7 Recrystallization of Semiconducting Polycrystalline Ribbons Using the
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
Peltier Effect
S. VOJDANI and R. HASHEMIAN Materials and Energy Research Center, Arya Mehr University of Technology, P.O. Box 41-2927, Tehran, Iran
A new approach to zone refining thin semiconductor ribbons or films necessary for the production of low-cost solar cells is investigated using the Peltier effect. The results indicate that under certain conditions the Peltier current tends to stabilize the freezing interface allowing an increase in the grain size of a thin film.
/ C o m m e r c i a l p r o d u c t i o n of s i l i c o n solar cells r o u t i n e l y y i e l d s h i g h l y ^
r e l i a b l e devices h a v i n g a d e q u a t e
(~12%)
efficiencies.
These de
v i c e s h a v e b e e n d e s i g n e d t o operate i n t h e s p a c e e n v i r o n m e n t a n d h a v e p r o v e d v e r y s u i t a b l e f o r this a p p l i c a t i o n . H o w e v e r , f o r t e r r e s t r i a l a p p l i cations t h e y h a v e a serious d e f e c t — t h e i r cost is too h i g h b y a t least o n e o r d e r of m a g n i t u d e . T h e most i m p o r t a n t factors i n t h e d e v i c e cost a r e t h e expensive p r o d u c t i o n of l a r g e s i n g l e - c r y s t a l boules a n d t h e w a f e r i n g o f these crystals t o g i v e t h i n slices s u i t a b l e f o r use i n devices. T w o processes have been considered for producing cheap wafers: s i n g l e crystals i n t h e f o r m o f t h i n
ribbons
( a ) the growth of
so that e x p e n s i v e w a f e r i n g is
a v o i d e d ( J ) , a n d ( b ) t h e d e p o s i t i o n o f films o n s u i t a b l e substrates b y heteroepitaxial t e c h n i q u e s — C V D , sputtering, evaporation ( 2 ) , a n d more recently L P E ( 3 ) .
H e t e r o e p i t a x i a l films g e n e r a l l y give l o w efficiency
w h e n u s e d i n solar cells b e c a u s e of a r e d u c t i o n i n o p e n - c i r c u i t v o l t a g e a n d m i n o r i t y c a r r i e r l i f e t i m e associated
with
t h e presence
of
grain
boundaries. H o w e v e r , i f t h e g r a i n size is sufficiently l a r g e ( 4 , 5 ) (e.g., f o r S i , 1 0 0 - 1 0 0 0 ^ m ) , a d e q u a t e efficiency is o b t a i n e d . T h e p r o d u c t i o n of s i l i c o n solar cells b y t h i n o r t h i c k film t e c h n i q u e s w i l l p r o b a b l y r e q u i r e a p r o c 134
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
7.
vojDANi
Semiconducting
AND HASHEMiAN
Polycrystalline
essing step that enlarges the c r y s t a l l i t e size i n the
film.
135
Ribbons
Two
techniques
h a v e a l r e a d y b e e n suggested for this p r u p o s e : c r y s t a l l i z a t i o n of S i films b y means of a s c a n n i n g e l e c t r o n or laser b e a m ( 6 ) a n d heat t r e a t m e n t of C V D - g r o w n S i films i n a n i n e r t a t m o s p h e r e ( 7 ) .
Another alternative w i l l
b e passage of m o l t e n z o n e ( z o n e r e f i n i n g ) across t h e film u n d e r
con
t r o l l e d c o n d i t i o n s to increase the g r a i n size. F o r t h e p u r p o s e of z o n e r e f i n i n g a t h i n p o l y c r y s t a l l i n e
film,
four
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
problems must be considered: (a)
the m o l t e n z o n e m u s t b e v e r y n a r r o w to p r e v e n t t h e b r e a k - u p
of t h e l i q u i d i n t o globules b e c a u s e of surface t e n s i o n , unless t h e l i q u i d w e t s the substrate (e.g., S i wets c a r b o n ) ; (b)
the molten semiconductor
must not be contaminated b y
the
substrate; (c)
the m o l t e n z o n e m u s t m o v e across the film w i t h u n i f o r m v e l o c i t y
so t h a t s o l i d i f i c a t i o n c a n p r o c e e d , i n a c o n t r o l l e d m a n n e r ; a n d (d)
the i n t e r f a c e b e t w e e n s o l i d a n d l i q u i d m u s t b e p l a n a r so t h a t ,
u p o n s o l i d i f i c a t i o n of t h e m o l t e n zone, a n i m p r o v e m e n t i n c r y s t a l l i t e size is a t t a i n e d . A c h i e v i n g a c c e p t a b l e results w i t h t h i n films d e m a n d s c o n t r o l of t h e z o n i n g process,
a n d this is difficult to a t t a i n i n a n i n h e r e n t l y s m a l l -
v o l u m e c r y s t a l l i z a t i o n process.
H e n c e i t is i n t e r e s t i n g to e x a m i n e the
p o s s i b i l i t y of u s i n g t h e P e l t i e r effect. S i n c e the t w o s o l i d - m e l t interfaces also constitute b o u n d a r i e s
between
phases
h a v i n g different e l e c t r i c a l
resistivities, the passage of a d i r e c t c u r r e n t t h r o u g h t h e s a m p l e
causes
P e l t i e r h e a t i n g at one interface a n d c o o l i n g at the other. T h i s c o u l d cause t h e z o n e to m o v e a n d has t h e a d v a n t a g e of l o c a l i z e d heat s u p p l y a n d e x t r a c t i o n p r e c i s e l y at the interfaces, f a c i l i t a t i n g c o n t r o l .
T h e process
w a s t r i e d m a n y years ago f o r b u l k crystals ( 8 ) b u t w a s d i s c a r d e d b e c a u s e a l a r g e c u r r e n t w a s n e e d e d f o r l a r g e - a r e a samples t o p r o v i d e
adequate
i n t e r f a c e h e a t i n g a n d c o o l i n g . T h i s l i m i t a t i o n is not i m p o r t a n t f o r z o n i n g t h i n films, a n d , a d d i t i o n a l l y , there is n o n e e d to p r o v i d e a l l t h e h e a t f o r z o n e m e l t i n g f r o m the d i r e c t c u r r e n t ; the s a m p l e c a n b e p l a c e d i n a f u r n a c e to p r o v i d e a u x i l i a r y h e a t i n g . T h e p u r p o s e o f u s i n g P e l t i e r c u r r e n t is t o a l l o w the z o n e w i d t h a n d p o s s i b l y t h e i n t e r f a c e t o p o l o g y to be stabilized. T h e r e m a i n d e r of this c h a p t e r presents a t h e o r e t i c a l a n d e x p e r i m e n t a l i n v e s t i g a t i o n of t h e s o l i d i f i c a t i o n process i n t h e presence
of a
direct
c u r r e n t as a first step t o w a r d s P e l t i e r z o n i n g . Theory A l l s y m b o l s u s e d i n this analysis are d e f i n e d i n t h e " N o m e n c l a t u r e " section.
T h e rate p e r u n i t a r e a at w h i c h P e l t i e r heat is d e l i v e r e d
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
136
SOLID S T A T E
CHEMISTRY
to ( o r e x t r a c t e d f r o m ) a s o l i d - l i q u i d i n t e r f a c e t h r o u g h w h i c h a d i r e c t c u r r e n t of d e n s i t y J is p a s s i n g is ( 9 ) p
Q
P
=
(1)
aT J» m
F o r t h e t h e o r e t i c a l analysis, a t h i n r i b b o n of s e m i c o n d u c t o r is c o n s i d e r e d as s h o w n i n F i g u r e 1. T h e s a m p l e is p l a c e d i n a c y l i n d r i c a l f u r n a c e a t
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
ζ
τ,
τ
2
Figure 1. A thin ribbon of semiconductor with the reference axes used for the theo retical modeling a m b i e n t t e m p e r a t u r e T . A d i r e c t c u r r e n t 7 is p a s s e d t h r o u g h i t , w h i l e A
t h e ends of t h e s a m p l e are k e p t a t t e m p e r a t u r e s T i a n d T
2
T h e r e l e v a n t heat b a l a n c e e q u a t i o n s a r e as f o l l o w s .
respectively.
I n the solid region
for u n i t v o l u m e :
Ks
U+
J.'p. -
j
w(T*
-
TV) =
c^ p8
(2)
I n the l i q u i d region for unit volume: +
(3)
A t the interface between solid a n d l i q u i d :
I n t h e f o r m u l a t i o n of E q u a t i o n s 2, 3, a n d 4 t h e f o l l o w i n g assumptions have been made: ( a ) T h e s a m p l e consists of s o l i d a n d l i q u i d regions. ( b ) H e a t loss f r o m t h e s a m p l e results f r o m r a d i a t i o n f r o m t h e s u r faces a n d c o n d u c t i o n t h r o u g h t h e ends o n l y .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
7.
v o p A N i AND HASHEMiAN
Semiconducting
Polycrystalline
Ribbons
137
(c)
p a n d pi are c o n s i d e r e d constants.
(d)
T h e s a m p l e is s y m m e t r i c a l l y l o c a t e d i n t h e f u r n a c e w i t h r a d i a l
B
symmetry, a n d the ambient temperature T (e)
A
is constant.
T h e a m b i e n t t e m p e r a t u r e is close to t h e m e l t i n g p o i n t .
( f ) T h e t e m p e r a t u r e is constant a l o n g the y a n d ζ axes; o n l y v a r i a t i o n a l o n g the χ axis is c o n s i d e r e d . I n the r e g i o n of t h e m o l t e n z o n e t h e r e c a n b e n o v a r i a t i o n i n Τ a l o n g the χ axis b e c a u s e
of t h e
two-phase
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
condition. (g)
At χ =
0, Τ =
Tu at χ — α, Τ =
(h)
S t e a d y state c o n d i t i o n s exist.
T . 2
τ "κ
1200 1 0
4
1
1
8
12
1
1
.
16
20
24
1 —
28
χ (m)
Figure 2. Temperature profile across the sample as a function current. Peltier heating and cooling are neglected.
of
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
138
SOLID STATE
CHEMISTRY
U s i n g the a b o v e a s s u m p t i o n s , E q u a t i o n s 2, 3, a n d 4 w e r e
solved
c o m p u t a t i o n a l l y f o r g e r m a n i u m , since this m a t e r i a l w a s to b e u s e d , for convenience, i n initial experiments.
R e p r e s e n t a t i v e values u s e d f o r the
p a r a m e t e r s i n t h e equations are s h o w n i n t h e N o m e n c l a t u r e section.
The
solutions a l l o w e d the z o n e w i d t h a n d t h e completeness of one m e l t i n g to b e r e l a t e d to t h e e x p e r i m e n t a l c o n d i t i o n s u s e d a n d p a r t i c u l a r l y to t h e direct current
flowing.
Theoretical Modeling. Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
semiconductor
ribbon
Passage of a c u r r e n t t h r o u g h a s a m p l e
of
c o n t a i n i n g a m o l t e n zone has t w o effects: i t w i l l
c h a n g e the z o n e w i d t h W
a n d t h e d e g r e e of m e l t i n g w i t h i n the zone.
T h i s l a t t e r is d e s c r i b e d i n terms of a p a r a m e t e r γ w h i c h w i l l b e a f u n c t i o n of d i s t a n c e a l o n g the χ axis; γ = 0 defines a s o l i d r e g i o n , γ =
1 a liquid
r e g i o n , a n d 0 < γ < 1 a r e g i o n of p a r t i a l m e l t , so t h a t , across the a r e a of t h e z o n e at a p o i n t x, t h e f r a c t i o n y(x)
of the area w i l l b e m o l t e n .
F i g u r e 2 shows the c a l c u l a t e d t e m p e r a t u r e profile a l o n g the s a m p l e f o r v a r i o u s currents w h e n P e l t i e r h e a t i n g a n d c o o l i n g are n e g e l e c t e d i n t h e c a l c u l a t i o n s . T h e changes are c a u s e d s i m p l y b y different levels of J o u l e h e a t i n g . T h e z o n e w i d t h d e p e n d s o n the t e m p e r a t u r e s Γι a n d a n d also, as s h o w n i n the figure, o n the c u r r e n t F i g u r e 3 shows the d e p e n d e n c e t e m p e r a t u r e s Γι a n d T
2
of zone w i d t h ( W )
(assumed equal)
T
2
flowing. a n d γ o n the
for three different c u r r e n t s .
A t the m e l t i n g p o i n t W is a b o u t 3 c m , b u t r e d u c i n g T
x
and T
2
to a b o u t
2 3 ° Κ b e l o w this v a l u e r e d u c e s W to less t h a n 1 m m . T h e w i d t h is a g a i n s h o w n to d e p e n d o n t h e c u r r e n t . T h e d e g r e e of m e l t i n g of t h e z o n e is d e t e r m i n e d b y the c u r r e n t o n l y ( f o r g i v e n a m b i e n t t e m p e r a t u r e )
and
n o t b y the t e m p e r a t u r e at t h e ends of the s a m p l e . T h e d e p e n d e n c e W
of
a n d γ o n a m b i e n t t e m p e r a t u r e is s h o w n i n F i g u r e 4, w h e r e b o t h are
seen to decrease as T
A
decreases.
T h u s i n c o m p l e t e m e l t i n g of t h e z o n e w i t h t h e passage of c u r r e n t has b e e n o b s e r v e d a n d p r e d i c t e d f r o m the m a t h e m a t i c a l m o d e l . T h e reason f o r this p h e n o m e n o n is associated w i t h the different resistivities of t h e m e l t a n d the s o l i d (pi'.p = B
1:8 f o r G e ) , w h i c h , i n t h e event of i n c o m p l e t e
z o n e m e l t i n g , causes t h e c u r r e n t to c h a n n e l t h r o u g h t h e m e l t r e g i o n . T h i s w i l l increase the J o u l e h e a t i n g i n this r e g i o n , thus c a u s i n g the m o l t e n r e g i o n to g r o w .
A steady state w i l l b e r e a c h e d w h e n J o u l e h e a t i n g i n
the m e l t is b a l a n c e d b y h e a t loss f r o m the m e l t to the s o l i d a n d also b y t h e u s u a l h e a t losses b y c o n d u c t i o n a l o n g the χ axis a n d b y r a d i a t i o n . W e c a n n o w p r o c e e d to i n c o r p o r a t e the effect of P e l t i e r h e a t i n g a n d c o o l i n g at t h e t w o interfaces. L e t us assume t h a t a m o l t e n z o n e is f o r m e d , p e n e t r a t i n g the s p e c i m e n u n i f o r m l y to a d e p t h y
0
as s h o w n i n F i g u r e 5a.
T h e m o l t e n z o n e is c o n f i n e d b y t h e d o t t e d l i n e A B C D .
Peltier cooling
w i l l o c c u r at the i n t e r f a c e A B ( c u r r e n t g o i n g f r o m s o l i d to l i q u i d ) , a n d P e l t i e r h e a t i n g w i l l o c c u r at t h e i n t e r f a c e D C ( c u r r e n t g o i n g f r o m l i q u i d
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
7.
v o p A N i AND HASHEMiAN
Semiconducting
Polycrystalline
Ribbons
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
I
1 V
1200
1202
1204
1206
1208
Τ (°K)
Figure 3.
Dependence of W and γ on the ambient T for different currents
temperature
A
W
32
I
1195
,
1200
1
'
]20B
1210
Τ
°K
Figure 4. Dependence of W and γ on the end temperatures as a function of different currents: T , = 1200°K, T = 1205°K f
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
139
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
140
SOLID STATE
ι.
's
Figure
to s o l i d ) .
5.
Δ
CHEMISTRY
.1
χ
-
Schematic illustrating the effect of l zone solidification
p
on
A s the m o l t e n r e g i o n is at the m e l t i n g p o i n t , P e l t i e r h e a t
a b s o r b e d f r o m the i n t e r f a c e A B a n d e v o l v e d at the i n t e r f a c e D C is e x p e c t e d to c h a n g e the s h a p e a n d p o s i t i o n of these interfaces.
L e t us
n o w t a k e a segment of w i d t h Δχ i n t h e m o l t e n z o n e as s h o w n i n F i g u r e 5 b . S i n c e t h e b o t t o m s o l i d - l i q u i d b o u n d a r y is n o t p a r a l l e l to the c u r r e n t flow ( t h e slope dj/dx = 0 ) , a n d since the t w o phases h a v e different r e s i s t i v i ties, there is a net c u r r e n t 7 across the i n t e r f a c e , w h i c h causes the P e l t i e r P
effect. T h e i n t e r f a c e b e t w e e n s o l i d a n d l i q u i d is t a k e n as a l i n e segment of g r a d i e n t dj/dx f o u n d c o m p u t a t i o n a l l y . T h e f o r m u l a t i o n t o find dj/dx, a n d c o n s e q u e n t l y t h e final shapes a n d positions of interfaces A B a n d D C u p o n the passage of c u r r e n t 7, are g i v e n as f o l l o w s . T h e equations f o r t h e currents p a s s i n g t h r o u g h the segment a r e : 7 + 7 = 7' + V = 1
S
1
J i + I
7
(5)
- J i '
(6)
Ji =
δΛ
(7)
Ji' -
δΛ'
(8)
p
W h e r e δ is the r a t i o of the s o l i d to the l i q u i d r e s i s t i v i t y . R e a r r a n g i n g Γ
E q u a t i o n s 5, 6, 7, a n d 8 g i v e s :
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
7.
vojDANi A N D
Semiconducting
HASHEMiAN
Polycrystalline
141
Ribbons
w h e r e δ = δ — 1. F r o m E q u a t i o n 9 t h e P e l t i e r c o o l i n g at the i n t e r f a c e Γ
kkf is g i v e n as:
H o w e v e r , the h e a t g e n e r a t e d i n the slice c a u s e d b y t h e J o u l e h e a t i n g is
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
given by:
w h i l e o r i g i n a l l y , w h e n no z o n e s h a p i n g c a u s e d b y t h e P e l t i e r effect is c o n s i d e r e d , w e w o u l d get
^=(^Τ^
Δ Χ
( 1 2 )
as the a m o u n t of J o u l e h e a t i n g i n t h e segment. F o r the e q u i h b r i u m s i t u a t i o n the excess J o u l e h e a t i n g c a u s e d b y s u c h z o n e s h a p i n g m u s t b e e q u a l to the loss of e n e r g y c a u s e d b y the P e l t i e r effect, t h a t i s , Q
p
=
_
Q i
Q
a n d after s u b s t i t u t i n g f o r Ç
K
ψ
=
J 0
p
[ _ J _
_
_ J ^ ]
Λ*
(13)
f r o m E q u a t i o n 10 w e o b t a i n
%= ~
Sy2
+
° ~
{8y
b
)
+
°
(14)
by
w h e r e Κ is a constant a n d _aT A{Sy
K
m
+
0
b)
^
Spil
S o l u t i o n of the d i f f e r e n t i a l e q u a t i o n , 14, w i t h the b o u n d a r y
conditions
gives the shape of the s o l i d - l i q u i d i n t e r f a c e ( Α Β ' i n F i g u r e 5 a ) . i n t e r f a c e shape for t w o different currents I =
2 A and I =
This
2.3 A has b e e n
c o m p u t a t i o n a l l y e v a l u a t e d ; the results are g i v e n i n F i g u r e s 6 a a n d 6 b . N o t e t h a t t h e interface c u r v e a l w a y s starts f r o m p o i n t A (see 5a).
Figure
T o d e t e r m i n e the p o s i t i o n of the l i q u i d - s o l i d b o u n d a r y , i.e., the
segment B ' D ' , w e c o n s i d e r the cross s e c t i o n s h o w n i n F i g u r e 7 a at the b o u n d a r y B D ' . T h e equations for e q u i h b r i u m h e a t flow a n d t h e c u r r e n t r
c o n d i t i o n at s u c h a n i n t e r f a c e is g i v e n as:
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
SOLID STATE
1=2
CHEMISTRY
A
T = J207 K e
A
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
T , " 1200 " K
0
2
H
6
8
10
12
M
Xm
Figure 6a. Molten zone movement: (1) without Peltier current, (2) with Peltier current. l = 2.0 A. p
1=2.3
A
T = 1207 Κ e
A
\ = 1200° Κ
Figure 6b. Molten zone movement: (1) without Peltier current, (2) with Peltier current. l = 2.3 A. p
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
7.
vojDANi
Semiconducting
AND HASHEMiAN
Polycrystalline
Ribbons
143
(16) where
c(Sy +
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
and T
L
and T
R
(17)
b)'
s t a n d f o r t h e t e m p e r a t u r e of the s a m p l e at the l e f t s i d e
a n d t h e right side of B ' D ' , r e s p e c t i v e l y . H o w e v e r , t h e t e m p e r a t u r e at the left side of B ' D ' is constant ( T
m
), b e c a u s e b o t h m e l t a n d s o l i d are present
( a s s u m p t i o n v i ) , a n d therefore, w e get dT^/dx
0. T h u s E q u a t i o n 16 is
r e d u c e d to
(18) or after s u b s t i t u t i n g f o r h f r o m E q u a t i o n 17 w e o b t a i n dT
R
dx
S T / y KA Sy + b r
m
(19)
S
O n the other h a n d , h a v i n g t h e b o u n d a r y t e m p e r a t u r e s T a n d T i n t h e s o l i d r e g i o n at the right side of Β Ό ' ( F i g u r e 7 ) w e c a n c o m p u t e t h e D' m
2
Figure 7. Schematic for de termining the shape and posi tion of the interface t e m p e r a t u r e profile i n this r e g i o n . M o r e s p e c i f i c a l l y , s i n c e the l e n g t h of this s o l i d r e g i o n L is a f u n c t i o n of x, t h e t e m p e r a t u r e g r a d i e n t dT^/dx is s
o b t a i n e d as a f u n c t i o n of x, i.e.,
(20)
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
144
SOLID STATE
o r after s u b s t i t u t i n g f o r dT /dx R
CHEMISTRY
i n E q u a t i o n 19 w e o b t a i n aKTJ KA
y hy + b
B
(21)
o r after the a p p r o p r i a t e m a n i p u l a t i o n y is f o u n d as a f u n c t i o n of χ
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
y =
(22)
î(x)
A s a r e s u l t , s o l u t i o n of E q u a t i o n 14 w i t h b o u n d a r y c o n d i t i o n g i v e n i n E q u a t i o n 22 w i l l p r o v i d e e n o u g h i n f o r m a t i o n f o r c o m p u t i n g t h e s h a p e a n d t h e size of the m o l t e n z o n e w h e n b o t h J o u l e h e a t i n g a n d t h e P e l t i e r p h e n o m e n o n are effective. Experimental F o r t h e present experiments G e a n d I n S b r i b b o n s w e r e p r e p a r e d f r o m p o l y c r y s t a l l i n e ingots. T h e d i m e n s i o n s of t h e r i b b o n w e r e v a r i e d , a l w a y s k e e p i n g the r i b b o n thickness b e l o w one m m . T h e s p e c i m e n w a s h e l d b e t w e e n t w o c a r b o n b l o c k s a t t a c h e d to a c e r a m i c substrate. N i c k e l c h r o m i u m w i r e s w e r e c o n n e c t e d to the c a r b o n b l o c k s t o pass t h e d i r e c t c u r r e n t . T h e a s s e m b l y w a s t h e n l o c a t e d i n a v a c u u m c h a m b e r , a n d the sample was heated b y a tungsten element w o u n d around a silica tube. F i g u r e 8 shows a t y p i c a l s a m p l e a n d the s c h e m a t i c e x p e r i m e n t a l a r r a n g e ment. Thermocouples T T , T , a n d T continuously monitored the end t e m p e r a t u r e s , a m b i e n t t e m p e r a t u r e , a n d the s p e c i m e n s t e m p e r a t u r e i n t h e m i d d l e . T h e e x p e r i m e n t a l p r o c e d u r e w a s to raise t h e t e m p e r a t u r e u
2
A
8
Figure 8a. Schematic showing the sample setup: (1) holding clamp, (2) silica tube, (3) sample, (4) heating coil, and (5) supporting base.
Figure
8b.
Actual Ge ribbon sample holder.
in a
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
7.
vojDANi
AND HASHEMiAN
Semiconducting
Polycrystalline
145
Ribbons
of t h e f u r n a c e s l o w l y u n t i l t h e s p e c i m e n w a s close t o T , so t h a t the f o r m a t i o n of the z o n e c o u l d b e o b s e r v e d u n d e r v a r i o u s e x p e r i m e n t a l c o n d i t i o n s . W h e n t h e z o n e w a s e s t a b l i s h e d i n t h e absence of a n y d i r e c t c u r r e n t , i t w a s p o s s i b l e to observe t h e effect of a p p l y i n g s u c h a c u r r e n t b y o b s e r v i n g the associated z o n e m o v e m e n t . m
Results and
Discussion
Solidification of the Molten Zone in the Presence of Peltier Current. Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
W h e n t h e t e m p e r a t u r e of a r i b b o n w a s s l o w l y r a i s e d to n e a r t h e m e l t i n g p o i n t w i t h n o c u r r e n t p a s s i n g t h r o u g h , u s u a l l y the s p e c i m e n b e g a n
to
m e l t n e a r the m i d d l e , the m o l t e n z o n e e x t e n d i n g o u t w a r d s i n a s y m m e t r i c a l m a n n e r u n t i l t h e steady state w a s r e a c h e d .
T o assist t h e f o r m a t i o n
of the m o l t e n zone, w e often m a d e a transverse c u t of 0.3 m m d e e p across the m i d d l e of the r i b b o n to p r o v i d e a r e g i o n of h i g h resistance. I n m a n y cases t h e t e m p e r a t u r e of the s a m p l e w a s r a i s e d to just b e l o w t h e m e l t i n g p o i n t w h i l e a d i r e c t c u r r e n t w a s p a s s e d t h r o u g h t h e s a m p l e , so t h a t the m o l t e n z o n e w a s c r e a t e d p a r t l y b y J o u l e h e a t i n g . U n d e r these c o n d i t i o n s t h e z o n e b e c a m e e x t e n d e d m o r e t o one side t h a n the other ( r e l a t i v e to t h e p o i n t of i n i t i a t i o n ) d u r i n g t h e n o n - s t e a d y state p e r i o d , the d i r e c t i o n a l i t y of the effect d e p e n d i n g o n the d i r e c t i o n of t h e c u r r e n t ( F i g u r e 9).
T h e m o l t e n z o n e has m o v e d t o the left side of the transverse cut,
w i t h n o m e l t i n g o n the right side as is e v i d e n t f r o m t h e s a w m a r k s . W h e n the c u r r e n t w a s
reversed, the molten zone reversed
its d i r e c t i o n
of
movement.
Figure 9. InSb sample with a transverse cut in the middle showing surface movement of the molten zone to the left. Ip = 1.95 A , T , = T = 361°C. 2
T h e r e w e r e t w o i m p o r t a n t features o b s e r v e d
d u r i n g most of
the
experiments. F i r s t , the m o l t e n z o n e d i d not e x t e n d c o m p l e t e l y across the section of the s p e c i m e n . E x a m p l e s of these samples a r e s h o w n i n F i g u r e s 4 a n d 5. I n F i g u r e 10 the m o l t e n z o n e has m o v e d to the right a n d has n o t c o m p l e t e l y p e n e t r a t e d t h e d e p t h of t h e
ribbon.
I n F i g u r e 11, w h e n
the c u r r e n t is r e d u c e d , the m e l t o n l y p a r t i a l l y covers the surface of the ribbon. T h e second feature concerns the c h a n g e i n the z o n e shape w i t h a n d without the direct current.
It h a d been
a s s u m e d o r i g i n a l l y t h a t the
a p p l i e d c u r r e n t w o u l d c o o l one i n t e r f a c e a n d heat the other, c a u s i n g
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
146
SOLID STATE
CHEMISTRY
Figure 10. InSb sample showing par tial melting across the sample thick ness. Ip = 1.5 A, T , = Ί = 398°C. Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
$
Figure 11. InSb sample showing par tial melting on the surface, A current of 1 A was first passed from right to left; the current was then reversed thus reversing the zone movement. The current was then reduced to half, causing the melt to decrease in width. t h e z o n e to m o v e . T h i s w a s n o t observed.
I n s t e a d , o n l y the l e a d i n g e d g e
m o v e d , e x t e n d i n g the w i d t h of the z o n e . T h e o r e t i c a l m o d e l l i n g of the s y s t e m p r e d i c t s this b e h a v i o r b e c a u s e the c u r r e n t causes J o u l e h e a t i n g as w e l l as P e l t i e r h e a t i n g a n d c o o l i n g . globules f o r m e d o n the surface.
W h e n the s p e c i m e n w a s c o o l e d ,
T h i s w a s c a u s e d b y t h e f r e e z i n g of the
surface of t h e s a m p l e w h i l e m o l t e n m a t e r i a l s t i l l existed b e l o w .
This
m e l t w a s s u b j e c t e d to pressure d u r i n g the c o o l i n g process a n d f o r c e d its w a y u p t h r o u g h w e a k spots i n t h e f r o z e n surface.
S i m i l a r b e h a v i o r is
o b s e r v e d w h e n m o l t e n g e r m a n i u m is s o l i d i f i e d i n a c r u c i b l e . Conclusion T h e results p r e s e n t e d i n this p a p e r i n d i c a t e t h a t t h e P e l t i e r effect itself is n o t a d e q u a t e f o r t h e process of z o n i n g t h i n films. T h e r e are t w o reasons for t h i s : ( a ) i t is difficult to o b t a i n a f u l l y m e l t e d n a r r o w z o n e across a ribbon o r t h i n film, m a i n l y b e c a u s e of t h e effect of J o u l e h e a t i n g ; (b)
the r e s i s t i v i t y of
geneous.
the p o l y c r y s t a l l i n e
film
is i n e v i t a b l y
inhomo-
W h e n m o l t e n z o n e is m o v e d b y the a p p l i c a t i o n of a P e l t i e r
current, the m e l t i n g interface
does n o t r e m a i n stable since
"current
c h a n n e l i n g " w i l l t e n d to b r e a k u p the interface. T h i s c u r r e n t c h a n n e l i n g effect o n the other h a n d has a s t a b i l i z i n g effect o n the f r e e z i n g i n t e r f a c e as i l l u s t r a t e d o n a n e x p a n d e d
scale i n F i g u r e 12.
I n this
figure,
for
s i m p l i c i t y , the m e l t i n g i n t e r f a c e is a s s u m e d to b e flat, a n d the s o l i d i f y i n g i n t e r f a c e is a s s u m e d t o b e i r r e g u l a r , c a u s i n g l o w a n d h i g h r e s i s t i v i t y p a t h s w i t h i n t h e i n t e r f a c e r e g i o n . T h u s t h e r a t e of f r e e z i n g at t h e i n t e r f a c e varies across i t , a l w a y s t e n d i n g to m a k e t h e i n t e r f a c e p l a n a r . T h i s
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
7.
vopANi
AND HASHEMiAN
Semiconducting
Polycrystalline
147
Ribbons
Figure 12. Schematic illustrating the current chan nelling effect tending to stabilize the interface: (1) liquid, (2) solid effect is p r e s e n t l y b e i n g i n v e s t i g a t e d . T o c o n c l u d e , i t c a n b e
suggested
t h a t f o r t h e p u r p o s e of z o n i n g a t h i n s e m i c o n d u c t i n g film, t h e c o m b i n a t i o n of a n e x t e r n a l source to create a m o l t e n z o n e a n d P e l t i e r c u r r e n t t o stabilize the freezing interface should result i n more control over
the
s o l i d i f i c a t i o n process, p r o v i d e d t h a t the v e l o c i t y of z o n i n g is n o t h i g h e n o u g h t o a l l o w r e n u c l e a t i o n b e f o r e t h e f r e e z i n g interface. Nomenclature R e p r e s e n t a t i v e v a l u e s of the v a r i o u s p a r a m e t e r s o r G e are g i v e n i n parentheses. L e n g t h of s a m p l e ( c m )
a A
Amps
A
C r o s s s e c t i o n a l area of s a m p l e ( c m ) 2
b
S a m p l e thickness ( c m )
c
Sample w i d t h ( c m )
C
P 8
(C ) p l
d (d ) %
l
J ( 11 ) s
Specific heat of s o l i d ( l i q u i d ) [ ( 2 . 1 2 ) , ( 2 . 3 ) J / d e g / c m ] 3
D e n s i t y of s o l i d ( l i q u i d ) [ ( 5 . 3 ) g / c m ] 3
Current through solid ( l i q u i d ) ( A )
J ( Ji )
C u r r e n t density through solid ( l i q u i d ) ( A )
/
Peltier current ( density ) ( A )
B
K , (Ki)
T h e r m a l c o n d u c t i v i t y of s o l i d ( l i q u i d )
1 (subscript)
Liquid
L
L a t e n t heat of s o l i d i f i c a t i o n [ ( 2 . 1 6 X
Ρ
C r o s s s e c t i o n a l p e r i m e t e r ( 2c + 2b ) ( c m )
B
[(0.24),(0.24)W/cm]
s (subscript)
Solid
t
Time
Τ
Absolute temperature ( ° K )
T
A
l(fi)(]/cm )] 3
(sec)
A m b i e n t temperature ( ° K ) M
*
J
1 i S
Chemical
Society Library 1155 16th St. N. W. Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Washington, D. Society: C. 20036 Advances in Chemistry; American Chemical Washington, DC, 1977.
148
SOLID STATE
CHEMISTRY
τ., ( τ ο
w χ
a
F r a c t i o n of t h e area m e l t e d R a t i o of t h e s o l i d - t o - l i q u i d r e s i s t i v i t y (δ — δ — 1 ) Γ
R e s i s t i v i t y of s o l i d ( l i q u i d ) [ ( 8 Χ 1 0 " ) , ( H ) " ) ( Ω - c m ) ] Downloaded by UNIV OF SOUTHERN CALIFORNIA on June 18, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch007
4
4
E m i s s i v i t y of s o l i d ( l i q u i d ) [ ( 0.2 ) , ( 0.2 ) ] σ
S t e f a n - B o l t z m a n n constant [5.68 Χ 10" ] 12
Acknowledgment W e w o u l d l i k e t o a c k n o w l e d g e m a n y h e l p f u l discussions w i t h E . A . D . W h i t e d u r i n g t h e p r e p a r a t i o n of this p a p e r . T h a n k s a r e also d u e to E . A f s h a r i f o r c o m p u t e r p r o g r a m m i n g , a n d t o S. A l s a e e f o r carrying out the experiments.
Literature Cited 1. Cizek, T. F., Schwuttke, G. H., "Proceedings of the Photovoltaic Power Gen eration Conference," Hamburg, Deutsche Gesellschaft für Luft-und Raum fahrt e.V., Köhn, Germany, 1974, p. 159. 2. Fang, P. H., "International Congress le Soleil au Service de l'Homme," p. 111, UNESCO House, Paris, 1973. 3. Brissot, J. J., Belouet, C., "Comples International Meeting," Dhahran, Saudi Arabia, 1975. See also Brissot, J. J., French Patent PV. 912.050 nr. 1.343.740 (1972). 4. Hammond, A. L., Science (1974) 184, 1359. 5. Wolf, M., "Proceedings of the Photovoltaic Power Generation Conference," Hamburg, 1974, p. 699. 6. Fan, John C. C., Zeiger, H. J., Appl. Phys. Lett. (1975) 27 (4), 224. 7. Ocwens, C. Daey, Heigligers, H., Appl. Phys. Lett. (1957) 26, 269. 8. Pfann, W. G., Benon, Κ. E., Wermich, J. H., J. Electron. (1957) 2, 597. 9. Vojdani, S., Dabiri, A. E., Tavakoli, M., J. Electrochem. Soc. (1975) 122, 1400. RECEIVED July 27, 1976.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.