12 The Sodium-Sulfur Battery:
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
Problems and Promises S. A. WEINER Research Staff, Ford Motor Co., Dearborn, Mich. 48121
The current status of work on the sodium-sulfur battery is reviewed, with emphasis on the ceramic electrolyte and container and electrode materials for the sulfur electrode. The baseline studies for the cell testing program are run on cells constructed of carbon, glass, and β"-alumina and con taining no metal other than sodium. In sodium—sodium test cells ceramic life has exceeded 1000 A-h/cm one way. Sodium-sulfur cell life still remains short of sodium-sodium cell life. Separate cells designed to maximize energy and power density, respectively, were studied. The high energy cell #89 delivered 2.3 Wh/cm at 64% efficiency. The high power cell delivered 0.35 W/cm at 62% electrical efficiency and with long life. Cost studies indicate the ceramic to be the high cost item with a materials cost of 11.6 cents/cm . While problems still remain, there is no known fundamental obstacle that precludes the commercial development of the sodium—sulfur battery. 2
2
2
2
T P h e s o d i u m - s u l f u r b a t t e r y consists of t w o l i q u i d electrodes,
sodium
a n d sulfur, a n d a ceramic electrolyte membrane a l l o w i n g the trans p o r t of s o d i u m ions ( 1 ) . T h e s o d i u m electrode is w e l l c h a r a c t e r i z e d a n d does n o t present m a t e r i a l p r o b l e m s .
E x c e s s s o d i u m is u s e d to k e e p t h e
c e r a m i c e l e c t r o l y t e c o m p l e t e l y c o v e r e d at a l l t i m e s . T h e use of excess s o d i u m together w i t h a stainless steel s o d i u m c o n t a i n e r e l i m i n a t e s t h e need for a n electrical feed-through.
T h e / ^ " - a l u m i n a e l e c t r o l y t e consists
of N a 0 , A 1 0 , s t a b i l i z e d b y L i 0 .
T y p i c a l l y i t has a s t r e n g t h o n t h e
2
2
3
2
o r d e r of 20 k p s i a n d a r e s i s t i v i t y of 5 o h m - c m at 3 0 0 ° C . T h e o p e r a t i o n of t h e s u l f u r electrode is q u i t e c o m p l e x .
B e c a u s e ele
m e n t a l s u l f u r is a n e l e c t r o n i c i n s u l a t o r , g r a p h i t e felt is a d d e d to p r o v i d e 205
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
206
SOLID STATE
CHEMISTRY
a large area electrode. O n discharge f r o m s o d i u m a n d sulfur, the s o d i u m p o l y s u l f i d e f o r m e d is n o t s o l u b l e i n s u l f u r . T h u s t h e s u l f u r e l e c t r o d e contains t w o
l i q u i d phases t h r o u g h o u t s o m e 6 0 %
of
the
discharge.
B e y o n d t h i s p o i n t essentially n o e l e m e n t a l s u l f u r r e m a i n s , a n d a l l of t h e p o l y s u l f i d e s are m i s c i b l e , f o n n i n g one phase. t h r o u g h o u t its c o m p o s i t i o n a l r a n g e ( N a S 2
operate
B
T o k e e p this p h a s e l i q u i d
to N a S ) i t is necessary t o 2
3
above 2 7 0 ° C w i t h t y p i c a l operating temperatures falling
at
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
3 0 0 ° - 3 7 5 ° C . A s c h e m a t i c of a c e l l w i t h a c y l i n d r i c a l c e r a m i c e l e c t r o l y t e is s h o w n i n F i g u r e 1.
Figure 1.
Schematic of a sodium-sulfur
cell
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The Sodium-Sulfur
207
Battery
T h e two major applications currently envisioned for the s o d i u m s u l f u r b a t t e r y are e l e c t r i c u t i l i t y l o a d l e v e l i n g a n d a u t o m o t i v e p r o p u l s i o n . F o r l o a d l e v e l i n g the s u l f u r electrode m u s t m e e t stringent e l e c t r i c a l effi c i e n c y r e q u i r e m e n t s w i t h less i m p o r t a n c e p l a c e d o n a c h i e v i n g h i g h u t i l i z a t i o n of reactants since w e i g h t a n d v o l u m e
are n o t as c r i t i c a l .
In
contrast, h i g h reactant u t i l i z a t i o n is m o r e i m p o r t a n t t h a n e v e n the o p e r a t i n g efficiency of the v e h i c u l a r b a t t e r y .
Furthermore, the battery for
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
a u t o m o t i v e p r o p u l s i o n m u s t h a v e a h i g h e r p o w e r d e n s i t y t h a n the b a t t e r y u s e d for l o a d l e v e l i n g . O u r p r o g r a m has t w o goals: the d e v e l o p m e n t a n efficient h i g h e n e r g y b a t t e r y a n d t h e d e v e l o p m e n t
of
of a l o w w e i g h t ,
h i g h power battery. I n o r d e r to c o m p a r e
current laboratory achievement w i t h overall
p r o g r a m goals, the goals of t h e p r o g r a m h a v e b e e n t r a n s l a t e d f r o m u n i t s of W / k g a n d W h / k g to W / c m
2
and W h / c m
2
w h e r e the u n i t of area is
t h e surface area of the / ? " - a l u m i n a c e r a m i c electrolyte.
T h e goals
are
g i v e n i n T a b l e I . T h e t r a n s l a t i o n f r o m u n i t s of w e i g h t to u n i t s of e l e c t r o l y t e area w a s necessary b e c a u s e t h e b u l k of t h e l a b o r a t o r y results w e r e o b t a i n e d u s i n g cells c o n s t r u c t e d m a i n l y f r o m c a r b o n a n d glass to a v o i d t h e effects of
corrosion
products
originating from metallic
electrode
containers or c u r r e n t collectors i n contact w i t h the s u l f u r / p o l y s u l f i d e melt. Table I.
C e l l Goals High Energy Cell
Variable E n e r g y density ( W h / c m ) 2
A v e r a g e power d e n s i t y ( W / c m ) 2
U t i l i z a t i o n of reagents (%) E l e c t r i c a l efficiency (%) Capacity (A-h/cm ) D i s c h a r g e t i m e (h) Durability (A-h/cm ) C y c l e life 2
2
High
2 (265 W h / k g ) 0.2-0.4 (55-110 W / k g ) 50 65 1.0 5-10 2500 2500
° The goal for peak power density is 0.7 W / c m
2
or 280
Power Cell
0.15 (60 W h / k g ) 0.35 (140 W / k g ) 25 70 0.1 0.4 100 1000
β
W/kg.
U l t i m a t e l y the use of the s o d i u m - s u l f u r b a t t e r y w i l l d e p e n d o n its a b i l i t y to c o m p e t e e c o n o m i c a l l y w i t h t h e alternate means a v a i l a b l e f o r l o a d l e v e l i n g a n d a u t o m o t i v e p r o p u l s i o n . P r e s e n t l y t h e l i m i t s of c e l l d u r a b i l i t y a n d cost are set b y the ^ " - a l u m i n a electrolyte.
both
Accord
i n g l y this p a p e r emphasizes the c e r a m i c electrolyte.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
208
SOLID STATE C H E M I S T R Y
Results
of
Cell
Testing
F o r c e r a m i c e v a l u a t i o n s o d i u m - s o d i u m test cells
(Figure 2)
c o n s t r u c t e d a n d r u n at r e l a t i v e l y h i g h c u r r e n t densities of A/cm
2
so that s u b s t a n t i a l i o n i c currents c a n b e
passed
are
0.75-1.25
through
the
e l e c t r o l y t e i n a reasonable p e r i o d of t i m e . D u r i n g t e s t i n g c e l l p o l a r i t i e s are r e v e r s e d p e r i o d i c a l l y . T h i s subjects e a c h surface of the c e r a m i c e l e c
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
t r o l y t e to b o t h a c h a r g i n g o p e r a t i o n i n w h i c h s o d i u m ions are c o n v e r t e d to s o d i u m m e t a l a n d a d i s c h a r g e o p e r a t i o n i n w h i c h s o d i u m m e t a l is c o n v e r t e d to s o d i u m ions. T h e c h a r a c t e r i z a t i o n of i n d i v i d u a l s o d i u m - s u l f u r cells i n v o l v e s t w o distinct testing programs—endurance (2).
testing a n d p e r f o r m a n c e
testing
T h e p u r p o s e of the e n d u r a n c e test p r o g r a m is to e s t a b l i s h the d u r a
b i l i t y of the c e l l a n d its c o m p o n e n t s b y m o n i t o r i n g t h e e l e c t r i c a l p e r f o r m a n c e at fixed o p e r a t i n g c o n d i t i o n s as a f u n c t i o n of t i m e a n d c o n d i t i o n s of use. I n a d d i t i o n to the t i m e to f a i l u r e , the rates of d e t e r i o r a t i o n of c e l l performance
(e.g., c a p a c i t y , i n t e r n a l resistance) are o b t a i n e d .
T h e goal
of p e r f o r m a n c e t e s t i n g is the c h a r a c t e r i z a t i o n of the e l e c t r i c a l b e h a v i o r of a c e l l at v a r i o u s o p e r a t i n g c o n d i t i o n s (e.g., t e m p e r a t u r e , charge, a n d d i s c h a r g e rates) d u r i n g the e a r l y stages of c e l l l i f e .
S p e c i f i c a l l y these
tests i n v o l v e d e t e r m i n i n g t h e c a p a c i t y vs. rate of c h a r g e a n d d i s c h a r g e
Figure 2.
Schematic of a sodium-sodium
cell
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The Sodium-Sulfur
209
Battery
a n d t h e m e a s u r e m e n t of o h r n i c a n d c o n c e n t r a t i o n p o l a r i z a t i o n s as a f u n c t i o n of t e m p e r a t u r e , rate, a n d state of c h a r g e of t h e c e l l . A t t h e c o n c l u s i o n of t h e e l e c t r i c a l test p r o g r a m e a c h c e l l is d i s s e c t e d a n d e x a m i n e d visually.
Cell
components
are prepared
f o r f u r t h e r e x a m i n a t i o n as
appropriate.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
Sodium—Sodium
Cells
O n e of t h e m a j o r uses of t h e s o d i u m - s o d i u m c e l l test p r o g r a m h a s b e e n t o evaluate different c e r a m i c c o m p o s i t i o n s .
S e v e r a l of t h e c o m p o
sitions tested p a s s e d over 1000 A - h / c m i n o n e d i r e c t i o n , w h e r e a s others 2
s h o w e d clear e v i d e n c e of e l e c t r o l y t i c d e g r a d a t i o n . T h e m a j o r f a c t o r i n t h e e l e c t r o l y t i c d e g r a d a t i o n of β''-alumina w h e n s u b j e c t e d to h i g h c u r r e n t densities i n a c h a r g i n g m o d e is t h e L i 0 c o n c e n t r a t i o n . W h i l e t h e N a 0 2
2
content m a y v a r y w i t h i n certain limits, ^ " - a l u m i n a compositions
con
t a i n i n g L i 0 ^ 0 . 8 % a p p e a r t o b e s i g n i f i c a n t l y m o r e resistant to e l e c t r o 2
l y t i c d e g r a d a t i o n a t h i g h c u r r e n t densities t h a n / ^ ' ' - a l u m i n a c o m p o s i t i o n s containing L i
2
^ 0.9%.
A s a f u r t h e r result of this s t u d y t h e c o m p o s i t i o n 9 . 0 % N a O / 0 . 8 % 2
Li 0 2
is b e i n g tested i n s o d i u m - s u l f u r cells.
C e l l s 1723-1 a n d 1723-2
e a c h passed over 1000 A - h / c m u n d i r e c t i o n a l l y w i t h o u t d e t e r i o r a t i o n at 2
a c u r r e n t d e n s i t y of 1.25 A / c m . T h e r e s i s t i v i t y of t h e m a t e r i a l ( 5 . 3 Ω-cm 2
at 3 0 0 ° C ) is c o m p a r a b l e w i t h t h a t o f t h e 8 . 7 % N a O / 0 . 7 % L i 0 p r e v i 2
2
o u s l y u s e d (5.0 Ω-cm at 3 0 0 ° C ) , w h i l e its s t r e n g t h is greater (19,000 p s i vs. 16,000 p s i ) . F u r t h e r m o r e , ^ " - a l u m i n a of t h e 9 . 0 % N a O / 0 . 8 % 2
Li 0 2
c o m p o s i t i o n is easier to process t h a n / 3 " - a l u m i n a of t h e 8 . 7 % N a O / 0 . 7 % 2
Li 0 2
composition.
C o m p a r i s o n of t h e p e r f o r m a n c e i n N a - N a cells of
c e r a m i c of these t w o c o m p o s i t i o n s is g i v e n i n T a b l e I I . T e s t i n g of cells 1266-1, 1266-2, 1266-3, a n d 1487-1 w a s d i s c o n t i n u e d b e c a u s e of f a i l u r e of t h e outer glass e n v e l o p e . Table II.
Cell Number 1266-1 1266-2 1266-3 1578-1 1269-3 1723-1 1723-2
T e s t i n g of cells 1269-3,
Summary of D a t a from H i g h C u r r e n t Density Na—Na Test Cells
Current Density (A/cm ) 2
0.75 0.75 0.75 1.00 1.25 1.25 1.25
Composition
T
Approx.
Specific Capacity
™ ° Test
U-h/cm») One
i
% Na 0
% Li 0 2
(Mo)
8.7 8.7 8.7 8.7 8.7 9.0 9.0
0.7 0.7 0.7 0.7 0.7 0.8 0.8
1.3 6 1.5 1.9 1.3 2.1 3.2
2
n
Direction 377 1512 378 636 525 1155 1575
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
210
SOLID S T A T E
CHEMISTRY
1723-1, a n d 1723-2 w a s d i s c o n t i n u e d b e c a u s e of m a l f u n c t i o n of the c e l l test c o n t r o l l e r . A f t e r c e l l t e r r n i n a t i o n m o s t of the c e r a m i c
membranes
w e r e e x a m i n e d b y a v a r i e t y of m e t h o d s i n c l u d i n g l i g h t m i c r o s c o p y , s c a n n i n g electron microscopy ( S E M ) , x-ray diffraction, a n d x-ray
fluorescence.
O n l y t h e c e r a m i c f r o m c e l l 1578-1 w a s f o u n d to b e c r a c k e d . S o m e a n o m a lies w e r e o b s e r v e d , h o w e v e r , i n t h e e x a m i n a t i o n of other ceramics.
The
p r e s e n c e of Κ a n d C I w a s f o u n d b y S E M i n c r a c k e d areas of t u b e 1578-1, Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
b u t n o t i n u n d a m a g e d sections.
T h e r e w e r e s e v e r a l i n d i c a t i o n s of s e a l
d a m a g e that c o u l d not p r o p e r l y b e c a l l e d seal f a i l u r e s i n t h e f o u r cells b u i l t w i t h c e r a m i c of c o m p o s i t i o n 9 . 0 % N a O / 0 . 8 % L i 0 . I n these cases 2
2
t h e «-Al 0 -glass-)S' -alumina seals w e r e b a d l y d i s c o l o r e d or p i t t e d b u t 2
/
3
not broken. T y p i c a l l y c e r a m i c electrolytes t h a t h a v e f a i l e d o n h i g h c u r r e n t test i n g e x h i b i t m u l t i p l e c r a c k patterns a n d a p p e a r w e a k e n e d e v e n i n areas w h e r e there are n o v i s i b l e c r a c k patterns. T h e r e h a v e also b e e n i n d i c a tions of f a i l u r e c a u s e d b y d e t e r i o r a t i o n of t h e / ? " - a l u m i n a i n the v i c i n i t y of the seal. I n one case cracks w e r e f o r m e d i n a / ? " - a l u m i n a t u b e adjacent t o t h e /3"-glass-« seal b u t not i n o t h e r p o r t i o n s of the t u b e . T h i s r a i s e d t h e p o s s i b i l i t y of stress c o r r o s i o n c a u s e d b y the seal. T o test this p o s s i b i l i t y p e r p e n d i c u l a r p a i r s of strain gauges w e r e m o u n t e d o n ^ ' ' - a l u m i n a t u b e s at distances of 0.5 c m a n d 2 c m f r o m p r e v i o u s l y f o r m e d β''-glass-a seals. A f t e r i n i t i a l r e a d i n g s w e r e t a k e n , the tubes w e r e c u t w i t h a l o w - s p e e d d i a m o n d s a w at p o i n t s b e t w e e n t h e seals a n d t h e s t r a i n gauges
closest
to t h e m . T h e c h a n g e i n s t r a i n w a s t h e n m e a s u r e d a n d the stress c a l c u lated u s i n g the expression: Ε
where G
=
Gy
=
a x i a l stress i n p s i
Ε
=
Youngs modulus «
«ν
= strain i n p p m , circumferential — strain i n p p m , axial
V
=- P o i s s o n s r a t i o «
x
c i r c u m f e r e n t i a l stress i n p s i 28.04 X 1 0 p s i 8
0.259
T h e v a l u e s of Ε a n d ν w e r e d e t e r m i n e d f o r t h e c o m p o s i t i o n
9.0%
N a O / 0 . 8 % L i 0 . T h e v a l u e of Ε differs f r o m t h a t r e p o r t e d f o r t h e c o m 2
2
position 8.7%
N a / 0 . 7 % L i 0 , i.e., 18 X 2
2
10
e
psi (3).
T h i s d e g r e e of
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The Sodium-Sulfur
211
Battery
v a r i a t i o n is n o t u n r e a s o n a b l e , h o w e v e r , as the v a l u e of Ε is i n f l u e n c e d b y s a m p l e p o r o s i t y a n d does n o t affect the c o n c l u s i o n s i g n i f i c a n t l y . A l l tubes w e r e s e a l e d to α - Α 1 0 2
3
tubes w i t h s e a l i n g glass i n t h e
c u s t o m a r y m a n n e r . T u b e s of the f o l l o w i n g c o m p o s i t i o n s w e r e e x a m i n e d : (a)
9.5%
N a - N a cell.
Na O/0.9% Li O. 2
z
T h e tube h a d been degraded i n a
C r a c k s w e r e o b s e r v e d n e a r the seal, b u t n o cracks w e r e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
f o u n d 2 c m or f a r t h e r a w a y f r o m t h e seal. (b)
9.5% N a O / 0 . 9 % L i 0 .
(c)
9 . 5 % N a O / 0 . 8 % L i 0 . T h e t u b e h a d b e e n s u b j e c t e d to c u r r e n t
2
2
2
T h e tube was new.
2
of 1.25 A / c m i n a N a - N a c e l l . It w a s u n d a m a g e d . 2
(d)
8.7% N a O / 0 . 7 % L i 0 . T h e tube was freshly prepared. 2
2
T h e s e d a t a are s u m m a r i z e d i n T a b l e I I I . T h e r e is a n a p p a r e n t c o r relation between strain a n d ceramic degradation, a n d it w o u l d be tempt i n g to ascribe the o b s e r v e d
c e r a m i c d e g r a d a t i o n t o stress
corrosion.
H o w e v e r , the stresses c a l c u l a t e d f r o m t h e m e a s u r e d strains n o r m a l l y w o u l d n o t b e e x p e c t e d to c o n t r i b u t e s i g n i f i c a n t l y to stress c o r r o s i o n . M o r e recent w o r k b y A . V i r k a r , U n i v e r s i t y of U t a h , has s h o w n t h a t /?"a l u m i n a is subject to stress c o r r o s i o n i n l i q u i d s o d i u m . I n these e x p e r i m e n t s , the K - V d i a g r a m w a s generated.
T h e stress c o r r o s i o n effects are
s m a l l a n d are s o m e w h a t a f u n c t i o n of c o m p o s i t i o n of c e r a m i c . M o r e r e c e n t l y the N a - N a test c e l l p r o g r a m has b e e n u s e d to e v a l u a t e t h e c e r a m i c e l e c t r o l y t e p r o d u c e d at t h e U n i v e r s i t y of U t a h . O f t h e f o u r
Table III.
Stress and Strain on ^ " - A l u m i n a Tubes N e a r Seals % Composition
Na 0/Li O 2
t
9.5/0.9
9.5/0.9
9.6/0.8
8.7/0.7
N a - N a cell degraded n e a r seal
Fresh
N a - N a cell undamaged
Fresh
0.5 c m f r o m seal : ty ( p p m ) G (psi)
22 856
28 1075
4 159
-13 -157
0.5 c m f r o m seal : t (ppm) G (psi)
25 922
30 1119
5 181
30 800
2 c m f r o m seal : €y ( p p m ) G„ (psi)
2 146
13 523
0 31
8 263
2 cm from seal: t (ppm) G (psi)
11 346
17 612
4 120
3 152
History
y
x
x
m
x
e
* Negative values indicate compression.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
212
SOLID S T A T E C H E M I S T R Y
cens c o n t a i n i n g U t a h - p r o d u c e d ^ " - a l u m i n a c e r a m i c of c o m p o s i t i o n
9.0%
Na O/0.8%
way,
2
L i 0 one has f a i l e d after p a s s i n g 1415 A - h / c m 2
2
one
a n d t h e others are s t i l l i n o p e r a t i o n . P r e s e n t p l a n s c a l l f o r u s i n g N a - N a cells to test the effects of process a n d r a w m a t e r i a l changes m a d e b y t h e U n i v e r s i t y of U t a h . A l t h o u g h N a - N a c e l l t e s t i n g r e m a i n s a u s e f u l t o o l f o r c e r a m i c e v a l u a t i o n , w e h a v e f o u n d t h a t the c r a c k patterns e x h i b i t e d b y ^ " - a l u m i n a electrolytes after N a - N a t e s t i n g are different f r o m those Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
observed on N a - S cell testing. F u r t h e r m o r e , w h i l e w e have established o u r p r e f e r r e d c o m p o s i t i o n o n the basis of N a - N a c e l l tests, w e h a v e n o t established w h y one composition behaves differently f r o m another similar c o m p o s i t i o n n o r w h y a n d b y w h a t m e c h a n i s m ( s ) / T ' - a l u m i n a electrolytes degrade. Sodium-Sulfur
Cells
C e l l d e s i g n i n v o l v e s c r e a t i n g a n o v e r a l l c e l l c o n f i g u r a t i o n w h i c h is c o m p a t i b l e w i t h the / T ' - a l u m i n a e l e c t r o l y t e , seals, c o n t a i n e r m a t e r i a l s , a n d assembly procedures. sistent w i t h
(a)
T h e c e l l c o m p o n e n t s m u s t b e s i z e d to b e c o n
the e l e c t r i c a l r e q u i r e m e n t s of
capacity, power,
and
efficiency, a n d ( b ) t h e m e c h a n i c a l r e q u i r e m e n t s of s t r e n g t h , r u g g e d n e s s , a n d s i m p l i c i t y of a s s e m b l y set b y o p e r a t i o n a l a n d f a b r i c a t i o n l o a d s . T h e s o d i u m - s u l f u r c e l l t e s t i n g p r o g r a m is d i r e c t e d t o w a r d i m p r o v i n g t h e e l e c t r i c a l p e r f o r m a n c e of cells, d e v e l o p i n g a n u n d e r s t a n d i n g of those factors w h i c h c o n t r o l c e l l p e r f o r m a n c e , e s t a b l i s h i n g c e l l d u r a b i l i t y , a n d i d e n t i f y i n g factors w h i c h l i m i t c e l l l i f e . W h i l e the p r e s e n t l i m i t to c e l l l i f e f o r those cells c o n s t r u c t e d m a i n l y of c a r b o n a n d glass is set b y t h e d u r a b i l i t y of / ? " - a l u m i n a electrolytes, t h e f a c t that cells b u i l t u s i n g o t h e r
TEST CELL
CROSS SECTION
Figure 3.
Schematic of Cell 89
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The Sodium-Sulfur
213
Battery
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
CELL CAPACITY-Ah
SPECIFIC CAPACITY-Ah-cm"
Figure 4.
Performance
2
of Cell 89
m a t e r i a l s of c o n s t r u c t i o n h a v e shorter lives u n d e r l i n e s t h e i m p o r t a n c e of factors s u c h as t h e presence of m e t a l ions w h o s e i n f l u e n c e o n / ? " - a l u m i n a c e r a m i c e l e c t r o l y t e d u r a b i l i t y is n o t yet u n d e r s t o o d . A c e l l incorporating a shaped graphite felt electrode designed for v e r y h i g h e n e r g y storage ( F i g u r e 3 ) gave l o w i n t e r n a l losses a n d h i g h u t i l i z a t i o n of reactants ( F i g u r e 4 ) .
I n attempts to o b t a i n f u r t h e r i m
p r o v e m e n t s i n c e l l o p e r a t i o n at t e m p e r a t u r e s of a b o u t 3 5 0 ° C a n d to a i d i n d e v e l o p i n g a n u n d e r s t a n d i n g of the effects of electrode shape a series of three cells, d e s i g n a t e d cells 93, 94, a n d 95 i n F i g u r e 5, w a s c o n s t r u c t e d to c o m p a r e the effect of o p e n v o l u m e s a n d the l o c a t i o n of the
open
c h a n n e l s r e l a t i v e to t h e c e r a m i c surface. T h e results o b t a i n e d w i t h c e l l 94 are s h o w n i n F i g u r e 6. T h i s c e l l shows g o o d d i s c h a r g e
performance
a n d f a i r c h a r g e a b i l i t y — u t i l i z i n g a s i z e a b l e f r a c t i o n of t h e reactants a n d o p e r a t i n g m o d e r a t e l y d e e p i n t o the t w o p h a s e r e g i o n of the N a - S p h a s e d i a g r a m . T h e results o b t a i n e d w i t h c e l l 93 are s h o w n i n F i g u r e 7. I t is c l e a r t h a t the c e l l w i t h u n c o v e r e d c e r a m i c is c a p a b l e of r e c h a r g i n g m u c h m o r e c o m p l e t e l y , r e t u r n i n g to n e a r l y p u r e s u l f u r , a l t h o u g h w i t h a s t e a d i l y i n c r e a s i n g p o l a r i z a t i o n as c h a r g i n g c o n t i n u e s .
T h e losses for this c e l l
are a b o u t d o u b l e those i n c e l l 94. T h e s e results c a n b e i n t e r p r e t e d i n terms of mass transfer b y c o n v e c t i o n , w i c k i n g , a n d d i f f u s i o n . C e l l 94 w a s c a p a b l e of d i s c h a r g i n g w e l l because the reaction product—polysulfldes—formed i n the thin r i n g was a b l e to diffuse to t h e e d g e of the f e l t a n d r e a c t or c o n v e c t a w a y . L a r g e scale c o n v e c t i o n i n t h e o p e n channels b r o u g h t s u l f u r u p t o t h e f e l t t o s u p p l y i t to t h e r e a c t i n g z o n e .
B e c a u s e a l l the / T ' - a l u m i n a c e r a m i c w a s
u t i l i z e d a n d the r e a c t i o n zone w a s close to the c e r a m i c , t h e i n t e r n a l losses were low. O n charge, however, the sodium pentasulfide was prevented f r o m r e a c h i n g the c e r a m i c at a sufficient r a t e b e c a u s e t h e g r a p h i t e
fibers
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
214
SOLID S T A T E C H E M I S T R Y
CELL DESIGNEZ" Figure
5.
Schematic of Cells
93-95
are w e t t e d better b y s u l f u r . T h e charge is l i m i t e d t h e r e b y to a s m a l l p o r t i o n of t h e t w o - p h a s e r e g i o n . F o r c e l l 93 this i n t e r p r e t a t i o n w o u l d suggest that o n d i s c h a r g e , t h e losses w o u l d b e h i g h e r b e c a u s e o n l y a b o u t h a l f of t h e c e r a m i c is f u l l y active. T h e p o r t i o n of t h e c e r a m i c area n o t c o v e r e d b y felt is i n a c t i v e , since i t is c o v e r e d b y s u l f u r i n i t i a l l y .
A s p o l y s u l f i d e is f o r m e d
during
d i s c h a r g e a n d fills t h e o p e n channels, t h e p o r t i o n of c e r a m i c c o v e r e d b y
100 m A / c m
5
10
2
15
S T A T E OF C H A R G E - Ah
Figure
6.
Performance
of Cell 94
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The
Sodium-Sulfur
215
Battery
p o l y s u l f i d e b e c o m e s a c t i v e . I n this r e g i o n t h e i o n i c p a t h extends t h r o u g h t h e c e r a m i c a n d t h r o u g h the p o l y s u l f i d e m e l t i n the o p e n c h a n n e l a n d terminates o n t h e g r a p h i t e fiber surfaces o n the edges of the s h a p e d felt. T h e c o n t r i b u t i o n of this c o n d u c t i o n p a t h is p r o p o r t i o n a l to t h e h e i g h t of the p o l y s u l f i d e i n t h e o p e n channels a n d is p r o b a b l y
a small factor
t h r o u g h o u t t h e d i s c h a r g e c y c l e , a l t h o u g h i t is r e s p o n s i b l e f o r t h e i m p r o v e m e n t i n c h a r g e a b i l i t y of the c e l l . A s w i t h m o s t cells, there are n o Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
p r o b l e m s associated w i t h c h a r g i n g t h r o u g h the one-phase r e g i o n b e c a u s e of d i f f u s i o n a n d c h e m i c a l reactions. O n c e pentasulfide has f o r m e d , h o w ever, t h e p o r t i o n of c e r a m i c c o v e r e d b y felt is e x p e c t e d to b e c o m e i n a c t i v e b e c a u s e of s u l f u r film f o r m a t i o n w h i c h b l o c k s the felt s u r f a c e adjacent to the c e r a m i c . T h e o n l y r e m a i n i n g i o n i c p a t h is t h r o u g h the u n c o v e r e d c e r a m i c surface. W e b e l i e v e t h a t the g r a p h i t e fiber surfaces at the e d g e
CAPACITY-Ah Figure 7.
Performance of Cell 93
of the felt r e m a i n a c t i v e b e c a u s e these surfaces are e x p o s e d to a f r e e l y c o n v e c t i n g l i q u i d p h a s e that c a n r e m o v e t h e s u l f u r film b y
convection.
A c c o r d i n g to this m o d e l w e w o u l d expect the c e l l c o n d u c t a n c e to decrease i n p r o p o r t i o n to t h e r e m a i n i n g h e i g h t of p o l y s u l f i d e i n the o p e n regions, i n q u a l i t a t i v e agreement w i t h d a t a f r o m c e l l 93. A c e l l d e s i g n e d for a m o r e q a u n t i t a t i v e test of this c o n c e p t is s h o w n i n F i g u r e 8. T h e i n n e r h o l e i n the e l e c t r o d e w a s e n l a r g e d to p r o v i d e a 1-mm g a p b e t w e e n the c e r a m i c surface a n d t h e electrode. d i s c h a r g e characteristics of this c e l l ( c e l l 102)
The
charge/
are g i v e n i n F i g u r e 9.
T h e results c a n b e i n t e r p r e t e d i n terms of changes i n g e o m e t r y
associated
w i t h the v a r y i n g l e v e l of pentasulfide as t h e state of c h a r g e is v a r i e d . I f p h a s e s e p a r a t i o n o c c u r s r a p i d l y , t h e a r e a of c e r a m i c c o v e r e d b y i o n i c a l l y c o n d u c t i n g p o l y s u l f i d e varies i n p r o p o r t i o n to t h e a m o u n t
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
the of
216
SOLID S T A T E
polysulfide present in the cell.
CHEMISTRY
T o a first approximation the cell con-
ductance should vary linearly with the state of charge as shown in Figure 10. ALPHA ALUMINA
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
GRAPHITE ROD
TEST CELL
CROSS SECTION Figure 8.
Examination
of
Sodium—Sulfur
Schematic of Cell 102
Cells
after
Testing
After high-temperature testing was completed, cell 89 was returned to 3 0 0 ° C . Its performance had degraded significantly. The charge cycle appeared to have become limited to the single-phase region even at low rates of charge. The cell was taken out of service after three months of operation and examined.
T h e major finding was that the "cemented"
felt arms had become detached from an eroded graphite current collector, thus reducing the electrical contact between the current collector and the electrode to that provided by a few pressure contacts.
Under this
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The Sodium-Sulfur
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
J
I Ο
c
217
Battery
= 5 0 , 100, 150, 2 0 0 , 3 0 0 m A / c m
I 10
Figure 9.
2
I I 20 30 STATE OF CHARGE-Ah Performance
Ι 40
of Cell 102
c o n d i t i o n , o n l y t h e i n n e r w a l l of the c y l i n d r i c a l c u r r e n t c o l l e c t o r r e m a i n s a c t i v e as t h e electrode.
T h e c e r a m i c e l e c t r o l y t e w a s f o u n d to b e i n t a c t .
E x a m i n a t i o n of f r a c t u r e surfaces u s i n g s c a n n i n g e l e c t r o n m i c r o s c o p y d i d n o t r e v e a l a n y signs of d e g r a d a t i o n .
Figure 10.
Plot of cell conductance vs. state of charge
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
218
SOLID STATE
CHEMISTRY
T h e p e r f o r m a n c e of c e l l 93 d e t e r i o r a t e d s l o w l y . E x a m i n a t i o n of the c e l l after its f a i l u r e s h o w e d t h a t t h e " c e m e n t e d " g r a p h i t e f e l t slabs h a d b e c o m e d e t a c h e d , as h a d o c c u r r e d i n c e l l 89. C e l l 94 f a i l e d b e f o r e extensive e l e c t r i c a l t e s t i n g c o u l d b e
accom
p l i s h e d . O n l y t h e i n i t i a l c h a r g e / d i s c h a r g e characteristics w e r e o b t a i n e d . U n e x p e c t e d l y , c e l l 95 also c h a r g e d f a r i n t o the t w o - p h a s e r e g i o n , c o n t r a r y to a l l p r e v i o u s results o n s u c h cells h a v i n g t h i c k f u l l r i n g electrodes. Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
T h e c e l l b e c a m e n o n - c o u l o m b i c , h o w e v e r , b e f o r e its c h a r g e / d i s c h a r g e characteristics c o u l d b e e s t a b l i s h e d f u l l y . C e r a m i c tubes w e r e r e m o v e d f r o m 93 a n d 94 a n d , after c l e a n i n g , w e r e c u t i n t o segments. W h e n feasible, r i n g s w e r e c u t f r o m u n d a m a g e d p o r t i o n s of the t u b e for d i a m e t r i c a l s t r e n g t h tests, m i c r o s t r u c t u r e s w e r e d e t e r m i n e d , a n d surfaces w e r e a n a l y z e d b y s c a n n i n g e l e c t r o n m i c r o s c o p y ( S E M ) . I n selected cases e l e c t r o n m i c r o p r o b e , A u g e r , a n d x - r a y c e n c e w e r e also u s e d .
I n a d d i t i o n , c e r a m i c tubes also w e r e
fluores
removed
f r o m cells Ε 5, Ε 16, a n d Ε 23. T h e s e cells w e r e b u i l t w i t h a n e l e c t r o d e shape s i m i l a r to c e l l 95 (see
F i g u r e s 5 a n d 11) a n d u s e d o n l y c a r b o n
a n d glass m a t e r i a l s of c o n s t r u c t i o n . C e l l s Ε 5 a n d Ε 16 h a d b e e n c y c l e d s o m e 6000 a n d 2200 times r e s p e c t i v e l y i n t h e single-phase r e g i o n .
Cell
Ε 5 h a d passed 925 A - h / c m of s o d i u m i o n one w a y p r i o r to b e i n g t e r m i 2
n a t e d w h i l e s t i l l f u n c t i o n i n g p r o p e r l y . C e l l s 89, 9 3 - 9 5 , Ε 16, a n d Ε 23 u s e d c e r a m i c of c o m p o s i t i o n 8 . 7 %
Na O/0.7% Li 0. 2
2
C e l l Ε 5 used
c e r a m i c of c o m p o s i t i o n 9 . 2 5 % N a O / 0 . 2 5 % L i 0 . 2
2
GRAPHITE THREAD PYREX GRAPHITE
TUBE ALPHA ALUMINA
GRAPHITE CEMENT
r=l
MACHINED GRAPHITE ROD
CONDUCTIVE CERAMIC
GRAPHITE FELT PYREX CONTAINER
TEST CELL CELL Figure 11.
DESIGN I
Schematic of "metal-free' cell 9
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
12.
WEINER
Figure 12.
The Sodium-Sulfur
219
Battery
SEM scan of outside surface of ceramic from Cell Ε 23
T h e ^ " - a l u m i n a e l e c t r o l y t e f r o m c e l l Ε 23 was u n d a m a g e d , a n d n o i m p u r i t i e s w e r e f o u n d o n e i t h e r t h e i n n e r surface ( w h i c h h a d b e e n i n contact w i t h N a ) or the outer surface ( w h i c h h a d b e e n i n contact w i t h s u l f u r ) . D i a m e t r a l tests i n d i c a t e d n o d e t e r i o r a t i o n i n s t r e n g t h . T h i s s a m p l e w a s u s e d as a s t a n d a r d , a n d s u b s e q u e n t r e f e r e n c e to c o n t a m i n a t i o n or i m p u r i t y levels are m a d e r e l a t i v e to Ε 23 ( F i g u r e 1 2 ) .
T h i s reduces
the p r o b a b i l i t y of m i s i n t e r p r e t i n g t h e p r e s e n c e of v e r y l o w l e v e l i m p u r i ties r e s u l t i n g f r o m n o r m a l c e l l c o n s t r u c t i o n . T h e a p p e a r a n c e of
tubes
f r o m cells Ε 5, Ε 16, 93, a n d 94 w a s q u i t e different f r o m that of a t y p i c a l c e r a m i c d e g r a d e d i n a N a - N a c e l l . T u b e s f r o m cells Ε 5, 93, a n d 94 d i s p l a y e d a s i n g l e l o n g c r a c k , w i t h s o m e b r a n c h i n g i n t h e l o w e r p o r t i o n of the t u b e . T h e t u b e f r o m c e l l Ε 16 d i v i d e d i n t o t w o parts b y a u n i f o r m c i r c u l a r c r a c k i n the u p p e r p o r t i o n of the t u b e . T h e r e w a s s o m e e r o s i o n at the edges of t h e c r a c k s , b u t this w a s f o u n d o n l y o n t h e outer surfaces. T h e erosion was probably caused w h e n the crack f o r m e d a n d s o d i u m c a m e i n t o e x p l o s i v e contact w i t h s u l f u r . T h e areas a w a y f r o m the c r a c k a p p e a r e d u n d a m a g e d , a n d d i a m e t r a l s t r e n g t h tests i n d i c a t e d n o loss of s t r e n g t h f o r tubes Ε 16, 93, a n d 94. D e g r a d a t i o n is u s u a l l y m a n i f e s t e d i n N a - N a cells as m u l t i p l e u n c o n n e c t e d c r a c k s .
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
220
SOLID S T A T E C H E M I S T R Y
T h e S E M t e c h n i q u e s u s e d for most of the r e p o r t e d surface analysis i n v o l v e s the analysis of p o i n t s o n a surface. T h i s raises t h e p o s s i b i l i t y of a n y one p o i n t b e i n g a t y p i c a l b e c a u s e of r a n d o m c o n t a m i n a t i o n . T h e r e fore, m a n y points w e r e a n a l y z e d for e a c h s a m p l e . S o m e t y p i c a l d a t a are s h o w n i n F i g u r e s 1 2 - 1 5 . C e l l Ε 5 h a d b e e n i n service for 15 m o n t h s p r i o r to f a i l u r e . A n a l y s i s of b o t h i n n e r a n d outer surfaces u s i n g S E M i n d i c a t e d s m a l l b u t r e a l a m o u n t s of p o t a s s i u m . Cross-sections 25/x, f r o m t h e outer Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
surface, h o w e v e r , h a d p o t a s s i u m levels 2 5 % h i g h e r t h a n t h a t f o u n d at t h e other p o i n t s .
Figure 13.
SEM scan of outside surface of ceramic from Cell 93
T h e m a j o r i m p u r i t y i n a l l of t h e d e g r a d e d samples w a s p o t a s s i u m . C a l c i u m w a s often present w i t h t h e p o t a s s i u m b u t a l w a y s at l o w e r levels. C a l c i u m w a s n e v e r f o u n d alone.
T r a c e s of i r o n , s i l i c o n , a n d c h l o r i n e
w e r e also f o u n d i n s e v e r a l cases. T h e p o t a s s i u m i m p u r i t i e s w e r e f o u n d o n the o u t e r surfaces m o r e f r e q u e n t l y t h a n o n t h e i n n e r surfaces.
The
p o t a s s i u m levels f o u n d o n o u t e r surfaces w e r e o f t e n h i g h e r , b u t n e v e r l o w e r , t h a n t h e p o t a s s i u m levels f o u n d o n i n n e r surfaces.
Apparently
p o t a s s i u m is n o t p r e s e n t i n t h e o r i g i n a l c e r a m i c a n d diffuses i n t o t h e ceramic d u r i n g cell operation.
A t this stage i t w o u l d b e i m p r o p e r to
c o n c l u d e t h a t p o t a s s i u m c a u s e d the c e r a m i c d e g r a d a t i o n , b u t t h e r e are e n o u g h i n d i c a t i o n s to w a r r a n t f u r t h e r s t u d y .
M o r e recently, some pre-
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
WEINER
The Sodium-Sulfur
Battery
Figure 14.
SEM scan of outside surface of ceramic from Cell 94
Figure 15.
SEM scan of inside surface of ceramic from Cell 94
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
222
SOLID STATE
l i m i n a r y experiments i n w h i c h samples of ^ " - a l u m i n a of 9.0%
Na O/0.8% Li 0 2
NaN03-KN0
2
3
CHEMISTRY
composition
w e r e i m m e r s e d f o r 16 h o u r s at 3 5 0 ° C i n a
m e l t c o n t a i n i n g 0 - 4 . 5 m o l % p o t a s s i u m suggest t h a t s m a l l
a m o u n t s of p o t a s s i u m r e d u c e the s t r e n g t h of ^ " - a l u m i n a b y s o m e f e w thousand psi. R e c e n t l y w e h a v e s h i f t e d o u r emphasis f r o m c o n s t r u c t i o n of glass a n d c a r b o n cells to c o n s t r u c t i o n of m o r e r e a l i s t i c p r o t o t y p e s of l a r g e r Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
size u s i n g m e t a l s o d i u m a n d s u l f u r containers. W e are c o n t i n u i n g o u r efforts, h o w e v e r , to define t h e effects of s u c h c e l l v a r i a b l e s as t e m p e r a t u r e , m e t a l ions, c u r r e n t d e n s i t y , e l e c t r o d e
shape, a n d t h e extent
of
t w o - p h a s e ( s u l f u r -\- s o d i u m p o l y s u l f i d e ) o p e r a t i o n o n β''-alumina d u r a b i l i t y . I t w i l l b e necessary f o r some t i m e to p e r f o r m experiments i n a n a t t e m p t to d e l i n e a t e h o w these c e l l v a r i a b l e s i n t e r a c t w i t h / ? " - a l u m i n a electrolytes of v a r y i n g c o m p o s i t i o n , i n t e r n a l stress levels, a n d v a r i o u s microstructures.
Materials Costs Estimate for a Sodium—Sulfur Cell A cost target of $ 2 0 / k W h has b e e n chosen f o r the l o a d l e v e l i n g application based on published data ( 4 ) .
T h e cost of c o n s t r u c t i o n of
present l a b o r a t o r y cells w i l l p r o v i d e a n u p p e r l i m i t f o r c e l l costs. d i r e c t cost elements c a n b e b r o k e n d o w n i n t o f o u r m a j o r ( a ) t h e costs of r a w m a t e r i a l s , ( b ) (c)
The
categories:
t h e costs of c o m p o n e n t f a b r i c a t i o n ,
t h e costs of c e l l filling a n d a s s e m b l y , a n d ( d )
the costs of e x t e r n a l
c o m p o n e n t s s u c h as leads, etc. P r e s e n t l y w e s h a l l c o n c e r n ourselves w i t h o n l y t h e a c t u a l costs of r a w m a t e r i a l s u s e d i n c o n s t r u c t i o n of l a b o r a t o r y cells. F o r purposes
of c a l c u l a t i o n w e h a v e a s s u m e d a m a t e r i a l s usage
efficiency of 1 0 0 % a n d h a v e b a s e d a l l of o u r costs i n terms of u n i t a r e a o f c e r a m i c electrolyte ( c m ) . 2
T o c o n v e r t f r o m area of e l e c t r o l y t e to
k W h w e h a v e u s e d a f a c t o r of 2.3 W h / c m
2
or 435 c m c e r a m i c e l e c t r o l y t e 2
p e r k W h d e l i v e r e d . T h i s e n e r g y d e n s i t y w a s a c h i e v e d i n c e l l 89 w h i c h Table I V .
Major Materials Costs for Laboratory Cells Cost
Material G r a p h i t e felt Stainless steel α-Alumina header /?"-Alumina Sodium Sulfur
75 2 10 —
0.4 0.1
Amount (g/cm of β"-Alumina) 2
Cost (t/kWh) 6.57 4.86 3.18 50.46 0.79 0.36
0.091 2.53 0.35 0.32 2.06 3.71 Total
62.22
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
12.
WEINER
The
Sodium-Sulfur
223
Battery
w a s d e s i g n e d s p e c i f i c a l l y for l o a d l e v e l i n g . U s i n g these assumptions t h e m a j o r r a w m a t e r i a l s costs w e r e d e t e r m i n e d ( T a b l e T h e cost of $ 3 . 1 8 / k W h f o r o - A l 0 2
headers
3
IV). can be
expected
decrease at least o n e o r d e r of m a g n i t u d e i n terms of p r o d u c t i o n
to
costs.
A cost r e d u c t i o n of a f a c t o r of f o u r c a n b e a c h i e v e d s i m p l y b y u s i n g 1-in l o n g headers r a t h e r t h a n the 4 - i n l o n g headers c u r r e n t l y u s e d i n f a b r i c a t i o n of l a b o r a t o r y cells.
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
It is w o r t h w h i l e to take a s o m e w h a t closer l o o k at the costs associ a t e d w i t h p r o d u c i n g u n i t s of / T ' - a l u m i n a e l e c t r o l y t e j o i n e d to a n a - A l O 2
i n s u l a t o r . I n the past w e h a v e u s e d a cost target of $ 0 . 0 1 / c m electrolyte.
2
s
of c e r a m i c
U s i n g t h e c o n v e r s i o n f a c t o r of 2.3 W h / c m , this translates 2
to a cost of $ 4 . 3 5 / k W h of energy d e l i v e r e d . T h e r a w m a t e r i a l s costs associated w i t h / ^ " - a l u m i n a f a b r i c a t i o n are shown in Table V . Table V .
Material
(Unit)
α - Α 1 0 (lb) Na C0 (lb) LiN0 (lb) P t (troy o u n c e ) Polyurethane (boots) 2
Ceramic Materials
Cost
Amount ( g/cm )
($/unit)
0.07 0.19 0.06 0.02 0.41
3.60 17.50 200.00 8.90 10.00
2
3
2
Costs
e
3
3
b
β
b
Total β 5
(t/cm?) 0.06 2.6 8.0 0.04 0.9
(39)
1
11.6
The conversion factor is 1.5 X 10~ boots/cm . The cost of the Pt is $0.39/cm , but 80% of the cost is recovered. 3
2
2
T h e cost o f the p o l y u r e t h a n e boots ( m o l d s ) c a n b e d e c r e a s e d
by
e x t e n d i n g b o o t l i f e w h i c h is n o w o n the o r d e r of 15 pressings. T h e cost associated w i t h the p l a t i n u m u s e d d u r i n g s i n t e r i n g is s h o w n as 2 0 %
of
the cost of the f o r m e d p l a t i n u m , t h e r e m a i n i n g 8 0 % t a k e n as scrap v a l u e . T h e results g i v e n i n T a b l e s I V a n d V i n d i c a t e t h a t the h i g h e s t cost i t e m b y f a r is the β''-alumina c e r a m i c electrolyte.
T o m e e t target costs
the cost of / ^ ' - a l u m i n a r a w m a t e r i a l s m u s t b e r e d u c e d b y m o r e t h a n a n o r d e r of m a g n i t u d e . R e s e a r c h is c o n t i n u i n g t o w a r d o u r g o a l of cost r e d u c t i o n . W e e x p l o r i n g t h e use of r a w « - A l 0 2
3
are
p o w d e r s w h i c h cost less t h a n $ 1 . 0 0 / l b
or 0 . 0 9 0 / c m , the e l i m i n a t i o n of p l a t i n u m e n c a p s u l a t i o n , a n d the use of 2
l u b r i c a n t s to e x t e n d the l i f e of the p o l y u r e t h a n e boots.
A l t h o u g h the
progress at U t a h i n f o r m i n g c e r a m i c electrolyte b y isostatic p r e s s i n g has e x c e e d e d that m a d e u s i n g e x t r u s i o n , w e m a y s t i l l b e a b l e to use a n e x t r u s i o n process w h i c h w o u l d b e o n e w a y to e l i m i n a t e t h e costs associ a t e d w i t h p o l y u r e t h a n e boots.
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
224
SOLID S T A T E
CHEMISTRY
Summary R e s u l t s o n t e s t i n g l a b o r a t o r y s o d i u m - s u l f u r cells c o n t i n u e to d e m o n strate the p o t e n t i a l of this system to m e e t the goals r e q u i r e d f o r leveling a n d automotive propulsion.
load
W h i l e m u c h v a l u a b l e r e s e a r c h has
b e e n d o n e , t h e r a p i d a d v a n c e of this t e c h n o l o g y w o u l d b e a i d e d g r e a t l y b y answers to s o m e of the f u n d a m e n t a l questions t h a t r e m a i n . T h e n e e d
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on February 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch012
to u n d e r s t a n d the causes of c e l l a n d c e r a m i c f a i l u r e are p e r h a p s
demon
s t r a t e d m o s t c l e a r l y b y stating that l o a d l e v e l i n g systems s h o u l d last at least 10 years. Acknowledgment I t h a n k m y colleagues at F o r d — T i s c h e r , M i n c k , G u p t a , L u d w i g , M i k k o r , Lingscheit, Tennenhouse,
Oei, Winterbottom, and
Seaver—for
a l l o w i n g m e to cite t h e i r w o r k a n d h e l p i n g m e to p r e p a r e this m a n u s c r i p t .
Literature Cited 1. Kummer, J. T., Weber, N., "A Sodium-Sulfur Secondary Battery," SAE Transactions (1967) 76, paper 670179. 2. Weiner, S. Α., "Research on Electrodes and Electrolyte for the Ford SodiumSulfur Battery," Annual Report to the National Science Foundation under Contract No. NSF-C805, July 1975. 3. Virkar, Α. V., Tennenhouse, G. J.,Gordon, R. S., J. Am. Ceram. Soc. (1974) 57, 508. 4. Yao, N . P., Birk, J. R., "Battery Energy Storage for Utility Load Leveling and Electric Vehicles: A Review of Advanced Secondary Batteries," 10th Intersociety Energy Conversion Engineering Conference, Newark, Dela ware, August 18-22, 1975, paper 759166. July 27, 1976. Work supported in part by the National Science Foundation—RANN Program under contract NSF-C805. RECEIVED
In Solid State Chemistry of Energy Conversion and Storage; Goodenough, John B., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1977.