e a l i z e 5 % , a n d i f the h y d r o g e n w e r e b u r n e d to p r o d u c e t r i c i t y , a n o v e r a l l efficiency of 2 %

of

from elec­

m i g h t b e a t t a i n e d . T h i s is close to

the efficiency of g r o w i n g sugarcane, b u t e l e c t r i c i t y is a f a r m o r e d e s i r a b l e e n d p r o d u c t t h a n sugar. W e w o u l d n e e d to c o m m i t 1 / 1 0 of the area o f t h e c o u n t r y , o n l a n d o r i n the n e i g h b o r i n g ocean, to satisfy o u r t o t a l e n e r g y r e q u i r e m e n t f r o m s u n l i g h t at a n o v e r a l l efficiency of

2%.

A n o t h e r p r o b l e m has to d o w i t h t h e rate at w h i c h a p h o t o s y n t h e t i c system c a n k e e p p a c e w i t h i n c o m i n g l i g h t energy. t h e p h o t o s y n t h e t i c tissue is s u c h (14)

T h e a r c h i t e c t u r e of

that e a c h p h o t o c h e m i c a l r e a c t i o n

center, w h e t h e r of s y s t e m 2 o r system 1, is s e r v e d b y a b o u t 200 m o l e c u l e s of ' l i g h t h a r v e s t i n g " or " a n t e n n a " c h l o r o p h y l l . T h e a n t e n n a c h l o r o p h y l l m o l e c u l e s d o not p a r t i c i p a t e d i r e c t l y i n the p h o t o c h e m i s t r y ; t h e y a b s o r b l i g h t a n d d e l i v e r the energy to t h e r e a c t i o n centers.

If every q u a n t u m

a b s o r b e d b y the a n t e n n a i n f u l l s u n l i g h t w e r e u s e d p h o t o c h e m i c a l l y at the r e a c t i o n centers, electrons w o u l d b e

flowing

t h r o u g h the

complete

c h a i n , f r o m w a t e r to f e r r e d o x i n , at a rate of a p p r o x i m a t e l y 2000 p e r sec. I n fact t h e e l e c t r o n t r a n s p o r t c h a i n c a n t r a n s p o r t n o m o r e t h a n a b o u t 200 electrons p e r sec, so i n f u l l s u n l i g h t o n l y 1 / 1 0 of t h e i n c o m i n g q u a n t a c a n b e u s e d . T h e p r o s p e c t of i n c r e a s i n g the rate at w h i c h the e l e c t r o n t r a n s p o r t system c a n operate is l i m i t e d , b u t t h e r e is a better w a y to solve this p r o b l e m ( 16).

I f e a c h r e a c t i o n center w e r e s e r v e d b y a n a n t e n n a of

o n l y 20 c h l o r o p h y l l m o l e c u l e s r a t h e r t h a n 200, q u a n t a w o u l d b e d e l i v e r e d to the r e a c t i o n centers at a rate of 2 0 0 / s e c i n f u l l s u n l i g h t , r a t h e r t h a n 2 0 0 0 / s e c . T h e e l e c t r o n t r a n s p o r t m a c h i n e r y c o u l d t h e n k e e p pace.

The

o n l y q u a l i f i c a t i o n is t h a t t h e system b e o p t i c a l l y dense e n o u g h to a b s o r b most of t h e i n c i d e n t q u a n t a at w a v e l e n g t h s b e l o w 680 n m . I t s h o u l d n o t b e difficult to delete most of the a n t e n n a c h l o r o p h y l l s f r o m a n i n v i t r o p r e p a r a t i o n , or to start w i t h m u t a n t p l a n t s o r algae t h a t h a v e a n a b n o r ­ m a l l y l o w r a t i o of a n t e n n a c h l o r o p h y l l s t o r e a c t i o n centers.

In Solid State Chemistry of Energy Conversion and Storage; Goodenough, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.

102

SOLID STATE

CHEMISTRY

T h e v i s i o n of g e n e r a t i n g h y d r o g e n b y photosynthesis w i t h r e a s o n a b l e efficiency is m o s t a t t r a c t i v e . T h e r e a r e f o r m i d a b l e p r o b l e m s t o b e o v e r ­ c o m e , b u t efforts t o solve t h e m h a v e just b e g u n . Photoelectric

Devices

T h e d i r e c t c o n v e r s i o n of solar e n e r g y t o e l e c t r i c i t y has great p o t e n ­ t i a l advantages of h i g h efficiency, m i n i m a l m a c h i n e r y , a n d

flexible

use

of t h e p r o d u c t . I n s p e c i a l a p p l i c a t i o n s s u c h as the p r o v i s i o n of p o w e r to i n s t r u m e n t s o n spacecraft, w e a l r e a d y use p h o t o v o l t a i c s i l i c o n cells.

Downloaded by MONASH UNIV on August 25, 2015 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch005

C o n t e m p o r a r y solar batteries are s e m i c o n d u c t i v e devices t h a t o p e r ­ ate i n t h e m a n n e r suggested b y F i g u r e 1.

L i g h t promotes a n electron

i n t h e m a t e r i a l f r o m a g r o u n d state ( v a l e n c e b a n d ) to a n e x c i t e d state, leaving a n electron vacancy or hole

( - f ) i n the valence band.

e x c i t e d e l e c t r o n loses s o m e e n e r g y a n d enters a c o n t i n u u m of

The

excited

states, the c o n d u c t i o n b a n d . T h e c e l l is d i v i d e d b y a j u n c t i o n i n t o t w o regions of different c o m p o s i t i o n ; i n one r e g i o n t h e e l e c t r o n has a h i g h m o b i l i t y a n d i n t h e other the m o b i l i t y of t h e h o l e is h i g h . T h e difference i n c o m p o s i t i o n is d e s i g n e d t o shift t h e energies of the v a l e n c e a n d c o n ELECTRON

ENERGYο CD